R Installation and Administration
Version 3.3.3 (2017-03—06)

R Core Team

This manual is for R, version 3.3.3 (2017-03-06).
Copyright (©) 2001-2016 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 Obtaining R............ 1
1.1 Getting and unpacking the sources 1
1.2 Getting patched and development versions...................... 1

1.2.1 Using Subversion and rsync.............c.ovvueeeiinnennn.. 1

2 Installing R under Unix-alikes................. 3
2.1 Simple compilation........ ... 3
2.2 Help optionsot 4
2.3 Making the manuals.......... i i 5)
2.4 TImstallation ... 7
2.5 Uninstallation. ... e 9
2.6 Sub-architectures.......... 9

2.6.1 Multilib. ... 10
2.7 Other Optionst e 10
2.7.1 OpenMP Support ..o 11
2.7.2 CH SUPPOTt . ottt e e e e 11
2.8 Testing an Installation i il 12

3 Installing R under Windows.................. 14

3.1 Building from source.......... ... i 14
3.1.1 Getting the tools. ... i 14
3.1.2 Getting the source files.............. ... 15
3.1.3 Building the core files i 15
3.1.4 Building the cairo devicesooi i 16
3.1.5 Using ICU for collation............ ..., 16
3.1.6 Support for libcurl 17
3.1.7 Checking the build i 17
3.1.8 Building the manuals............ i 17
3.1.9 Building the Inno Setup installer 18
3.1.10 Building the MSI installer............... 19
3.1.11 64-bit Windows builds 19

3.2 Testing an Installation i i 20

4 Installing R under macOS.................... 21
4.1 Running R under macOS...... i i 21
4.2 Uninstalling under macOS i i 22
4.3 Multiple versions. ... 23

5 Running R......... 24

6 Add-on packages................ ..., 25
6.1 Default packages. 25
6.2 Managing libraries ... 25
6.3 Installing packages......... .o 26

6.3.1 WINndOWS. ...ttt 27
6.3.2 macOS 28
6.3.3 Customizing package compilation......................... 29
6.3.4 Multiple sub-architectures............... L 30
6.3.5 Byte-compilation............. ... 30
6.3.6 External software 31
6.4 Updating packagesooiiiiiiiiii i 31
6.5 Removing packagesoouiiiiiii i 32
6.6 Setting up a package repository o il 32
6.7 Checking installed source packagescovveviiien.n. 33

7 Internationalization and Localization........ 34

Tl Locales ... 34
7.1.1 Locales under Unix-alikes 34
7.1.2 Locales under Windowsc.ooiiiiiiiiiinnine.n. 35
7.1.3 Locales under macOS 35

7.2 Localization of messages ..., 35

8 Choosing between 32- and 64-bit builds..... 37

9 The standalone Rmath library 38
9.1 Unix-alikes.oooiiii 38
9.2 WINAOWS. . .ttt e 39

Appendix A Essential and useful other programs

under a Unix-alike 41
A.1 Essential programs and libraries 41
A.2 Useful libraries and programs................coviieiieenno. .. 43

A2 1 Tel/ TR 44

A2.2 Java SUPPOTt ..ottt e 45

A.2.3 Other compiled languages................coooiiiiiiaL. 46
A3 Linear algebra......... ..o 46

A3l BLAS .. 46

A3.1.1 AT AS . . 47
A31.2 ACML. ..o 47
A3.1.3 Gotoand OpenBLAS, 48
A31.4 Intel MKL ..o e 48
A.3.1.5 Shared BLAS..... ... 49
A32 LAPACK 49

A3.3 Caveats ..o 50

ii

Appendix B Configuration on a Unix-alike ... 51

B.1 Configuration options........... .o, 51
B.2 Internationalization support o i i 52
B.3 Configuration variables............. il 52
B.3.1 Setting paper Size..........uuuriiiiiiie i 53

B.3.2 Setting the browsers......... ... 53

B.3.3 Compilation flags. ... 53

B.3.4 Making manuals.......... ... i 53

B.4 Setting the shell 53
B.5 Using make..... ..o 54
B.6 Using FORTRAN e 54
B.7 Compile and load flags.............ooo i 55
B.8 Maintainer mode 56
Appendix C Platform notes.................... 57
O B G T P 57
C.2 LUK -ttt 58
C.21 Clang . ..oooi 60

C.2.2 Intel compilers........ .o 60

C.3 macOS . o 61
C.3.1 El Capitan and Sierra............ouuiuiieiiiiieennnen . 63

C.3.2 Tcl/Tk headers and libraries.......................ooo... 63

C.3.3 Java. ..o 64

C.3.4 Frameworks ... 65

C.3.5 Building R.app ... vvviiiii 65

LR S 0 = 65
Cidl USING GCC .« vttt 68

G AL 70
C.6 FreeBSD ... 72
C.T OpenBSD ... 72
C.8 CygWin. ..ot 72
C.9 New platforms. 72
Appendix D The Windows toolset............. 74
D £ 1) 75
D.2 The Inno Setup installer............o i, 75
D.3 The command line toolso ... 75
D.4 The MinGW-w64 toolchain..............ot 76
D.5 Useful additional programs, 76
Function and variable index...................... 77
Concept index 78

Environment variable index 79

iii

Chapter 1: Obtaining R 1

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive
R Archive Network” whose current members are listed at https://CRAN.R-project.org/
mirrors.html.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent R-x.y.z.tar.gz file, and unpack it with
tar -xf R-x.y.z.tar.gz

on systems that have a suitable! tar installed. On other systems you need to have the gzip
program installed, when you can use

gzip -dc R-x.y.z.tar.gz | tar -xf -

The pathname of the directory into which the sources are unpacked should not contain
spaces, as most make programs (and specifically GNU make) do not expect spaces.

If you want the build to be usable by a group of users, set umask before unpacking so
that the files will be readable by the target group (e.g., umask 022 to be usable by all users).
Keep this setting of umask whilst building and installing.

If you use a recent GNU version of tar and do this as a root account (which on Windows
includes accounts with administrator privileges) you may see many warnings about changing
ownership. In which case you can use

tar --no-same-owner -xf R-x.y.z.tar.gz

and perhaps also include the option --no-same-permissions. (These options can also be
set in the TAR_OPTIONS environment variable: if more than one option is included they
should be separated by spaces.)

1.2 Getting patched and development versions

A patched version of the current release, ‘r-patched’; and the current development version,
‘r-devel’, are available as daily tarballs and via access to the R Subversion repository. (For
the two weeks prior to the release of a minor (3.x.0) version, ‘r-patched’ tarballs may refer
to beta/release candidates of the upcoming release, the patched version of the current release
being available via Subversion.)

The tarballs are available from https: //stat .ethz.ch/R/daily. Download
R-patched.tar.gz or R-devel.tar.gz (or the .tar.bz2 versions) and unpack as
described in the previous section. They are built in exactly the same way as distributions
of R releases.

1.2.1 Using Subversion and rsync

Sources are also available via https://svn.R-project.org/R/, the R Subversion repos-
itory. If you have a Subversion client (see https://subversion .apache.org/), you
can check out and update the current ‘r-devel’ from https://svn.r-project.org/
R/trunk/ and the current ‘r-patched’ from ‘https://svn.r-project.org/R/branches/

! e.g. GNU tar version 1.15 or later, or that from the ‘libarchive’ (as used on macOS versions 10.6 and

later) or ‘Heirloom Toolchest’ distributions.

https://CRAN.R-project.org/mirrors.html
https://CRAN.R-project.org/mirrors.html
https://stat.ethz.ch/R/daily
https://svn.R-project.org/R/
https://subversion.apache.org/
https://svn.r-project.org/R/trunk/
https://svn.r-project.org/R/trunk/

Chapter 1: Obtaining R 2

R-x-y-branch/’ (where x and y are the major and minor number of the current released
version of R). E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path

to check out ‘r-devel’ into directory path (which will be created if necessary).
The alpha, beta and RC versions of an upcoming x.y.0 release are available from
‘https://svn.r-project.org/R/branches/R-x-y-branch/’ in the four-week period prior
to the release.

Note that ‘https:’ is required?, and that the SSL certificate for the Subversion server
of the R project should be recognized as from a trusted source.

Note that retrieving the sources by e.g. wget —r or svn export from that URL will not

work (and will give a error early in the make process): the Subversion information is needed
to build R.

The Subversion repository does not contain the current sources for the recom-
mended packages, which can be obtained by rsync or downloaded from CRAN. To
use rsync to install the appropriate sources for the recommended packages, run
./tools/rsync-recommended from the top-level directory of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions
of the recommended packages: if the number in the file VERSION is ‘x.y.z" you need to
download the contents of ‘https://CRAN.R-project.org/src/contrib/dir’, where dir is
‘x.y.z/Recommended’ for r-devel or x.y-patched/Recommended for r-patched, respectively,
to directory src/library/Recommended in the sources you have unpacked. After down-
loading manually you need to execute tools/link-recommended from the top level of the
sources to make the requisite links in src/library/Recommended. A suitable incantation
from the top level of the R sources using wget might be (for the correct value of dir)

wget -r -11 --no-parent -A*.gz -nd -P src/library/Recommended \
https://CRAN.R-project.org/src/contrib/dir
./tools/link-recommended

2 for some Subversion clients ‘http:’ may appear to work, but requires continual redirection.

Chapter 2: Installing R under Unix-alikes 3

2 Installing R under Unix-alikes

R will configure and build under most common Unix and Unix-alike platforms including
‘cpu—*-linux-gnu’ for the ‘alpha’, ‘arm’, ‘hppa’, ‘ix86’, ‘m68k’, ‘mips’, ‘mipsel’,
‘powerpc’, ‘s390’, ‘sparc’, and ‘x86_64" CPUs, ‘x86_64-apple-darwin’, ‘1386-sun-
solaris’ and ‘sparc-sun-solaris’ as well as perhaps (it is tested less frequently on
these platforms) ‘i386-apple-darwin’, ‘1386-*-freebsd’, ‘x86_64-*-freebsd’, ‘i386-*-
netbsd’, ‘x86_64/*-openbsd’ and ‘powerpc-ibm-aix6*’

In addition, binary distributions are available for some common Linux distributions and
for macOS (formerly OS X and Mac OS). See the FAQ for current details. These are installed
in platform-specific ways, so for the rest of this chapter we consider only building from the
sources.

Cross-building is not possible: installing R builds a minimal version of R and then runs
many R scripts to complete the build.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful
other programs under a Unix-alike|], page 41, and install those you want or need. Ensure
that the environment variable TMPDIR is either unset (and /tmp exists and can be written
in and scripts can be executed from) or points to the absolute path to a valid temporary
directory (one from which execution of scripts is allowed) which does not contain spaces.!

Choose a directory to install the R tree (R is not just a binary, but has additional
data sets, help files, font metrics etc). Let us call this place R_-HOME. Untar the source
code. This should create directories src, doc, and several more under a top-level directory:
change to that top-level directory (At this point North American readers should consult
Section B.3.1 [Setting paper size|, page 53.) Issue the following commands:

./configure
make

(See Section B.5 [Using make|, page 54 if your make is not called ‘make’.) Users of Debian-
based 64-bit systems® may need

./configure LIBnn=1ib
make

Then check the built system works correctly by
make check

Failures are not necessarily problems as they might be caused by missing functionality,
but you should look carefully at any reported discrepancies. (Some non-fatal errors are
expected in locales that do not support Latin-1, in particular in true C locales and non-UTF-
8 non-Western-European locales.) A failure in tests/ok-errors.R may indicate inadequate
resource limits (see Chapter 5 [Running R], page 24).

More comprehensive testing can be done by

I Most aspects will work with paths containing spaces, but external software used by R, e.g. texi2dvi
version 4.8, may not.
2 which use 1ib rather than 1ib64 for their primary 64-bit library directories.

Chapter 2: Installing R under Unix-alikes 4

make check-devel
or
make check-all

see file tests/README and Section 2.8 [Testing a Unix-alike Installation], page 12 for the
possibilities of doing this in parallel. Note that these checks are only run completely if the
recommended packages are installed.

If the command configure and make commands execute successfully, a shell-script front-
end called R will be created and copied to R_HOME/bin. You can link or copy this script to
a place where users can invoke it, for example to /usr/local/bin/R. You could also copy
the man page R.1 to a place where your man reader finds it, such as /usr/local/man/manl.
If you want to install the complete R tree to, e.g., /usr/local/1lib/R, see Section 2.4
[Installation|, page 7. Note: you do not need to install R: you can run it from where it was
built.

You do not necessarily have to build R in the top-level source directory (say, TOP_
SRCDIR). To build in BUILDDIR, run

cd BUILDDIR
TOP_SRCDIR/configure
make

and so on, as described further below. This has the advantage of always keeping your
source tree clean and is particularly recommended when you work with a version of R from
Subversion. (You may need GNU make to allow this, and you will need no spaces in the
path to the build directory. It is unlikely to work if the source directory has previously been
used for a build.)

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files FAQ or
doc/manual/R-FAQ.html, or https://CRAN.R-project.org/doc/FAQ/R-FAQ.html which
always has the version for the latest release of R).

Note: if you already have R installed, check that where you installed R replaces or
comes earlier in your path than the previous installation. Some systems are set up to have
/usr/bin (the standard place for a system installation) ahead of /usr/local/bin (the de-
fault place for installation of R) in their default path, and some do not have /usr/local/bin
on the default path.

2.2 Help options

By default HTML help pages are created when needed rather than being built at install
time.

If you need to disable the server and want HTML help, there is the option to build
HTML pages when packages are installed (including those installed with R). This is enabled
by the configure option --enable-prebuilt-html. Whether R CMD INSTALL (and hence
install.packages) pre-builds HTML pages is determined by looking at the R installation
and is reported by R CMD INSTALL --help: it can be overridden by specifying one of the
INSTALL options —-html or ——no-html.

The server is disabled by setting the environment variable R_DISABLE_HTTPD to a non-
empty value, either before R is started or within the R session before HTML help (including
help.start) is used. It is also possible that system security measures will prevent the

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html

Chapter 2: Installing R under Unix-alikes 5

server from being started, for example if the loopback interface has been disabled. See
7tools: :startDynamicHelp for more details.

2.3 Making the manuals
There is a set of manuals that can be built from the sources,

‘fullrefman’
Printed versions of all the help pages for base and recommended packages
(around 3500 pages).

‘refman’ Printed versions of the help pages for selected base packages (around 2000
pages)

‘R-FAQ’ R FAQ

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.

‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these (with ‘fullrefman’ rather than ‘refman’), use

make pdf to create PDF versions
make info to create info files (not ‘refman’ nor ‘fullrefman’).

You will not be able to build any of these unless you have texi2any version 5.1 or later
installed, and for PDF you must have texi2dvi and texinfo.tex installed (which are part
of the GNU texinfo distribution but are, especially texinfo.tex, often made part of the
TEX package in re-distributions). For historical reasons, the path to texi2any can be set
by macro ‘MAKEINFO’ in config.site (makeinfo is nowadays a link to texi2any).

The PDF versions can be viewed using any recent PDF viewer: they have hyperlinks
that can be followed. The info files are suitable for reading online with Emacs or the
standalone GNU info program. The PDF versions will be created using the paper size
selected at configuration (default ISO a4): this can be overridden by setting R_PAPERSIZE
on the make command line, or setting R_PAPERSIZE in the environment and using make
-e. (If re-emaking the manuals for a different paper size, you should first delete the file
doc/manual/version.texi. The usual value for North America would be ‘letter’.)

There are some issues with making the PDF reference manual, fullrefman.pdf or
refman.pdf. The help files contain both ISO Latinl characters (e.g. in text.Rd) and
upright quotes, neither of which are contained in the standard IXTEX Computer Modern
fonts. We have provided four alternatives:

times (The default.) Using standard PostScript fonts, Times Roman, Helvetica and
Courier. This works well both for on-screen viewing and for printing. One dis-
advantage is that the Usage and Examples sections may come out rather wide:
this can be overcome by using in addition either of the options inconsolata
(on a Unix-alike only if found by configure) or beramono, which replace the
Courier monospaced font by Inconsolata or Bera Sans mono respectively. (You

Chapter 2: Installing R under Unix-alikes 6

will need a recent version of the appropriate IXTEX package inconsolata® or bera
installed.)

Note that in most TEX installations this will not actually use the standard
fonts for PDF, but rather embed the URW clones NimbusRom, NimbusSans
and (for Courier, if used) NimbusMon.

This needs IXTEX packages times, helvetic and (if used) courier installed.

1m Using the Latin Modern fonts. These are not often installed as part of a TEX
distribution, but can obtained from https://www.ctan.org/tex-archive/
fonts/ps-typel/1lm/ and mirrors. This uses fonts rather similar to Computer
Modern, but is not so good on-screen as times.

cm-super Using type-1 versions of the Computer Modern fonts by Vladimir Volovich. This
is a large installation, obtainable from https://www.ctan.org/tex-archive/
fonts/ps-typel/cm-super/ and its mirrors. These type-1 fonts have poor
hinting and so are nowhere near as readable on-screen as the other three options.

ae A package to use composites of Computer Modern fonts. This works well most
of the time, and its PDF is more readable on-screen than the previous two op-
tions. There are three fonts for which it will need to use bitmapped fonts,
tctt0900.600pk, tctt1000.600pk and tcrm1000.600pk. Unfortunately, if
those files are not available, Acrobat Reader will substitute completely incorrect
glyphs so you need to examine the logs carefully.

The default can be overridden by setting the environment variable R_RD4PDF. (On Unix-
alikes, this will be picked up at install time and stored in etc/Renviron, but can still be
overridden when the manuals are built, using make —e.) The usual? default value for R_
RD4PDF is ‘times,inconsolata,hyper’: omit ‘hyper’ if you do not want hyperlinks (e.g.
for printing the manual) or do not have IXTEX package hyperref, and omit ‘inconsolata’
if you do not have IXTEX package inconsolata installed.

Further options, e.g for hyperref, can be included in a file Rd.cfg somewhere on your
IXTEX search path. For example, if you prefer the text and not the page number in the
table of contents to be hyperlinked use

\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=section}}{}
or

\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=all}}{}
to hyperlink both text and page number.

Ebook versions of most of the manuals in one or both of .epub and .mobi formats can
be made by running in doc/manual one of

make ebooks
make epub
make mobi

This requires ebook-convert from Calibre (http://calibre-ebook . com/download),
or from most Linux distributions. If necessary the path to ebook-convert can be set as

3 Instructions on how to install the latest version are at https://www.ctan.org/tex-archive/fonts/

inconsolata/.

4 on a Unix-alike, ‘inconsolata’ is omitted if not found by configure.

https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/
https://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/
http://calibre-ebook.com/download
https://www.ctan.org/tex-archive/fonts/inconsolata/
https://www.ctan.org/tex-archive/fonts/inconsolata/

Chapter 2: Installing R under Unix-alikes 7

make macro EBOOK to by editing doc/manual/Makefile (which contains a commented value
suitable for macOS).

2.4 Installation

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

After
./configure

make
make check

(or, when building outside the source, TOP_SRCDIR/configure, etc) have been completed
successfully, you can install the complete R tree to your system by typing
make install
A parallel make can be used (but run make before make install). Those using GNU make
4.0 or later may want to use make -j n -0 to avoid interleaving of output.
This will install to the following directories:

prefix/bin or bindir
the front-end shell script and other scripts and executables

prefix/man/manl or mandir/manl
the man page

prefix/LIBnn/R or libdir/R
all the rest (libraries, on-line help system, ...). Here LIBnn is usually ‘1ib’,
but may be ‘1ib64’ on some 64-bit Linux systems. This is known as the R
home directory.

where prefix is determined during configuration (typically /usr/local) and can be set by
running configure with the option —--prefix, as in
./configure --prefix=/where/you/want/R/to/go

where the value should be an absolute path. This causes make install to install the R script
to /where/you/want/R/to/go/bin, and so on. The prefix of the installation directories can
be seen in the status message that is displayed at the end of configure. The installation
may need to be done by the owner of prefix, often a root account.

You can install into another directory tree by using
make prefix=/path/to/here install
at least with GNU or Solaris make (but not some older Unix makes).

More precise control is available at configure time via options: see configure --help
for details. (However, most of the ‘Fine tuning of the installation directories’ options are
not used by R.)

Configure options --bindir and --mandir are supported and govern where a copy of
the R script and the man page are installed.

The configure option ——libdir controls where the main R files are installed: the default
is ‘eprefix/LIBnn’, where eprefix is the prefix used for installing architecture-dependent
files, defaults to prefix, and can be set via the configure option —-exec-prefix.

Chapter 2: Installing R under Unix-alikes 8

Each of bindir, mandir and 1ibdir can also be specified on the make install command
line (at least for GNU make).

The configure or make variables rdocdir and rsharedir can be used to install
the system-independent doc and share directories to somewhere other than libdir.
The C header files can be installed to the value of rincludedir: note that as the
headers are not installed into a subdirectory you probably want something like
rincludedir=/usr/local/include/R-3.3.3.

If you want the R home to be something other than 1ibdir/R, use rhome: for example
make install rhome=/usr/local/lib64/R-3.3.3
will use a version-specific R home on a non-Debian Linux 64-bit system.

If you have made R as a shared/static library you can install it in your system’s library
directory by

make prefix=/path/to/here install-1ibR

where prefix is optional, and 1ibdir will give more precise control.® However, you should
not install to a directory mentioned in LDPATHS (e.g. /usr/local/1ib64) if you intend to
work with multiple versions of R, since that directory may be given precedence over the
1ib directory of other R installations.

make install-strip

will install stripped executables, and on platforms where this is supported, stripped libraries
in directories 1ib and modules and in the standard packages.

Note that installing R into a directory whose path contains spaces is not supported, and
some aspects (such as installing source packages) will not work.

To install info and PDF versions of the manuals, use one or both of

make install-info
make install-pdf

Once again, it is optional to specify prefix, 1ibdir or rhome (the PDF manuals are installed
under the R home directory). (make install-info needs Perl installed if there is no
command install-info on the system.)

More precise control is possible. For info, the setting used is that of infodir (default
prefix/info, set by configure option --infodir). The PDF files are installed into the R
doc tree, set by the make variable rdocdir.

A staged installation is possible, that it is installing R into a temporary directory in
order to move the installed tree to its final destination. In this case prefix (and so on)
should reflect the final destination, and DESTDIR should be used: see https://www.gnu.
org/prep/standards/html_node/DESTDIR.html.

You can optionally install the run-time tests that are part of make check-all by
make install-tests

which populates a tests directory in the installation.

5 This will be needed if more than one sub-architecture is to be installed.

https://www.gnu.org/prep/standards/html_node/DESTDIR.html
https://www.gnu.org/prep/standards/html_node/DESTDIR.html

Chapter 2: Installing R under Unix-alikes 9

2.5 Uninstallation

You can uninstall R by
make uninstall
optionally specifying prefix etc in the same way as specified for installation.

This will also uninstall any installed manuals. There are specific targets to uninstall info
and PDF manuals in file doc/manual/Makefile.

Target uninstall-tests will uninstall any installed tests, as well as removing the di-
rectory tests containing the test results.

An installed shared/static 1ibR can be uninstalled by
make prefix=/path/to/here uninstall-1ibR

2.6 Sub-architectures

Some platforms can support closely related builds of R which can share all but the executa-
bles and dynamic objects. Examples include builds under Linux and Solaris for different
CPUs or 32- and 64-bit builds.

R supports the idea of architecture-specific builds, specified by adding ‘r_arch=name’ to
the configure line. Here name can be anything non-empty, and is used to name subdi-
rectories of 1ib, etc, include and the package 1libs subdirectories. Example names from
other software are the use of sparcv9 on Sparc Solaris and 32 by gcc on ‘x86_64" Linux.

If you have two or more such builds you can install them over each other (and for 32/64-
bit builds on one architecture, one build can be done without ‘r_arch’). The space savings
can be considerable: on ‘x86_64" Linux a basic install (without debugging symbols) took
74Mb, and adding a 32-bit build added 6Mb. If you have installed multiple builds you can
select which build to run by

R --arch=name
and just running ‘R’ will run the last build that was installed.

R CMD INSTALL will detect if more than one build is installed and try to install packages
with the appropriate library objects for each. This will not be done if the package has an
executable configure script or a src/Makefile file. In such cases you can install for extra

builds by
R --arch=name CMD INSTALL --libs-only pkgl pkg2 ...

If you want to mix sub-architectures compiled on different platforms (for example
‘x86_64" Linux and ‘1686’ Linux), it is wise to use explicit names for each, and you may
also need to set 1ibdir to ensure that they install into the same place.

When sub-architectures are used the version of Rscript in e.g. /usr/bin will
be the last installed, but architecture-specific versions will be available in e.g.
/usr/1ib64/R/bin/exec${R_ARCH}. Normally all installed architectures will run on the
platform so the architecture of Rscript itself does not matter. The executable Rscript
will run the R script, and at that time the setting of the R_ARCH environment variable
determines the architecture which is run.

When running post-install tests with sub-architectures, use

Chapter 2: Installing R under Unix-alikes 10

R --arch=name CMD make check[-devel|all]
to select a sub-architecture to check.

Sub-architectures are also used on Windows, but by selecting executables within the
appropriate bin directory, R_HOME/bin/i386 or R_HOME/bin/x64. For backwards compat-
ibility there are executables R_HOME/bin/R.exe and R_HOME/bin/Rscript.exe: these will
run an executable from one of the subdirectories, which one being taken first from the R_
ARCH environment variable, then from the -—arch command-line option® and finally from
the installation default (which is 32-bit for a combined 32/64 bit R installation).

2.6.1 Multilib

For some Linux distributions’, there is an alternative mechanism for mixing 32-bit and
64-bit libraries known as multilib. If the Linux distribution supports multilib, then parallel
builds of R may be installed in the sub-directories 1ib (32-bit) and 1ib64 (64-bit). The
build to be run may then be selected using the setarch command. For example, a 32-bit
build may be run by

setarch i686 R

The setarch command is only operational if both 32-bit and 64-bit builds are installed.
If there is only one installation of R, then this will always be run regardless of the architec-
ture specified by the setarch command.

There can be problems with installing packages on the non-native architecture. It is a
good idea to run e.g. setarch 1686 R for sessions in which packages are to be installed,
even if that is the only version of R installed (since this tells the package installation code
the architecture needed).

There is a potential problem with packages using Java, as the post-install for a ‘1686’
RPM on ‘x86_64" Linux reconfigures Java and will find the ‘x86_64" Java. If you know
where a 32-bit Java is installed you may be able to run (as root)

export JAVA_HOME=<path to jre directory of 32-bit Java>
setarch i686 R CMD javareconf

to get a suitable setting.

When this mechanism is used, the version of Rscript in e.g. /usr/bin will be the last
installed, but an architecture-specific version will be available in e.g. /usr/1ib64/R/bin.
Normally all installed architectures will run on the platform so the architecture of Rscript
does not matter.

2.7 Other Options

There are many other installation options, most of which are listed by configure --help.
Almost all of those not listed elsewhere in this manual are either standard autoconf options
not relevant to R or intended for specialist uses by the R developers.

One that may be useful when working on R itself is the option --disable-byte-
compiled-packages, which ensures that the base and recommended packages are not byte-
compiled. (Alternatively the (make or environment) variable R_NO_BASE_COMPILE can be
set to a non-empty value for the duration of the build.)

6 with possible values ‘1386’, ‘x64’, ‘32’ and ‘64’.

7 mainly on RedHat and Fedora, whose layout is described here.

Chapter 2: Installing R under Unix-alikes 11

Option --with-internal-tzcode makes use of R’s own code and copy of the Olson
database for managing timezones. This will be preferred where there are issues with the
system implementation, usually involving times after 2037 or before 1916. An alternative
time-zone directory® can be used, pointed to by environment variable TZDIR: this should
contain files such as Europe/London. On all tested OSes the system timezone was deduced
correctly, but if necessary it can be set as the value of environment variable TZ.

2.7.1 OpenMP Support

By default configure searches for suitable options® for OpenMP support for the C, C++98,
FORTRAN 77 and Fortran compilers.

Only the C result is currently used for R itself, and only if MAIN_LD/DYLIB_LD were not
specified. This can be overridden by specifying

R_OPENMP_CFLAGS

Use for packages has similar restrictions (involving SHLIB_LD and similar: note that as
FORTRAN 77 code is normally linked by the C compiler, both need to support OpenMP)
and can be overridden by specifying some of

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FCFLAGS
SHLIB_OPENMP_FFLAGS

Setting to an empty value will disable OpenMP for that compiler (and configuring with
--disable-openmp will disable all detection of OpenMP). The configure detection test is
to compile and link a standalone OpenMP program, which is not the same as compiling a
shared object and loading it into the C program of R’s executable. Note that overridden
values are not tested.

2.7.2 C++ Support

C++ is not used by R itself, but support is provided for installing packages with C++ code
via make macros defined in file etc/Makeconf (and with explanations in file config.site):

CXX
CXXFLAGS
CXXPICFLAGS

CXX1X
CXX1XSTD
CXX1XFLAGS
CXX1XPICFLAGS

The macros CXX etc are those used by default for C++ code: their values are not checked.
configure will attempt to set the rest suitably, choosing for CXX1XSTD a suitable flag such as
-std=c++11 for C++11 support. The inferred values can be overridden in file config.site
or on the configure command line: user-supplied values will be tested compiling by C++11
code using some features added in that standard. (Later versions of R are likely to check
compliance more thoroughly.)

8 How to prepare such a directory is described in file src/extra/tzone/Notes in the R sources.
9 for example, —-fopenmp, —~xopenmp or —qopenmp. This includes for clang 3.7.x and the Intel C compiler.

Chapter 2: Installing R under Unix-alikes 12

It may be'® that there is no suitable flag for C++11 support, in which case a different
compiler could be selected for CXX1X and its corresponding flags. Some compilers!! by
default assume a later standard than C++98 whereas the latter is assumed by some packages.
So users of GCC 6 might like to specify

CXX=’g++ -std=gnu++98’
CXX1X=g++
CXX1XSTD=’-std=c++11°

The -std flag is supported by the GCC, clang, Intel and Solaris compilers (the latter
from version 12.4). Currently accepted values are (plus some synonyms)

g++: c++98 gnu++98 c++11 gnu+ll c++14 gnu++14 c++1z gnu++lz
Intel: gnu+98 c++11 c++14 (from 16.0)
Solaris: c++03 c++11 c++14 (from 12.5)

(Those for clang++ are not documented, but seem to be based on g++.) Versions 4.3.x to
4.8.x of g++ accepted flag —std=c++0x with partial support'? for C++11: this is currently
still accepted as a deprecated synonym for —std=c++11.

For the use of C++11 in R packages see the ‘Writing R Extensions’ manual.

2.8 Testing an Installation

Full post-installation testing is possible only if the test files have been installed with
make install-tests
which populates a tests directory in the installation.

If this has been done, two testing routes are available. The first is to move to the home
directory of the R installation (as given by R.home()) and run

cd tests

followed by one of
../bin/R CMD make check
../bin/R CMD make check-devel
../bin/R CMD make check-all

and other useful targets are test-BasePackages and test-Recommended to the run tests
of the standard and recommended packages (if installed) respectively.

This re-runs all the tests relevant to the installed R (including for example code in
the package vignettes), but not for example the ones checking the example code in the
manuals nor making the standalone Rmath library. This can occasionally be useful when
the operating environment has been changed, for example by OS updates or by substituting
the BLAS (see Section A.3.1.5 [Shared BLAS], page 49).

Parallel checking of packages may be possible: set the environment variable TEST_MC_
CORES to the maximum number of processes to be run in parallel. This affects both checking
the package examples (part of make check) and package sources (part of make check-devel
and make check-recommended). It does require a make command which supports the make

10" This is true for earlier versions of g++ such as 4.2.1, and also for some commonly-used versions of the
Solaris compiler CC.

B Currently only GCC 6 and later, but this has been mooted for others.
12 For when features were supported, see https://gcc.gnu.org/projects/cxx-status.html#cxx11.

https://gcc.gnu.org/projects/cxx-status.html#cxx11

Chapter 2: Installing R under Unix-alikes 13

-j n option: most do but on Solaris you need to select GNU make or dmake. Where parallel
checking of package sources is done, a log file pngname.log is left in the tests directory
for inspection.

Alternatively, the installed R can be run, preferably with --vanilla. Then

Sys.setenv(LC_COLLATE = "C", LC_TIME = "C", LANGUAGE = "en")
library("tools")

testInstalledBasic("both")

testInstalledPackages(scope = "base")
testInstalledPackages(scope = "recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: the basic tests write their results in the tests
folder of the R home directory and run fewer tests than the first approach: in particular
they do not test things which need Internet access—that can be tested by
testInstalledBasic("internet")

These tests work best if diff (in Rtools*.exe for Windows users) is in the path.

It is possible to test the installed packages (but not their package-specific tests) by
testInstalledPackages even if make install-tests was not run.

Note that the results may depend on the language set for times and messages: for
maximal similarity to reference results you may want to try setting (before starting the R
session)

LANGUAGE=en
and use a UTF-8 or Latin-1 locale.

Chapter 3: Installing R under Windows 14

3 Installing R under Windows

The bin/windows directory of a CRAN site contains binaries for a base distribution and a
large number of add-on packages from CRAN to run on 32- or 64-bit Windows (XP or later)
on ‘ix86’ and ‘x86_64" CPUs.

Your file system must allow long file names (as is likely except perhaps for some network-
mounted systems). If it doesn’t also support conversion to short name equivalents (a.k.a.
DOS 8.3 names), then R must be installed in a path that does not contain spaces.

Installation is via the installer R-3.3.3-win.exe. Just double-click on the icon and
follow the instructions. When installing on a 64-bit version of Windows the options will
include 32- or 64-bit versions of R (and the default is to install both). You can uninstall R
from the Control Panel.

Note that you will be asked to choose a language for installation, and that choice applies
to both installation and un-installation but not to running R itself.

See the R Windows FAQ for more details on the binary installer.

3.1 Building from source

R can be built as either a 32-bit or 64-bit application on Windows: to build the 64-bit
application you need a 64-bit edition of Windows: such an OS can also be used to build
32-bit R.

The standard installer combines 32-bit and 64-bit builds into a single executable which
can then be installed into the same location and share all the files except the .exe and .d11
files and some configuration files in the etc directory.

Building is only tested in a 8-bit locale: using a multi-byte locale (as used for CJK
languages) is unsupported and may not work (the scripts do try to select a ‘C’ locale;
Windows may not honour this).

NB: The build process is currently being changed to require external binary distributions
of third-party software. Their location is set using macro EXT_LIBS with default setting
$ (LOCAL_SOFT); the $(LOCAL_SOFT) macro defaults to $(R_HOME) /extsoft. This di-
rectory can be populated using make rsync-extsoft. The location can be overridden by
setting EXT_LIBS to a different path in src/gnuwin32/MkRules.local. A suitable collec-
tion of files can also be obtained from https://CRAN.R-project.org/bin/windows/
extsoft or https://www.stats.ox.ac.uk/pub/Rtools/1libs.html.

3.1.1 Getting the tools

If you want to build R from the sources, you will first need to collect, install and test
an extensive set of tools. See Appendix D [The Windows toolset|, page 74 (and perhaps
updates in https://CRAN.R-project.org/bin/windows/Rtools/) for details.

The Rtools*.exe executable installer described in Appendix D [The Windows toolset],
page 74 also includes some source files in addition to the R source as noted below. You should
run it first, to obtain a working tar and other necessities. Choose a “Full installation”, and
install the extra files into your intended R source directory, e.g. C:/R. The directory name
should not contain spaces. We will call this directory R_HOME below.

https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/extsoft
https://CRAN.R-project.org/bin/windows/extsoft
https://www.stats.ox.ac.uk/pub/Rtools/libs.html
https://CRAN.R-project.org/bin/windows/Rtools/

Chapter 3: Installing R under Windows 15

3.1.2 Getting the source files

You need to collect the following sets of files:

e Get the R source code tarball R-3.3.3.tar.gz from CRAN. Open a command window
(or another shell) at directory R_HOME, and run

tar -xf R-3.3.3.tar.gz

to create the source tree in R_HOME. Beware: do use tar to extract the sources rather
than tools such as WinZip. If you are using an account with administrative privileges
you may get a lot of messages which can be suppressed by

tar --no-same-owner -xf R-3.3.3.tar.gz
or perhaps better, set the environment variable TAR_OPTIONS to the wvalue
‘-—no-same-owner —-no-same-permissions’.
It is also possible to obtain the source code using Subversion; see Chapter 1 [Obtaining
R], page 1 for details.

e If you are not using a tarball you need to obtain copies of the recommended packages
from CRAN. Put the .tar.gz files in R_HOME/src/library/Recommended and run make
link-recommended. If you have an Internet connection, you can do this automatically
by running in R_HOME/src/gnuwin32

make rsync-recommended
e The binary distributions of external software. Download
https://www.stats.ox.ac.uk/pub/Rtools/goodies/multilib/local323.zip
(or a more recent version if appropriate), create an empty directory, say c:/R/extsoft,
and unpack it in that directory by e.g.
unzip local323.zip -d c:/R/extsoft
e Make a local copy of the configuration rules by
cd R_HOME/src/gnuwin32
cp MkRules.dist MkRules.local
and edit MkRules.local, uncommenting EXT_LIBS and setting it to the appropriate
path (in our example c:/R/extsoft).

Look through the file MkRules.local and make any other changes needed: in particu-
lar, this is where a 64-bit build is selected and the locations are set of external software
for ICU collation and the cairo-based devices.

The following additional item is normally installed by Rtools*.exe. If instead you
choose to do a completely manual build you will also need
e The Tcl/Tk support files are contained in Rtools*.exe. Please make sure you install
the right version: there is a 32-bit version and a 64-bit version. They should be installed
to R_HOME, creating directory Tcl there.

3.1.3 Building the core files

Set the environment variable TMPDIR to the absolute path to a writable directory, with a
path specified with forward slashes and no spaces. (The default is /tmp, which may not be
useful on Windows.)

You may need to compile under a case-honouring file system: we found that a samba-
mounted file system (which maps all file names to lower case) did not work.

Chapter 3: Installing R under Windows 16

Open a command window at R_HOME/src/gnuwin32, then run
make all recommended vignettes
and sit back and wait while the basic compile takes place.
Notes:

e We have had reports that earlier versions of anti-virus software locking up the machine,
but not for several years. However, aggressive anti-virus checking such as the on-access
scanning of Sophos can slow the build down several-fold.

e You can run a parallel make by e.g.

make -j4 all
make -j4 recommended
make vignettes

but this is only likely to be worthwhile on a multi-core machine with ample memory,
and is not 100% reliable.

e It is possible (mainly for those working on R itself) to set the (make or environment)
variable R_NO_BASE_COMPILE to a non-empty value, which inhibits the byte-compilation
of the base and recommended packages.

3.1.4 Building the cairo devices

The devices based on cairographics (svg, cairo_pdf, cairo_ps and the type = "cairo"
versions of png, jpeg, tiff and bmp) are implemented in a separate DLL winCairo.dll
which is loaded when one of these devices is first used. It is not built by default, and needs
to be built (after make all) by make cairodevices.

To enable the building of these devices you need to install the static cairographics
libraries built by Simon Urbanek at https: / /www . rforge . net /Cairo /files /
cairo-current-win.tar.gz. Set the macro ‘CAIRO_HOME’ in MkRules.local. (Note that
this tarball unpacks with a top-level directory src/: ‘CAIRO_HOME’ needs to include that
directory in its path.)

3.1.5 Using ICU for collation

It is recommended to build R to support ICU (International Components for Unicode,
http://site.icu-project.org/) for collation, as is commonly done on Unix-alikes.

Two settings are needed in MkRules.local,

set to use ICU

USE_ICU = YES

path to parent of ICU headers
ICU_PATH = /path/to/ICU

The first should be uncommented and the second set to the top-level directory of a suitably
packaged binary build of ICU, for example that at https://wuw.stats.ox.ac.uk/pub/
Rtools/goodies/ICU_531.zip. Depending on the build, it may be necessary to edit the
macro ICU_LIBS.

Unlike on a Unix-alike, it is normally necessary to call icuSetCollate to set a locale
before ICU is actually used for collation, or set the environment variable R_ICU_LOCALE.

https://www.rforge.net/Cairo/files/cairo-current-win.tar.gz
https://www.rforge.net/Cairo/files/cairo-current-win.tar.gz
http://site.icu-project.org/
https://www.stats.ox.ac.uk/pub/Rtools/goodies/ICU_531.zip
https://www.stats.ox.ac.uk/pub/Rtools/goodies/ICU_531.zip

Chapter 3: Installing R under Windows 17

3.1.6 Support for libcurl

libcurl version 7.28.0 or later is used to support curlGetHeaders and the "libcurl"
methods of download.file and url.

A suitable distribution can be found via https://www.stats.ox.ac.uk/pub/Rtools/
libs.html and its unpacked location should be specified in file MkRules.local.

For secure use of e.g. ‘https://’ URLs Windows users may need to specify the path to
up-to-date CA root certificates: see ?download.file.

3.1.7 Checking the build

You can test a build by running
make check
The recommended packages can be checked by
make check-recommended
Other levels of checking are
make check-devel
for a more thorough check of the R functionality, and
make check-all
for both check-devel and check-recommended.

If a test fails, there will almost always be a .Rout.fail file in the directory being checked
(often tests/Examples or tests): examine the file to help pinpoint the problem.

Parallel checking of package sources (part of make check-devel and make
check-recommended) is possible: see the environment variable TEST_MC_CORES to the
maximum number of processes to be run in parallel.

3.1.8 Building the manuals
The PDF manuals require texinfo 5.1 or later, and can be made by
make manuals
If you want to make the info versions (not including the Reference Manual), use

cd ../../doc/manual
make -f Makefile.win info

(all assuming you have pdftex/pdflatex installed and in your path).

See the Section 2.3 [Making the manuals|, page 5 section in the Unix-alike section for
setting options such as the paper size and the fonts used.

By default it is assumed that texinfo is not installed, and the manuals will not be built.
The comments in file MkRules.dist describe settings to build them. (Copy that file to
MkRules.local and edit it.) The texinfo 5.x package for use on Windows is available at
https://www.stats.ox.ac.uk/pub/Rtools/: you will also need to install Perl!

! Suitable distributions include Strawberry Perl, http://strawberryperl.com/ and ActivePerl, https://
www.activestate.com/activeperl.

https://www.stats.ox.ac.uk/pub/Rtools/libs.html
https://www.stats.ox.ac.uk/pub/Rtools/libs.html
https://www.stats.ox.ac.uk/pub/Rtools/
http://strawberryperl.com/
https://www.activestate.com/activeperl
https://www.activestate.com/activeperl

Chapter 3: Installing R under Windows 18

3.1.9 Building the Inno Setup installer

You need to have the files for a complete R build, including bitmap and Tcl/Tk support
and the manuals (which requires texinfo installed), as well as the recommended packages
and Inno Setup (see Section D.2 [The Inno Setup installer], page 75).

Once everything is set up

make distribution
make check-all

will make all the pieces and the installer and put them in the gnuwin32/cran subdirectory,
then check the build. This works by building all the parts in the sequence:

rbuild (the executables, the FAQ docs etc.)
rpackages (the base packages)
htmldocs (the HTML documentation)
cairodevices (the cairo-based graphics devices)
recommended (the recommended packages)
vignettes (the vignettes in base packages:
only needed if building from an svn checkout)
manuals (the PDF manuals)
rinstaller (the install program)
crandir (the CRAN distribution directory, only for 64-bit builds)

The parts can be made individually if a full build is not needed, but earlier parts must
be built before later ones. (The Makefile doesn’t enforce this dependency—some build
targets force a lot of computation even if all files are up to date.) The first four targets are
the default build if just make (or make all) is run.

Parallel make is not supported and likely to fail.

If you want to customize the installation by adding extra packages, replace make
rinstaller by something like

make rinstaller EXTRA_PKGS=’pkgl pkg2 pkg3d’

An alternative way to customize the installer starting with a binary distribution is to first
make an installation of R from the standard installer, then add packages and make other
customizations to that installation. Then (after having customized file MkRules, possibly
via MkRules.local, and having made R in the source tree) in src/gnuwin32/installer
run

make myR IMAGEDIR=rootdir

where rootdir is the path to the root of the customized installation (in double quotes if it
contains spaces or backslashes).

Both methods create an executable with a standard name such as R-3.3.3-win.exe, so
please rename it to indicate that it is customized. If you intend to distribute a customized
installer please do check that license requirements are met — note that the installer will state
that the contents are distributed under GPL and this has a requirement for you to supply
the complete sources (including the R sources even if you started with a binary distribution
of R, and also the sources of any extra packages (including their external software) which
are included).

The defaults for the startup parameters may also be customized. For example

Chapter 3: Installing R under Windows 19

make myR IMAGEDIR=rootdir MDISDI=1

will create an installer that defaults to installing R to run in SDI mode. See src/
gnuwin32/installer/Makefile for the names and values that can be set.

The standard CRAN distribution of a 32/64-bit installer is made by first building 32-bit
R (just

make 32-bit

is needed), and then (in a separate directory) building 64-bit R with the macro HOME32
set in file MkRules.local to the top-level directory of the 32-bit build. Then the make
rinstaller step copies the files that differ between architectures from the 32-bit build as
it builds the installer image.

3.1.10 Building the MSI installer

It is also possible to build an installer for use with Microsoft Installer. This is intended for
use by sysadmins doing automated installs, and is not recommended for casual use.

It makes use of the Windows Installer XML (WiX) toolkit version 3.5 (or perhaps later,
untested) available from http://wixtoolset.org/. Once WiX is installed, set the path to
its home directory in MkRules.local.

You need to have the files for a complete R build, including bitmap and Tcl/Tk support
and the manuals, as well as the recommended packages. There is no option in the installer
to customize startup options, so edit etc/Rconsole and etc/Rprofile.site to set these
as required. Then

cd installer
make msi

which will result in a file with a name like R-3.3.3-win32.msi. This can be double-clicked
to be installed, but those who need it will know what to do with it (usually by
running msiexec /i with additional options). Properties that users might want to
set from the msiexec command line include ‘ALLUSERS’, ‘INSTALLDIR’ (something like
c:\Program Files\R\R-3.3.3) and ‘RMENU’ (the path to the ‘R’ folder on the start menu)
and ‘STARTDIR’ (the starting directory for R shortcuts, defaulting to something like
c:\Users\name\Documents\R).

The MSI installer can be built both from a 32-bit build of R (R-3.3.3-win32.msi) and
from a 64-bit build of R (R-3.3.3-win64.msi, optionally including 32-bit files by setting
the macro HOME32, when the name is R-3.3.3-win.msi). Unlike the main installer, a 64-bit
MSI installer can only be run on 64-bit Windows.

Thanks to David del Campo (Dept of Statistics, University of Oxford) for suggesting
WiX and building a prototype installer.

3.1.11 64-bit Windows builds

To build a 64-bit version of R you need a 64-bit toolchain: the only one discussed here
is based on the work of the MinGW-w64 project (http://sourceforge.net/projects/
mingw-w64/, but commercial compilers such as those from Intel and PGI could be used
(and have been by R redistributors).

Support for MinGW-w64 was developed in the R sources over the period 2008-10 and
was first released as part of R 2.11.0. The assistance of Yu Gong at a crucial step in porting

http://wixtoolset.org/
http://sourceforge.net/projects/mingw-w64/
http://sourceforge.net/projects/mingw-w64/

Chapter 3: Installing R under Windows 20

R to MinGW-w64 is gratefully acknowledged, as well as help from Kai Tietz, the lead
developer of the MinGW-w64 project.

Windows 64-bit is now completely integrated into the R and package build systems: a
64-bit build is selected in file MkRules.local.

3.2 Testing an Installation

The Windows installer contains a set of test files used when building R.

The Rtools are not needed to run these tests. but more comprehensive analysis of errors
will be given if diff is in the path (and errorsAreFatal = FALSE is then not needed below).

Launch either Rgui or Rterm, preferably with ——vanilla. Then run

Sys.setenv(LC_COLLATE = "C", LANGUAGE = "en")

library("tools")

testInstalledBasic("both")

testInstalledPackages(scope = "base", errorsAreFatal = FALSE)
testInstalledPackages(scope = "recommended", errorsAreFatal = FALSE)

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: they write some of their results in the tests folder
of the R home directory (as given by R.home()), and hence may need to be run under the
account used to install R.

The results of example (md5sums) when testing tools will differ from the reference output
as some files are installed with Windows’ CRLF line endings.

Chapter 4: Installing R under macOS 21

4 Installing R under macOS

(‘macOS’ was known as ‘OS X’ from 2012-2016 and as ‘Mac OS X’ before that.)

The front page of a CRAN site has a link ‘Download R for OS X’. Click on that, then
download the file R-3.3. 3. pkg and install it. This runs on macOS 10.9 and later (Mavericks,
Yosemite, El Capitan, Sierra, .. .). (It may be possible to install from the sources for earlier
OS versions: see Section C.3 [macOS], page 61.)

Installers for R-patched and R-devel are usually available from https://r.research.
att.com.

For some older versions of the OS you can in principle (it is little tested) install R from
the sources (see Section C.3 [macOS], page 61).

It is important that if you use a binary installer package that your OS is fully updated:
look at ‘Updates’ from the ‘App Store’ to be sure. (If using XQuartz, check that is current.)

To install, just double-click on the icon of the file you downloaded. At the ‘Installation
Type’ stage, note the option to ‘Customize’. This currently shows four components: ev-
eryone will need the ‘R Framework’ component: the remaining components are optional.
(The ‘Tcl/Tk’ component is needed to use package tcltk. The ‘Texinfo’ component is only
needed by those installing source packages or R from its sources.)

This is an Apple Installer package. If you encounter any problem during the installation,
please check the Installer log by clicking on the “Window” menu and item “Installer Log”.
The full output (select “Show All Log”) is useful for tracking down problems. Note the
the installer is clever enough to try to upgrade the last-installed version of the application
where you installed it (which may not be where you want this time . . .).

Various parts of the build require XQuartz to be installed: : see https://xquartz.
macosforge.org/. These include the tcltk package and the X11 device: attempting to use
these without XQuartz will remind you.

If you update your macOS version, you should re-install R (and perhaps XQuartz): the
installer tailors the installation to the current version of the OS.

For building R from source, see Section C.3 [macOS], page 61.

4.1 Running R under macOS

There are two ways to run R on macOS from a CRAN binary distribution.

There is a GUI console normally installed with the R icon in /Applications which you
can run by double-clicking (e.g. from Launchpad or Finder). (If you cannot find it there it
was possibly installed elsewhere so try searching for it in Spotlight.) This is usually referred
to as R.APP to distinguish it from command-line R: its user manual is currently part of the
macOS FAQ at https://cran.r-project.org/bin/macosx/RMac0SX-FAQ.html and can
be viewed from R.APP’s ‘Help’ menu.

You can run command-line R and Rscript from a Terminal' so these can be
typed as commands like any other Unix-alike: see the next chapter of this manual.

! The installer as puts links to R and Rscript in /usr/bin (Mavericks, Yosemite) or
/usr/local/bin (El Capitan and later). If these are missing, you can run directly the versions in
/Library/Frameworks/R.framework/Resources/.

https://r.research.att.com
https://r.research.att.com
https://xquartz.macosforge.org/
https://xquartz.macosforge.org/
https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html

Chapter 4: Installing R under macOS 22

There are some small differences which may surprise users of R on other platforms,
notably the default location of the personal library directory (under ~/Library/R, e.g.
~/Library/R/3.3/1library), and that warnings, messages and other output to stderr are
highlighted in bold.

It has been reported that running R.APP under Yosemite may fail if no preferences are
stored, so if it fails when launched for the very first time, try it again (the first attempt will
store some preferences).

Users of R.APP need to be aware of the ‘App Nap’ feature (https://developer.apple.
com/library/mac/releasenotes/Mac0SX/WhatsNewIn0SX/Articles/Mac0SX10_9.html)
which can cause R tasks to appear to run very slowly when not producing output in the
console. Here are ways to avoid it:

e Ensure that the console is completely visible (or at least the activity indicator at the
top right corner is visible).

e In a Terminal, run
defaults write org.R-project.R NSAppSleepDisabled -bool YES

(see https: / /developer . apple . com/library /mac / releasenotes /Mac0SX /
WhatsNewInOSX/Articles/Mac0SX10_9.html).

Using the X11 device or the X11-based versions of View() and edit() for data frames
and matrices (the latter are the default for command-line R but not R.APP) requires an X
sub-system to be installed: see Section C.3 [macOS], page 61. So do the tcltk package and
some third-party packages.

4.2 Uninstalling under macOS

R for macOS consists of two parts: the GUI (R.ApP) and the R framework. The un-
installation is as simple as removing those folders (e.g. by dragging them onto the Trash).
The typical installation will install the GUI into the /Applications/R.app folder and
the R framework into the /Library/Frameworks/R.framework folder. The links to R and
Rscript in /usr/bin or /usr/local/bin should also be removed.

If you want to get rid of R more completely using a Terminal, simply run (use
/usr/local/bin for El Capitan and Sierra):

sudo rm -rf /Library/Frameworks/R.framework /Applications/R.app \
/usr/bin/R /usr/bin/Rscript

The installation consists of four Apple packages: org.r-project.R.x86_64.fw.pkg,
org.r-project.R.x86_64.GUI.pkg, org.r-project.x86_64.tcltk.x11 and
org.r-project.x86_64.texinfo (not all of which need be installed). You can use
pkgutil --forget if you want the Apple Installer to forget about the package without
deleting its files (useful for the R framework when installing multiple R versions in
parallel), or after you have deleted the files.

Uninstalling the Tcl/Tk or Texinfo components (which are installed under /usr/local)
is not as simple. You can list the files they installed in a Terminal by

pkgutil --files org.r-project.x86_64.tcltk.x11
pkgutil --files org.r-project.x86_64.texinfo

These are paths relative to /, the root of the file system.

https://developer.apple.com/library/mac/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/mac/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/mac/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/mac/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html

Chapter 4: Installing R under macOS 23

4.3 Multiple versions

The installer will remove any previous version of the R framework which it finds installed.
This can be avoided by using pkgutil --forget (see the previous section). However, note
that different versions are installed under /Library/Frameworks/R.framework/Versions
as 3.2, 3.3 and so on, so it is not possible to have different ‘3.x.y’ versions installed for
the same ‘x’.

A version of R can be run directly from the command-line as e.g.
/Library/Frameworks/R.framework/Versions/3.3/Resources/bin/R

However, R.ApPP will always run the ‘current’ version, that is the last installed version. A
small utility, Rswitch.app (available at https://r.research.att.com/#other), can be
used to change the ‘current’ version. This is of limited use as R.APP is compiled against
a particular version of R and will likely crash if switched to an earlier version. This may
allow you to install a development version of R (de-selecting R.APP) and then switch back
to the release version.

https://r.research.att.com/#other

Chapter 5: Running R 24

5 Running R

How to start R and what command-line options are available is discussed in Section “In-
voking R” in An Introduction to R.

You should ensure that the shell has set adequate resource limits: R expects a stack
size of at least 8MB and to be able to open at least 256 file descriptors. (Any modern OS
should have default limits at least as large as these, but apparently NetBSD may not. Use
the shell command ulimit (sh/bash) or limit (csh/tcsh) to check.)

R makes use of a number of environment variables, the default values of many of which
are set in file R_HOME/etc/Renviron (there are none set by default on Windows and hence
no such file). These are set at configure time, and you would not normally want to
change them — a possible exception is R_PAPERSIZE (see Section B.3.1 [Setting paper size],
page 53). The paper size will be deduced from the ‘LC_PAPER’ locale category if it exists
and R_PAPERSIZE is unset, and this will normally produce the right choice from ‘a4’ and
‘letter’ on modern Unix-alikes (but can always be overridden by setting R_PAPERSIZE).

Various environment variables can be set to determine where R creates its per-session
temporary directory. The environment variables TMPDIR, TMP and TEMP are searched in turn
and the first one which is set and points to a writable area is used. If none do, the final
default is /tmp on Unix-alikes and the value of R_USER on Windows. The path should be an
absolute path not containing spaces (and it is best to avoid non-alphanumeric characters
such as +).

Some Unix-alike systems are set up to remove files and directories periodically from
/tmp, for example by a cron job running tmpwatch. Set TMPDIR to another directory before
starting long-running jobs on such a system.

Note that TMPDIR will be used to execute configure scripts when installing packages,
so if /tmp has been mounted as ‘noexec’, TMPDIR needs to be set to a directory from which
execution is allowed.

Chapter 6: Add-on packages 25

6 Add-on packages

It is helpful to use the correct terminology. A package is loaded from a library by the
function library(). Thus a library is a directory containing installed packages; the main
library is R_HOME/library, but others can be used, for example by setting the environment
variable R_LIBS or using the R function .1libPaths().

6.1 Default packages

The set of packages loaded on startup is by default

> getOption("defaultPackages")
[1] "datasets" "utils" "grDevices" '"graphics" '"stats" "methods"

(plus, of course, base) and this can be changed by setting the option in startup code (e.g.
in /.Rprofile). It is initially set to the value of the environment variable R_DEFAULT_
PACKAGES if set (as a comma-separated list). Setting R_DEFAULT_PACKAGES=NULL ensures
that only package base is loaded.

Changing the set of default packages is normally used to reduce the set for speed when
scripting: in particular not using methods will reduce the start-up time by a factor of up
to two (and this is done by Rscript). But it can also be used to customize R, e.g. for class
use.

6.2 Managing libraries

R packages are installed into libraries, which are directories in the file system containing a
subdirectory for each p