Package 'CMLS'

March 31, 2023
Type PackageTitle Constrained Multivariate Least Squares
Version 1.0-1
Date 2023-03-29
Author Nathaniel E. Helwig <helwig@umn. edu>
Maintainer Nathaniel E. Helwig helwig@umn.edu
Depends quadprog, parallel
Description Solves multivariate least squares (MLS) problems subject to constraints on the coeffi-cients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodal-ity, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that imple-ments 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS prob-lems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS prob-lems, and see Goldfarb and Idnani (1983) doi:10.1007/BF02591962 for a discus-sion of the underlying quadratic programming algorithm.
License GPL (>=2)
NeedsCompilation no
Repository CRAN
Date/Publication 2023-03-31 17:30:02 UTC
R topics documented:
CMLS-package 2
cmls 3
const 11
cv.cmls 12
IsplineBasis 15
mlsei 16
mlsun 19
MsplineBasis 23
Index 25

Description

Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity, orthogonality, equality, inequality, monotonicity, unimodality, smoothness, etc. Includes flexible functions for solving MLS problems subject to user-specified equality and/or inequality constraints, as well as a wrapper function that implements 24 common constraint options. Also does k-fold or generalized cross-validation to tune constraint options for MLS problems. See ten Berge (1993, ISBN:9789066950832) for an overview of MLS problems, and see Goldfarb and Idnani (1983) doi:10.1007/BF02591962 for a discussion of the underlying quadratic programming algorithm.

Details

The DESCRIPTION file:
Package: CMLS
Type: Package
Title: Constrained Multivariate Least Squares
Version: 1.0-1
Date: 2023-03-29
Author: Nathaniel E. Helwig helwig@umn.edu
Maintainer: Nathaniel E. Helwig helwig@umn.edu
Depends: quadprog, parallel
Description: Solves multivariate least squares (MLS) problems subject to constraints on the coefficients, e.g., non-negativity
License: GPL (>=2)

Index of help topics:

```
CMLS-package Constrained Multivariate Least Squares
IsplineBasis I-Spline Basis for Monotonic Polynomial Splines
MsplineBasis M-Spline Basis for Polynomial Splines
cmls Solve a Constrained Multivariate Least Squares
    Problem
const Print or Return Constraint Options for cmls
cv.cmls Cross-Validation for cmls
mlsei Multivariate Least Squares with
    Equality/Inequality Constraints
mlsun Multivariate Least Squares with Unimodality
    (and E/I) Constraints
```

The cmls function provides a user-friendly interface for solving the MLS problem with 24 common constraint options (the const function prints or returns the different contraint options). The $\mathrm{cv} . \mathrm{cmls}$ function does k -fold or generalized cross-validation to tune the constraint options of the
cmls function. The mlsei function solves the MLS problem subject to user-specified equality and/or inequality (E / I) constraints on the coefficients. The mlsun function solves the MLS problem subject to unimodality constraints and user-specified E / I constraints on the coefficients.

Author(s)

Nathaniel E. Helwig helwig@umn.edu
Maintainer: Nathaniel E. Helwig helwig@umn.edu

References

Goldfarb, D., \& Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1-33. doi:10.1007/BF02591962
Helwig, N. E. (in prep). Constrained multivariate least squares in R.
Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M \& T Series. DSWO Press, Leiden University. ISBN: 9789066950832
Turlach, B. A., \& Weingessel, A. (2019). quadprog: Functions to solve Quadratic Programming Problems. R package version 1.5-8. https://CRAN.R-project.org/package=quadprog

Examples

\# See examples for cmls, cv.cmls, mlsei, and mlsun
cmls Solve a Constrained Multivariate Least Squares Problem

Description

Finds the $p \mathrm{x} m$ matrix B that minimizes the multivariate least squares problem

$$
\operatorname{sum}\left((Y-X \% * \% B)^{\wedge} 2\right)
$$

subject to the specified constraints on the rows of B.

Usage

```
cmls(X, Y, const = "uncons", struc = NULL,
        z = NULL, df = 10, degree = 3, intercept = TRUE,
        backfit = FALSE, maxit = 1e3, eps = 1e-10,
        del = 1e-6, XtX = NULL, mode.range = NULL)
```


Arguments

X
$\mathrm{Y} \quad$ Matrix of dimension $n \mathrm{x} m$.
const
Matrix of dimension $n \times p$.

Constraint code. See const for the 24 available options.

struc	Structural constraints (defaults to unstructured). See Note.
z	Predictor values for the spline basis (for smoothness constraints). See Note.
df	Degrees of freedom for the spline basis (for smoothness constraints). See Note.
degree	Polynomial degree for the spline basis (for smoothness constraints). See Note.
intercept	Logical indicating whether the spline basis should contain an intercept (for smoothness constraints). See Note.
backfit	Estimate B via back-fitting (TRUE) or vectorization (FALSE). See Details.
maxit	Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.
eps	Convergence tolerance for back-fitting algorithm. Ignored if backfit = FALSE.
del	Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.
XtX	Crossproduct matrix: $\mathrm{XtX}=\operatorname{crossprod}(X)$.
mode.range	Mode search ranges (for unimodal constraints). See Note.

Details

If backfit = FALSE (default), a closed-form solution is used to estimate B whenever possible. Otherwise a back-fitting algorithm is used, where the rows of B are updated sequentially until convergence. The backfitting algorithm is determined to have converged when

```
mean((B.new - B.old)^2) < eps * (mean(B.old^2) + del),
```

where B.old and B. new denote the parameter estimates at iterations t and $t+1$ of the backfitting algorithm.

Value

Returns the estimated matrix B with attribute "df" (degrees of freedom), which gives the df for each row of B.

Note

Structure constraints (struc) should be specified with a $p \mathrm{x} m$ matrix of logicals (TRUE/FALSE), such that FALSE elements indicate a weight should be constrained to be zero. Default uses unstructured weights, i.e., a $p \times m$ matrix of all TRUE values.
Inputs z, df, degree, and intercept are only applicable when using one of the 12 constraints that involves a spline basis, i.e., "smooth", "smonon", "smoper", "smpeno", "ortsmo", "orsmpe", "monsmo", "mosmno", "unismo", "unsmno", "unsmpe", "unsmpn".
Input mode.range is only applicable when using one of the 8 constraints that enforces unimodality: "unimod", "uninon", "uniper", "unpeno", "unismo", "unsmno", "unsmpe", "unsmpn". Mode search ranges (mode. range) should be specified with a $2 \times p$ matrix of integers such that
$1<=$ mode. range $[1, j]<=$ mode. $\operatorname{range}[2, j]<=m$ for all $j=1: p$.
Default is mode. range $=\operatorname{matrix}(c(1, m), 2, p)$.

Author(s)

Nathaniel E. Helwig helwig@umn.edu
cmls

References

Goldfarb, D., \& Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1-33. doi:10.1007/BF02591962
Helwig, N. E. (in prep). Constrained multivariate least squares in R.
Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M \& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., \& Weingessel, A. (2019). quadprog: Functions to solve Quadratic Programming Problems. R package version 1.5-8. https://CRAN.R-project.org/package=quadprog

See Also

const prints/returns the contraint options.
$\mathrm{cv} . \mathrm{cml}$ s performs k-fold cross-validation to tune the constraint options.
ml sei and mlsun are used to implement several of the constraints.

Examples

```
######***###### GENERATE DATA ######***######
# make X
set.seed(2)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)
# make B (which satisfies all constraints except monotonicity)
x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),
                    rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc
# make noisy data
set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)
######***#######UNCONSTRAINED ######***######
# unconstrained
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uncons")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unconstrained and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uncons", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
```

```
######***###### NON-NEGATIVITY ######****######
# non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "nonneg")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "nonneg", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
######***###### PERIODICITY ######***######
# periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "period")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "period", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "pernon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "pernon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
######***###### SMOOTHNESS ######***######
# smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smooth")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smooth", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smoper")
mean((Bhat - Bmat)^2)
```

```
attr(Bhat, "df")
# smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smoper", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smonon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smonon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smpeno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# smooth and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "smpeno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
######***###### ORTHOGONALITY ######***######
# orthogonal
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orthog")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthogonal and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orthog", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthgonal and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortnon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthgonal and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortnon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthogonal and smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortsmo")
mean((Bhat - Bmat)^2)
```

```
attr(Bhat, "df")
# orthogonal and smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "ortsmo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthogonal and smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orsmpe")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# orthogonal and smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "orsmpe", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
######***###### UNIMODALITY ######****#####
# unimodal
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unimod")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unimod", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uninon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uninon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uniper")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "uniper", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unpeno")
mean((Bhat - Bmat)^2)
```

```
attr(Bhat, "df")
# unimodal and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unpeno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
######***###### UNIMODALITY AND SMOOTHNESS ######***######
# unimodal and smooth
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unismo")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unismo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and periodic
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpe")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and periodic and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpe", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and periodic and non-negative
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpn")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
# unimodal and smooth and periodic and non-negative and structured
Bhat <- cmls(X = Xmat, Y = Ymat, const = "unsmpn", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")
```


make B

x <- 1:m
Bmat <- rbind(1 / (1 + exp(-(x - quantile(x, 0.5)))),
1/(1 + exp(-(x - quantile(x, 0.8)))))
struc <- rbind(rep(c(FALSE, TRUE), c(1 * m, 3 * m) / 4),
rep(c(FALSE, TRUE), c(m, m) / 2))
Bmat <- Bmat * struc

make noisy data

set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(m*n, sd = 0.25)

monotonic increasing

Bhat <- cmls(X = Xmat, Y = Ymat, const = "moninc")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and structured

Bhat <- cmls(X = Xmat, Y = Ymat, const = "moninc", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and non-negative

Bhat <- cmls(X = Xmat, Y = Ymat, const = "monnon")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and non-negative and structured

Bhat <- cmls(X = Xmat, Y = Ymat, const = "monnon", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and smooth

Bhat <- cmls(X = Xmat, Y = Ymat, const = "monsmo")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and smooth and structured

Bhat <- cmls(X = Xmat, Y = Ymat, const = "monsmo", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and smooth and non-negative

Bhat <- cmls(X = Xmat, Y = Ymat, const = "mosmno")
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

monotonic increasing and smooth and non-negative and structured

Bhat <- cmls(X = Xmat, Y = Ymat, const = "mosmno", struc = struc)
mean((Bhat - Bmat)^2)
attr(Bhat, "df")

```

\section*{Description}

Prints or returns six letter constraint codes for cmls , along with corresponding descriptions.

\section*{Usage}
const (x, print \(=\) TRUE)

\section*{Arguments}
\[
\begin{array}{ll}
x & \text { Vector of six letter constraint codes. If missing, prints/returns all } 24 \text { options. } \\
\text { print } & \text { Should constraint information be printed (print = TRUE) or returned as a data } \\
\text { frame (print = FALSE). }
\end{array}
\]

\section*{Value}

Prints (or returns) constraint codes and descriptions.

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

\section*{See Also}

Constraints are used in the cmls function.

\section*{Examples}
```


print some constraints

const(c("uncons", "smpeno"))

return some constraints

const(c("uncons", "smpeno"), print = FALSE)

print all constraints

const()

return all constraints

const(print = FALSE)

```
```

cv.cmls

```
Cross-Validation for cmls

\section*{Description}

Does k-fold or generalized cross-validation to tune the constraint options for cml . Tunes the model with respect to any combination of the arguments const, df, degree, and/or intercept.

\section*{Usage}
```

cv.cmls(X, Y, nfolds = 2, foldid = NULL, parameters = NULL,
const = "uncons", df = 10, degree = 3, intercept = TRUE,
mse = TRUE, parallel = FALSE, cl = NULL, verbose = TRUE, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline X & Matrix of dimension \(n \times p\). \\
\hline Y & Matrix of dimension \(n \times m\). \\
\hline nfolds & Number of folds for k-fold cross-validation. Ignored if foldid argument is provided. Set \(\mathrm{nfolds}=1\) for generalized cross-validation (GCV). \\
\hline foldid & Factor or integer vector of length \(n\) giving the fold identification for each observation. \\
\hline parameters & Parameters for tuning. Data frame with columns const, df, degree, and intercept. See Details. \\
\hline const & Parameters for tuning. Character vector specifying constraints for tuning. See Details. \\
\hline df & Parameters for tuning. Integer vector specifying degrees of freedom for tuning. See Details. \\
\hline degree & Parameters for tuning. Integer vector specifying polynomial degrees for tuning. See Details. \\
\hline intercept & Parameters for tuning. Logical vector specifying intercepts for tuning. See Details. \\
\hline mse & If TRUE (default), the mean squared error is used as the CV loss function. Otherwise the mean absolute error is used. \\
\hline parallel & Logical indicating if parSapply should be used. See Examples. \\
\hline cl & Cluster created by makeCluster. Only used when parallel = TRUE. Recommended usage: cl = makeCluster(detectCores()) \\
\hline verbose & If TRUE, tuning progress is printed via txtProgressBar. Ignored if parallel = TRUE. \\
\hline & Additional arguments to the cmls function, e.g., z, struc, backfit, etc. \\
\hline
\end{tabular}

\section*{Details}

The parameters for tuning can be supplied via one of two options:
(A) Using the parameters argument. In this case, the argument parameters must be a data frame with columns const, df, degree, and intercept, where each row gives a combination of parameters for the CV tuning.
(B) Using the const, df, degree, and intercept arguments. In this case, the expand.grid function is used to create the parameters data frame, which contains all combinations of the arguments const, df, degree, and intercept. Duplicates are removed before the CV tuning.

Value
best. parameters
Best combination of parameters, i.e., the combination that minimizes the cvloss.
top5. parameters
Top five combinations of parameters, i.e., the combinations that give the five smallest values of the cvloss.
full. parameters
Full set of parameters. Data frame with cvloss (GCV, MSE, or MAE) for each combination of parameters.

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

Helwig, N. E. (in prep). Constrained multivariate least squares in R.

\section*{See Also}

See the cmls and const functions for further details on the available constraint options.

\section*{Examples}
```


make X

set.seed(1)
n <- 50
m <- 20
p <- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

make B (which satisfies all constraints except monotonicity)

x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),
rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

```
```


make noisy data

Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.5)

5-fold CV: tune df (5,...,15) for const = "smooth"

kcv <- cv.cmls(X = Xmat, Y = Ymat, nfolds = 5,
const = "smooth", df = 5:15)
kcv$best.parameters
kcv$top5.parameters
plot(kcv$full.parameters$df, kcv$full.parameters$cvloss, t = "b")

Not run:

sample foldid for 5-fold CV

set.seed(2)
foldid <- sample(rep(1:5, length.out = n))

5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (no struc)

using sequential computation (default)

myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({
 kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
 const = myconst, df = 5:15)
})
kcv$best.parameters
kcv\$top5.parameters

5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (no struc)

using parallel package for parallel computations

myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({
 cl <- makeCluster(2L) # using 2 cores
 kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
 const = myconst, df = 5:15,
 parallel = TRUE, cl = cl)
 stopCluster(cl)
})
kcv$best.parameters
kcv\$top5.parameters

5-fold CV: tune df (5,...,15) w/ all 20 relevant constraints (w/ struc)

using sequential computation (default)

myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({
 kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
 const = myconst, df = 5:15, struc = struc)
})
kcv$best.parameters
kcv\$top5.parameters

```
```


5-fold CV: tune df (5,···,15) w/ all 20 relevant constraints (w/ struc)

using parallel package for parallel computations

myconst <- as.character(const(print = FALSE)$label[-c(13:16)])
system.time({
 cl <- makeCluster(2L) # using 2 cores
 kcv <- cv.cmls(X = Xmat, Y = Ymat, foldid = foldid,
 const = myconst, df = 5:15, struc = struc,
 parallel = TRUE, cl = cl)
 stopCluster(cl)
})
kcv$best.parameters
kcv\$top5.parameters

End(Not run)

```

IsplineBasis I-Spline Basis for Monotonic Polynomial Splines

\section*{Description}

Generate the I-spline basis matrix for a monotonic polynomial spline.

\section*{Usage}

IsplineBasis(x, df = NULL, knots \(=\) NULL, degree \(=3\), intercept \(=\) FALSE, Boundary.knots \(=\) range \((x)\) )

\section*{Arguments}
x
df degrees of freedom; if specified the number of knots is defined as \(d f\) - degree - ifelse (intercept, 1,0 ); the knots are placed at the quantiles of \(x\)
knots the internal breakpoints that define the spline (typically the quantiles of \(x\) )
degree degree of the M-spline basis-default is 3 for cubic splines
intercept if TRUE, the basis includes an intercept column
Boundary. knots boundary points for M-spline basis; defaults to min and max of \(x\)

\section*{Details}

Syntax is adapted from the bs function in the splines package (R Core Team, 2021).
Used for implementing monotonic smoothness constraints in the cmls fucntion.

\section*{Value}

A matrix of dimension \(c(l e n g t h(x), d f)\) where either \(d f\) was supplied or \(d f=\) length (knots) + degree + ifelse(intercept, 1, 0)

\section*{Note}

I-spline basis functions are created by integrating M-spline basis functions.

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3, 425-441. doi:10.1214/ss/1177012761

\section*{See Also}

MsplineBasis

\section*{Examples}
```

x <- seq(0, 1, length.out = 101)
I <- IsplineBasis(x, df = 8, intercept = TRUE)
plot(x, I[,1], ylim = c(0, 1), t = "l")
for(j in 2:8) lines(x, I[,j], col = j)

```
mlsei Multivariate Least Squares with Equality/Inequality Constraints

\section*{Description}

Finds the \(q \times p\) matrix B that minimizes the multivariate least squares problem
\[
\operatorname{sum}\left((Y-X \% * \% t(Z \% * \% B))^{\wedge} 2\right)
\]
subject to \(t(A) \% * \% B[, j]>=b\) for all \(j=1: p\). Unique basis functions and constraints are allowed for each column of \(B\).

\section*{Usage}
mlsei(X, Y, Z, A, b, meq, backfit \(=\) FALSE, maxit \(=1000\), eps \(=1 \mathrm{e}-10\), del \(=1 \mathrm{e}-6\),
```

XtX = NULL, ZtZ = NULL,
simplify = TRUE, catchError = FALSE)

```

\section*{Arguments}
\(x\)
\(\mathrm{Y} \quad\) Matrix of dimension \(n \times m\).
Z Matrix of dimension \(m \mathrm{x} q\). Can also input a list (see Note). If missing, then Z \(=\operatorname{diag}(\mathrm{m})\) so that \(q=m\).

A Constraint matrix of dimension \(q \mathrm{x} r\). Can also input a list (see Note). If missing, no constraints are imposed.
b Consraint vector of dimension \(r \times 1\). Can also input a list (see Note). If missing, then \(b=\operatorname{rep}(0, r)\).
meq The first meq columns of \(A\) are equality constraints, and the remaining \(r-m e q\) are inequality constraints. Can also input a vector (see Note). If missing, then \(\mathrm{meq}=0\).
backfit Estimate B via back-fitting (TRUE) or vectorization (FALSE). See Details.
maxit Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.
eps Convergence tolerance for back-fitting algorithm. Ignored if backfit = FALSE.
del Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.
XtX Crossproduct matrix: \(X t X=\operatorname{crossprod}(X)\).
ZtZ Crossproduct matrix: \(Z t Z=\operatorname{crossprod}(Z)\).
simplify If \(Z\) is a list, should \(B\) be returned as a matrix (if possible)? See Note.
catchError If catchError = FASLE, an error induced by solve. QP will be returned. Otherwise tryCatch will be used in attempt to catch the error.

\section*{Details}

If backfit = FALSE (default), a closed-form solution is used to estimate \(B\) whenever possible. Otherwise a back-fitting algorithm is used, where the columns of \(B\) are updated sequentially until convergence. The backfitting algorithm is determined to have converged when
mean ( (B. new - B.old) \(\left.{ }^{\wedge} 2\right)<e p s *\left(m e a n\left(B . o l d^{\wedge} 2\right)+d e l\right)\),
where B.old and B. new denote the parameter estimates at iterations \(t\) and \(t+1\) of the backfitting algorithm.

\section*{Value}

If Z is a list with \(q_{j}=q\) for all \(j=1, \ldots, p\), then...
B \(\quad\) is returned as a \(q \times p\) matrix when simplify \(=\) TRUE
B \(\quad\) is returned as a list of length \(p\) when simplify \(=\) FALSE
If Z is a list with \(q_{j} \neq q\) for some \(j\), then B is returned as a list of length \(p\).
Otherwise B is returned as a \(q \times p\) matrix.

\section*{Note}

The Z input can also be a list of length \(p\) where \(\mathrm{Z}[\mathrm{j}]]\) contains a \(m \mathrm{x} q_{j}\) matrix. If \(q_{j}=q\) for all \(j=1, \ldots, p\) and simplify \(=\) TRUE, the output B will be a matrix. Otherwise B will be a list of length \(p\) where \(\mathrm{B}[[\mathrm{j}]]\) contains a \(q_{j} \times 1\) vector.
The \(A\) and \(b\) inputs can also be lists of length \(p\) where \(t(A[[j]]) \% * \% B[, j]>=b[[j]]\) for all \(j=1, \ldots, p\). If A and b are lists of length \(p\), the meq input should be a vector of length \(p\) indicating the number of equality constraints for each element of \(A\).

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

Goldfarb, D., \& Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1-33. doi:10.1007/BF02591962
Helwig, N. E. (in prep). Constrained multivariate least squares in R.
Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M \& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., \& Weingessel, A. (2019). quadprog: Functions to solve Quadratic Programming Problems. R package version 1.5-8. https://CRAN.R-project.org/package=quadprog

\section*{See Also}
cml calls this function for several of the constraints.

\section*{Examples}
```

\#\#\#\#\#\#***\#\#\#\#\#\# GENERATE DATA \#\#\#\#\#\#***\#\#\#\#\#\#

make X

set.seed(2)
n <- 50
m<- 20
p<- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

make B (which satisfies all constraints except monotonicity)

x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),
rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

make noisy data

set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)

```
```

\#\#\#\#\#\#***\#\#\#\#\#\# UNCONSTRAINED \#\#\#\#\#\#***\#\#\#\#\#\#

unconstrained

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uncons")
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat))
mean((Bhat.cmls - Bhat.mlsei)^2)

unconstrained and structured (note: cmls is more efficient)

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uncons", struc = struc)
Amat <- vector("list", p)
meq <- rep(0, p)
for(j in 1:p){
meq[j] <- sum(!struc[j,])
if(meq[j] > 0){
A <- matrix(0, nrow = m, ncol = meq[j])
A[!struc[j,],] <- diag(meq[j])
Amat[[j]] <- A
} else {
Amat[[j]] <- matrix(0, nrow = m, ncol = 1)
}
}
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsei)^2)
\#\#\#\#\#\#***\#\#\#\#\#\# NON-NEGATIVITY \#\#\#\#\#\#****\#\#\#\#\#\#

non-negative

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "nonneg")
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = diag(m)))
mean((Bhat.cmls - Bhat.mlsei)^2)

non-negative and structured (note: cmls is more efficient)

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "nonneg", struc = struc)
eye <- diag(m)
meq <- rep(0, p)
for(j in 1:p){
meq[j] <- sum(!struc[j,])
Amat[[j]] <- eye[,sort(struc[j,], index.return = TRUE)\$ix]
}
Bhat.mlsei <- t(mlsei(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsei)^2)

see internals of cmls.R for further examples

```

\section*{Description}

Finds the \(q \times p\) matrix B that minimizes the multivariate least squares problem
\[
\operatorname{sum}\left((Y-X \% * \% t(Z \% * \% B))^{\wedge} 2\right)
\]
subject to \(Z \% * \% B[, j]\) is unimodal and \(t(A) \% * \% B[, j]>=b\) for \(a l l j=1: p\). Unique basis functions and constraints are allowed for each column of \(B\).

\section*{Usage}
```

mlsun(X, Y, Z, A, b, meq,
mode.range $=$ NULL, maxit $=1000$,
eps $=1 \mathrm{e}-10$, del $=1 \mathrm{e}-6$,
XtX $=$ NULL, ZtZ = NULL,
simplify = TRUE, catchError = FALSE)

```

\section*{Arguments}

X
\(\mathrm{Y} \quad\) Matrix of dimension \(n \times m\).
Z

A
b Consraint vector of dimension \(r \times 1\). Can also input a list (see Note). If missing, then \(b=\operatorname{rep}(0, r)\).
meq The first meq columns of A are equality constraints, and the remaining \(r\) - meq are inequality constraints. Can also input a vector (see Note). If missing, then meq \(=0\).
mode.range Mode search ranges, which should be a \(2 \times p\) matrix of integers such that \(1<=\) mode. range \([1, j]<=\) mode. \(\operatorname{range}[2, j]<=m\) for all \(j=1: p\). Default is mode. range \(=\operatorname{matrix}(c(1, m), 2, p)\).
maxit Maximum number of iterations for back-fitting algorithm. Ignored if backfit = FALSE.
eps Convergence tolerance for back-fitting algorithm. Ignored if backfit \(=\) FALSE.
del Stability tolerance for back-fitting algorithm. Ignored if backfit = FALSE.
XtX Crossproduct matrix: \(X t X=\operatorname{crossprod}(X)\).
ZtZ Crossproduct matrix: ZtZ = crossprod(Z).
simplify If \(Z\) is a list, should \(B\) be returned as a matrix (if possible)? See Note.
catchError If catchError = FASLE, an error induced by solve. QP will be returned. Otherwise tryCatch will be used in attempt to catch the error.

\section*{Details}

A back-fitting algorithm is used to estimate \(B\), where the columns of \(B\) are updated sequentially until convergence (outer loop). For each column of B, (the inner loop of) the algorithm searches for the \(j\)-th mode across the search range specified by the \(j\)-th column of mode. range. The backfitting algorithm is determined to have converged when
```

mean((B.new - B.old)^2) < eps * (mean(B.old^2) + del),

```
where B.old and B. new denote the parameter estimates at outer iterations \(t\) and \(t+1\) of the backfitting algorithm.

\section*{Value}

If Z is a list with \(q_{j}=q\) for all \(j=1, \ldots, p\), then...
B
is returned as a \(q \times p\) matrix when simplify \(=\) TRUE
B
\[
\text { is returned as a list of length } p \text { when simplify }=\text { FALSE }
\]

If Z is a list with \(q_{j} \neq q\) for some \(j\), then B is returned as a list of length \(p\).
Otherwise B is returned as a \(q \times p\) matrix.

\section*{Note}

The Z input can also be a list of length \(p\) where \(\mathrm{Z}[\mathrm{j}]]\) contains a \(m \mathrm{x} q_{j}\) matrix. If \(q_{j}=q\) for all \(j=1, \ldots, p\) and simplify \(=\) TRUE, the output B will be a matrix. Otherwise B will be a list of length \(p\) where \(\mathrm{B}[[j]]\) contains a \(q_{j} \times 1\) vector.
The \(A\) and \(b\) inputs can also be lists of length \(p\) where \(t(A[[j]]) \% * \% B[, j]>=b[[j]]\) for all \(j=1, \ldots, p\). If A and b are lists of length \(p\), the meq input should be a vector of length \(p\) indicating the number of equality constraints for each element of \(A\).

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

Goldfarb, D., \& Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1-33. doi:10.1007/BF02591962
Helwig, N. E. (in prep). Constrained multivariate least squares in R.
Ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. Volume 25 of M \& T Series. DSWO Press, Leiden University. ISBN: 9789066950832

Turlach, B. A., \& Weingessel, A. (2019). quadprog: Functions to solve Quadratic Programming Problems. R package version 1.5-8. https://CRAN.R-project.org/package=quadprog

\section*{See Also}
cmls calls this function for the unimodality constraints.

\section*{Examples}
```

\#\#\#\#\#\#***\#\#\#\#\#\# GENERATE DATA \#\#\#\#\#\#***\#\#\#\#\#\#

make X

set.seed(2)
n <- 50
m<- 20
p<- 2
Xmat <- matrix(rnorm(n*p), nrow = n, ncol = p)

make B (which satisfies all constraints except monotonicity)

x <- seq(0, 1, length.out = m)
Bmat <- rbind(sin(2*pi*x), sin(2*pi*x+pi)) / sqrt(4.75)
struc <- rbind(rep(c(TRUE, FALSE), each = m / 2),
rep(c(FALSE, TRUE), each = m / 2))
Bmat <- Bmat * struc

make noisy data

set.seed(1)
Ymat <- Xmat %*% Bmat + rnorm(n*m, sd = 0.25)
\#\#\#\#\#\#***\#\#\#\#\#\# UNIMODALITY \#\#\#\#\#\#***\#\#\#\#\#\#

unimodal

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "unimod")
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat))
mean((Bhat.cmls - Bhat.mlsun)^2)

unimodal and structured

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "unimod", struc = struc)
Amat <- vector("list", p)
meq <- rep(0, p)
for(j in 1:p){
meq[j] <- sum(!struc[j,])
if(meq[j] > 0){
A <- matrix(0, nrow = m, ncol = meq[j])
A[!struc[j,],] <- diag(meq[j])
Amat[[j]] <- A
} else {
Amat[[j]] <- matrix(0, nrow = m, ncol = 1)
}
}
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsun)^2)

unimodal and non-negative

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uninon")
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = diag(m)))
mean((Bhat.cmls - Bhat.mlsun)^2)

unimodal and non-negative and structured

```
```

Bhat.cmls <- cmls(X = Xmat, Y = Ymat, const = "uninon", struc = struc)
eye <- diag(m)
meq <- rep(0, p)
for(j in 1:p){
meq[j] <- sum(!struc[j,])
Amat[[j]] <- eye[,sort(struc[j,], index.return = TRUE)\$ix]
}
Bhat.mlsun <- t(mlsun(X = Xmat, Y = Ymat, A = Amat, meq = meq))
mean((Bhat.cmls - Bhat.mlsun)^2)

see internals of cmls.R for further examples

```

\section*{Description}

Generate the M-spline basis matrix for a polynomial spline.

\section*{Usage}

MsplineBasis(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE, Boundary.knots \(=\) range \((x)\), periodic \(=\) FALSE)

\section*{Arguments}
\(x \quad\) the predictor variable. Missing values are not allowed.
df degrees of freedom; if specified the number of knots is defined as df - degree - ifelse(intercept, 1, 0); the knots are placed at the quantiles of \(x\)
knots the internal breakpoints that define the spline (typically the quantiles of \(x\) )
degree degree of the piecewise polynomial—default is 3 for cubic splines
intercept if TRUE, the basis includes an intercept column
Boundary.knots boundary points for M-spline basis; defaults to min and max of \(x\)
periodic if TRUE, the M-spline basis is constrained to be periodic

\section*{Details}

Syntax is adapted from the bs function in the splines package (R Core Team, 2021).
Used for implementing various types of smoothness constraints in the cmls fucntion.

\section*{Value}

A matrix of dimension \(c(l e n g t h(x), d f)\) where either \(d f\) was supplied or \(d f=\) length(knots) + degree + ifelse(intercept, 1, 0)

\section*{Author(s)}

Nathaniel E. Helwig <helwig@umn.edu>

\section*{References}

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3, 425-441. doi:10.1214/ss/1177012761

\section*{See Also}

IsplineBasis

\section*{Examples}
```

x <- seq(0, 1, length.out = 101)
M <- MsplineBasis(x, df = 8, intercept = TRUE)
M <- scale(M, center = FALSE)
plot(x, M[,1], ylim = range(M), t = "l")
for(j in 2:8) lines(x, M[,j], col = j)

```

\section*{Index}
```

* models
cmls, }
cv.cmls, 12
mlsei, 16
mlsun,19
* multivariate
cmls, 3
cv.cmls, 12
mlsei, 16
mlsun,19
* optimize
cmls, }
cv.cmls, 12
mlsei, 16
mlsun, 19
* package
CMLS-package, 2
* regression
cmls, 3
cv.cmls, 12
IsplineBasis, 15
mlsei, 16
mlsun, 19
MsplineBasis,23
* smooth
cmls, 3
cv.cmls, 12
IsplineBasis,15
mlsei, 16
mlsun,19
MsplineBasis,23
CMLS (CMLS-package), 2
cmls, 2, 3, 3, 11-13, 15, 18, 21, 23
CMLS-package, 2
const, 2, 3, 5, 11, 13
cv.cmls, 2, 5, 12
expand.grid,}1

```

IsplineBasis, 15, 24
makeCluster, 12
mlsei, 3, 5, 16
mlsun, 3, 5, 19
MsplineBasis, 16, 23
parSapply, 12
solve.QP, 17,20
tryCatch, 17,20
txtProgressBar, 12```

