
Package ‘NMsim’
February 22, 2024

Type Package

Title Seamless 'Nonmem' Simulation Platform

Version 0.1.0

Maintainer Philip Delff <philip@delff.dk>

Description A complete and seamless 'Nonmem' simulation interface from within R. Turns 'Non-
mem' control streams into simulation control streams, executes them with specified simula-
tion input data and returns the results. The simulation is performed by 'Nonmem', eliminat-
ing time spent and risks of re-implementation of models in other tools.

License MIT + file LICENSE

RoxygenNote 7.2.3

Depends R (>= 3.5.0)

Imports data.table, NMdata (>= 0.1.3), R.utils, MASS, fst, xfun

Suggests testthat, knitr, rmarkdown, ggplot2, patchwork, tracee,
tidyvpc

Encoding UTF-8

BugReports https://github.com/philipdelff/NMsim/issues

Language en-US

URL https://philipdelff.github.io/NMsim/

NeedsCompilation no

Author Philip Delff [aut, cre],
Matthew Fidler [ctb] (Co-author on NMreadCov)

Repository CRAN

Date/Publication 2024-02-22 08:00:05 UTC

R topics documented:
addEVID2 . 2
addResVar . 3
genPhiFile . 5

1

https://github.com/philipdelff/NMsim/issues
https://philipdelff.github.io/NMsim/

2 addEVID2

inputArchiveDefault . 5
NMcreateDoses . 6
NMexec . 7
NMreadSim . 10
NMsim . 11
NMsim_asis . 16
NMsim_default . 16
NMsim_known . 17
NMsim_typical . 18
NMsim_VarCov . 19
simPopEtas . 19
unNMsimModTab . 20
unNMsimRes . 21

Index 23

addEVID2 Add simulation records to dosing records

Description

Performs the simple job of adding simulation events to all subjects in a data set. Copies over
columns that are not varying at subject level (i.e. non-variying covariates).

Usage

addEVID2(doses, time.sim, CMT, EVID = 2, as.fun)

Arguments

doses dosing records Nonmem style (EVID==1 records from a data set)

time.sim A numerical vector with simulation times. Can also be a data.frame in which
case it must contain a ‘TIME‘ column and is merged with subjects found in
‘doses‘. The latter feature is experimental.

CMT The compartment in which to insert the EVID=2 records. If longer than one,
the records will be repeated in all the specified compartments. If a data.frame,
covariates can be specified.

EVID The value to put in the EVID column for the created rows. Default is 2 but 0
may be prefered even for simulation.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

The resulting data set is ordered by ID, TIME, and EVID. You may have to reorder for your specific
needs.

addResVar 3

Value

A data.frame with dosing records

Examples

library(data.table)
Users should not use setDTthreads. This is for CRAN to only use 1 core.
data.table::setDTthreads(1)
(doses1 <- NMcreateDoses(TIME=c(0,12,24,36),AMT=c(2,1)))
addEVID2(doses1,time.sim=seq(0,28,by=4),CMT=2)

two named compartments
dt.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
dt.cmt <- data.table(CMT=c(2,3),analyte=c("parent","metabolite"))
res <- addEVID2(dt.doses,time.sim=seq.time,CMT=dt.cmt)

Separate sampling schemes depending on covariate values
dt.doses <- NMcreateDoses(TIME=data.table(regimen=c("SD","MD","MD"),TIME=c(0,0,12)),AMT=10,CMT=1)

seq.time.sd <- data.table(regimen="SD",TIME=seq(0,6))
seq.time.md <- data.table(regimen="MD",TIME=c(0,4,12,24))
seq.time <- rbind(seq.time.sd,seq.time.md)

addEVID2(dt.doses,time.sim=seq.time,CMT=2)

addResVar Add residual variability based on parameter estimates

Description

Add residual variability based on parameter estimates

Usage

addResVar(
data,
path.ext,
prop = NULL,
add = NULL,
log = FALSE,
par.type = "SIGMA",
trunc0 = TRUE,
scale.par,
subset,
seed,
col.ipred = "IPRED",
col.ipredvar = "IPREDVAR",
as.fun

)

4 addResVar

Arguments

data A data set containing indiviudual predictions. Often a result of NMsim.

path.ext Path to the ext file to take the parameter estimates from.

prop Parameter number of parameter holding variance of the proportional error com-
ponent. If ERR(1) is used for proportional error, use prop=1. Can also refer to a
theta number.

add Parameter number of parameter holding variance of the additive error compo-
nent. If ERR(1) is used for additive error, use add=1. Can also refer to a theta
number.

log Should the error be added on log scale? This is used to obtain an exponential
error distribution.

par.type Use "sigma" if variances are estimated with the SIGMA matrix. Use "theta" if
THETA parameters are used. See ‘scale.par‘ too.

trunc0 If log=FALSE, truncate simulated values at 0? If trunc0, returned predictions
can be negative.

scale.par Denotes if parmeter represents a variance or a standard deviation. Allowed val-
ues and default value depends on ‘par.type‘.

• if par.type="sigma" only "var" is allowed.
• if par.type="theta" allowed values are "sd" and "var". Default is "sd".

subset A character string with an expression denoting a subset in which to add the
residual error. Example: subset="DVID==’A’"

seed A number to pass to set.seed() before simulating. Default is to generate a seed
and report it in the console. Use seed=FALSE to avoid setting the seed (if you
prefer doing it otherwise).

col.ipred The name of the column containing individual predictions.

col.ipredvar The name of the column to be created by addResVar to contain the simulated
observations (individual predictions plus residual error).

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

An updated data.frame

Examples

Not run:
based on SIGMA
simres.var <- addResVar(data=simres,

path.ext = "path/to/model.ext",
prop = 1,
add = 2,
par.type = "SIGMA",
log = FALSE)

genPhiFile 5

If implemented using THETAs
simres.var <- addResVar(data=simres,

path.ext = "path/to/model.ext",
prop = 8, ## point to elements in THETA
add = 9, ## point to elements in THETA
par.type = "THETA",
log = FALSE)

End(Not run)

genPhiFile Generate a .phi file for further simulation with Nonmem

Description

This will typically be used in a couple of different situations. One is if a number of new sub-
jects have been simulated and their ETAs should be reused in subsequent simulations. Another is
internally by NMsim when simulating new subjects from models estimated with SAEM.

Usage

genPhiFile(data, file)

Arguments

data A dataset that contains "ID" and all ETAs. This can be obtained by ‘NM-
data::NMscanData‘.

file Path to the .phi file to be written.

inputArchiveDefault Default location of input archive file

Description

Default location of input archive file

Usage

inputArchiveDefault(file)

Arguments

file Path to input or output control stream.

6 NMcreateDoses

Value

A file name (character)

NMcreateDoses Easily generate dosing records

Description

Combinations of different columns can be generated. Columns will be extended by repeating last
value of the column if needed in order to match length of other columns.

Usage

NMcreateDoses(
TIME,
AMT = NULL,
RATE = NULL,
SS = NULL,
CMT = 1,
EVID = 1,
addl = NULL,
as.fun

)

Arguments

TIME The time of the dosing events

AMT vector or dataa.frame with amounts amount

RATE Optional infusion rate

SS Optional steady-state flag

CMT Compartment number. Default is to dose into CMT=1.

EVID The event ID to use for doses. Default is to use EVID=1, but EVID might also
be wanted.

addl Optinal. A list of ADDL and II that will be applied to last dose

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

Experimental. Please check output before use. AMT, RATE, SS, II, CMT are vectors of length
1 or longer. Those not of max length 1 are repeated. If TIME is longer than those, they are
extended to match length of TIME. Allowed combinations of AMT, RATE, SS, II here: https:
//ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404

https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404

NMexec 7

Value

A data.frame with dosing events

Examples

library(data.table)
Users should not use setDTthreads. This is for CRAN to only use 1 core.
data.table::setDTthreads(1)
arguments are expanded - makes loading easy
NMcreateDoses(TIME=c(0,12,24,36),AMT=c(2,1))
Different doses by covariate
NMcreateDoses(TIME=c(0,12,24),AMT=data.table(AMT=c(2,1,4,2),DOSE=c(1,2)))
Make Nonmem repeat the last dose. This is a total of 20 dosing events.
NMcreateDoses(TIME=c(0,12),AMT=c(2,1),addl=list(ADDL=c(NA,9*2),II=c(NA,12)))
dt.amt <- data.table(DOSE=c(100,400))
dt.amt[,AMT:=DOSE*1000]
dt.amt
doses.sd <- NMcreateDoses(TIME=0,AMT=dt.amt)
doses.sd$dose <- paste(doses.sd$DOSE,"mg")
doses.sd$regimen <- "SD"
doses.sd

multiple dose regimens with loading are easily created with NMcreateDoses too
Specifying the time points explicitly
dt.amt <- data.table(AMT=c(200,100,800,400)*1000,DOSE=c(100,100,400,400))
doses.md.1 <- NMcreateDoses(TIME=seq(0,by=24,length.out=7),AMT=dt.amt)
doses.md.1$dose <- paste(doses.md.1$DOSE,"mg")
doses.md.1$regimen <- "QD"
doses.md.1
or using ADDL+II
dt.amt <- data.table(AMT=c(200,100,800,400)*1000,DOSE=c(100,100,400,400))
doses.md.2 <- NMcreateDoses(TIME=c(0,24),AMT=dt.amt,addl=data.table(ADDL=c(0,5),II=c(0,24)))
doses.md.2$dose <- paste(doses.md.2$DOSE,"mg")
doses.md.2$regimen <- "QD"
doses.md.2

NMexec Execute Nonmem and archive input data with model files

Description

Execute Nonmem from within R - optionally but by default in parallel. Archiving the input data
ensures that postprocessing can still be reproduced if the input data files should be updated.

Usage

NMexec(
files,
file.pattern,

8 NMexec

dir,
sge = TRUE,
input.archive,
nc = 64,
dir.data = NULL,
wait = FALSE,
args.psn.execute,
update.only = FALSE,
nmquiet = FALSE,
method.execute = "psn",
dir.psn,
path.nonmem,
system.type,
files.needed,
quiet = FALSE

)

Arguments

files File paths to the models (control streams) to run nonmem on. See file.pattern
too.

file.pattern Alternatively to files, you can supply a regular expression which will be passed
to list.files as the pattern argument. If this is used, use dir argument as well.
Also see data.file to only process models that use a specific data file.

dir If file.pattern is used, dir is the directory to search for control streams in.

sge Use the sge queing system. Default is TRUE. Disable for quick models not to
wait for the queue to run the job.

input.archive A function of the model file path to generate the path in which to archive the
input data as RDS. Set to NULL not to archive the data.

nc Number of cores to use if sending to the cluster. This will only be used if
method.execute="psn", and sge=TRUE. Default is 64.

dir.data The directory in which the data file is stored. This is normally not needed as
data will be found using the path in the control stream. This argument may be
removed in the future since it should not be needed.

wait Wait for process to finish before making R console available again? This is
useful if calling NMexec from a function that needs to wait for the output of the
Nonmem run to be available for further processing.

args.psn.execute

A character string with arguments passed to execute. Default is "-model_dir_name
-nm_output=xml,ext,cov,cor,coi,phi,shk".

update.only Only run model(s) if control stream or data updated since last run?

nmquiet Suppress terminal output from ‘Nonmem‘. This is likely to only work on linux/unix
systems.

method.execute How to run Nonmem. Must be one of ’psn’, ’nmsim’, or ’direct’.

NMexec 9

• psn PSN’s execute is used. This supports parallel Nonmem runs. Use the
nc argument to control how many cores to use for each job. For estimation
runs, this is most likely the better choice, if you have PSN installed. See
dir.psn argument too.

• nmsim Creates a temporary directory and runs Nonmem inside that direc-
tory before copying relevant results files back to the folder where the input
control stream was. If sge=TRUE, the job will be submitted to a cluster,
but parallel execution of the job itself is not supported. See path.nonmem
argument too.

• direct Nonmem is called directly on the control stream. This is the simplest
method and is the least convenient in most cases. It does not offer parallel
runs and leaves all the Nonmem output files next to the control streams.

See ‘sge‘ as well.

dir.psn The directory in which to find PSN executables. This is only needed if these are
not searchable in the system path, or if the user should want to be explicit about
where to find them (i.e. want to use a specific installed version of PSN).

path.nonmem The path to the nonmem executable. Only used if method.execute="direct"
or method.execute="nmsim" (which is not default). If this argument is not sup-
plied, NMexec will try to run nmfe75, i.e. this has to be available in the path of
the underlying shell. The default value can be modified using NMdata::NMdataConf,
like NMdataConf(path.nonmem="/path/to/nonmem")

system.type A charachter string, either \"windows\" or \"linux\" - case insensitive. Windows
is only experimentally supported. Default is to use Sys.info()[["sysname"]].

files.needed In case method.execute="nmsim", this argument specifies files to be copied into
the temporary directory before Nonmem is run. Input control stream and simu-
lation input data does not need to be specified.

quiet Suppress messages on what NMexec is doing? Default is FALSE.

Details

Use this to read the archived input data when retrieving the nonmem results: NMdataConf(file.data=inputArchiveDefault)

Since ‘NMexec‘ will typically not be used for simulations directly (‘NMsim‘ is the natural interface
for that purpose), the default method for ‘NMexec‘ is currently to use ‘method.execute="psn"‘
which is at this point the only of the methods that allow for multi-core execution of a single Nonmem
job (NB: ‘method.execute="NMsim"‘ can run multiple jobs in parallel which is normally sufficient
for simulations).

Value

NULL (invisibly)

Examples

file.mod <- "run001.mod"
Not run:
run locally - not on cluster
NMexec(file.mod,sge=FALSE)

10 NMreadSim

run on cluster with 16 cores. 64 cores is default
NMexec(file.mod,nc=16)
submit multiple models to cluster
multiple.models <- c("run001.mod","run002.mod")
NMexec(multiple.models,nc=16)
run all models called run001.mod - run099.mod if updated. 64 cores to each.
NMexec(file.pattern="run0..\\.mod",dir="models",nc=16,update.only=TRUE)

End(Not run)

NMreadSim Read simulation results based on NMsim’s track of model runs

Description

Read simulation results based on NMsim’s track of model runs

Usage

NMreadSim(x, check.time = FALSE, dir.sims, wait = FALSE, quiet = FALSE, as.fun)

Arguments

x Path to the simulation-specific rds file generated by NMsim, typically called
‘NMsim_paths.rds‘. Can also be a table of simulation runs as stored in ‘rds‘
files by ‘NMsim‘. The latter should almost never be used.

check.time If found, check whether ‘fst‘ file modification time is newer than ‘rds‘ file.
The ‘fst‘ is generated based on information in ‘rds‘, but notice that some sys-
tems don’t preserve the file modification times. Becasue of that, ‘check.time‘ is
‘FALSE‘ by default.

dir.sims By default, ‘NMreadSim‘ will use information about the relative path from the
results table file (‘_paths.rds‘) to the Nonmem simulation results. If these paths
have changed, or for other reasons this doesn’t work, you can use the ‘dir.sims‘
argument to specify where to find the Nonmem simulation results. If an ‘.fst‘
file was already generated and is found next to the ‘_paths.rds‘, the path to the
Nonmem simulation results is not used.

wait If simulations seem to not be done yet, wait for them to finish? If not, an error
will be thrown. If you choose to wait, the risk is results never come. ‘NMread-
Sim‘ will be waiting for an ‘lst‘ file. If Nonmem fails, it will normally generate
an ‘lst‘ file. But if ‘NMTRAN‘ fails (checks of control stream prior to running
Nonmem), the ‘lst‘ file is not generated. Default is not to wait.

quiet Turn off some messages about what is going on? Default is to report the mes-
sages.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

NMsim 11

Value

A data set of class defined by as.fun

NMsim Simulate from an estimated Nonmem model

Description

Supply a data set and an estimation input control stream, and NMsim can create neccesary files
(control stream, data files), run the simulation and read the results. It has additional methods for
other simulation types available, can do multiple simulations at once and more. Please see vignettes
for an introduction to how to get the most out of this.

Usage

NMsim(
file.mod,
data,
dir.sims,
name.sim,
order.columns = TRUE,
script = NULL,
subproblems = NULL,
reuse.results = FALSE,
seed,
args.psn.execute,
table.vars,
table.options,
text.sim = "",
method.sim = NMsim_default,
execute = TRUE,
sge = FALSE,
nc = 1,
transform = NULL,
method.execute,
method.update.inits,
create.dirs = TRUE,
dir.psn,
list.sections,
sim.dir.from.scratch = TRUE,
col.row,
args.NMscanData,
path.nonmem = NULL,
nmquiet = FALSE,
as.fun,
suffix.sim,

12 NMsim

text.table,
system.type = NULL,
dir.res,
file.res,
wait,
quiet = FALSE,
check.mod = TRUE,
...

)

Arguments

file.mod Path(s) to the input control stream(s) to run the simulation on. The outpult con-
trol stream is for now assumed to be stored next to the input control stream and
ending in .lst instead of .mod. The .ext file must also be present. If simulating
known subjects, the .phi is necessary too.

data The simulation data as a data.frame.

dir.sims The directory in which NMsim will store all generated files. Default is to create
a folder called ‘NMsim‘ next to ‘file.mod‘.

name.sim Give all filenames related to the simulation a suffix. A short string describing
the sim is recommended like "ph3_regimens".

order.columns reorder columns by calling NMdata::NMorderColumns before saving dataset
and running simulations? Default is TRUE.

script The path to the script where this is run. For stamping of dataset so results can
be traced back to code.

subproblems Number of subproblems to use as SUBPROBLEMS in $SIMULATION block
in Nonmem. The default is subproblem=0 which means not to use SUBPROB-
LEMS.

reuse.results If simulation results found on file, should they be used? If TRUE and reading
the results fail, the simulations will still be rerun.

seed Seed to pass to Nonmem. Default is to draw one betwen 0 and 2147483647 (the
values supported by Nonmem) for each simulation. You can pass a function that
will be evaluated (say to choose a different pool of seeds to draw from). In case
type.sim=known, seed is not used and will be set to 1.

args.psn.execute

A charachter string that will be passed as arguments PSN’s ‘execute‘.

table.vars Variables to be printed in output table as a character vector or a space-separated
string of variable names. The default is to export the same tables as listed in the
input control stream. If table.vars is provided, all output tables in estimation
control streams are dropped and replaced by a new one with just the provided
variables. If many variables are exported, and much fewer are used, it can speed
up NMsim significantly to only export what is needed (sometimes this is as little
as "PRED IPRED"). Nonmem writes data slowly so reducing output data can
make a big difference in execution time. See table.options too.

table.options A character vector or a string of space-separated options. Only used if table.vars
is provided. If constructing a new output table with table.vars the default is to

NMsim 13

add two options, NOAPPEND and NOPRINT. You can modeify that with table.options.
Do not try to modify output filename - NMsim takes care of that.

text.sim A character string to be pasted into $SIMULATION. This must not contain
seed or SUBPROBLEM which are handled separately. Default is to include
"ONLYSIM". To avoid that, use text.sim="".

method.sim A function (not quoted) that creates the simulation control stream and other
necessary files for a simulation based on the estimation control stream, the data,
etc. The default is called NMsim_default which will replace any estimation
and covariance step by a simulation step. See details section on oter methods,
and see examples and especially vignettes on how to use the different provided
methods.

execute Execute the simulation or only prepare it? ‘execute=FALSE‘ can be useful if
you want to do additional tweaks or simulate using other parameter estimates.

sge Submit to cluster? Default is not to, but this is very useful if creating a large
number of simulations, e.g. simulate with all parameter estimates from a boot-
strap result.

nc Number of cores used in parallelization. This is so far only supported with
method.execute="psn".

transform A list defining transformations to be applied after the Nonmem simulations and
before plotting. For each list element, its name refers to the name of the column
to transform, the contents must be the function to apply.

method.execute Specify how to call Nonmem. Options are "psn" (PSN’s execute), "nmsim" (an
internal method similar to PSN’s execute), and "direct" (just run Nonmem di-
rectly and dump all the temporary files). "nmsim" has advantages over "psn" that
makes it the only supported method when type.sim="NMsim_known". "psn"
has the simple advantage that the path to nonmem does not have to be specified
if "execute" is in the system search path. So as long as you know where your
Nonmem executable is, "nmsim" is recommended. The default is "nmsim" if
path.nonmem is specified, and "psn" if not.

method.update.inits

The initial estimates must be updated from the estimated model before running
the simulation. NMsim supports two ways of doing this: "psn" which uses
PSN’s "update_inits", and "nmsim" which uses a simple internal method. The
advantage of "psn" is it keeps comments in the control stream and is a method
known to many. The advantages of "nmsim" are it does not require PSN, and
that it is very robust. "nmsim" fixes the whole OMEGA and SIGMA matrices
as single blocks making the $OMEGA and $SIGMA sections of the control
streams less easy to read. On the other hand, this method is robust because
it avoids any interpretation of BLOCK structure or other code in the control
streams.

create.dirs If the directories specified in dir.sims and dir.res do not exists, should it be cre-
ated? Default is TRUE.

dir.psn The directory in which to find PSN’s executables (’execute’ and ’update_inits’).
The default is to rely on the system’s search path. So if you can run ’execute’
and ’update_inits’ by just typing that in a terminal, you don’t need to specify this
unless you want to explicitly use a specific installation of PSN on your system.

14 NMsim

list.sections Named list of additional control stream section edits. Note, these can be func-
tions that define how to edit sections. This is an advanced feature which is not
needed to run most simulations. It is however powerful for some types of anal-
yses, like modifying parameter values. See vignettes for further information.
Documentation still under development.

sim.dir.from.scratch

If TRUE (default) this will wipe the simulation directory before running new
simulations. The directory that will be emptied is _not_ dir.sims where you may
keep many or all your simulations. It is the subdirectory named based on the
run name and name.sim. The reason it is advised to wipe this directory is that if
you in a previous simulation created simulation runs that are now obsolete, you
could end up reading those too when collecting the results. NMsim will delete
previously generated simulation control streams with the same name, but this
option goes further. An example where it is important is if you first ran 1000
replications, fixed something and now rand 500. If you choose FALSE here, you
can end up with the results of 500 new and 500 old simulations.

col.row Only used if data is not supplied (which is most likely for simulations for VPCs)
A column name to use for a row identifier. If none is supplied, NMdataConf()[['col.row']]
will be used. If the column already exists in the data set, it will be used as is, if
not it will be added.

args.NMscanData

If execute=TRUE&sge=FALSE, NMsim will normally read the results using NMreadSim.
Use this argument to pass additional arguments (in a list) to that function if you
want the results to be read in a specific way. This can be if the model for some
reason drops rows, and you need to merge by a row identifier. You would do
‘args.NMscanData=list(col.row="ROW")‘ to merge by a column called ‘ROW‘.
This is only used in rare cases.

path.nonmem The path to the Nonmem executable to use. The could be something like "/usr/local/NONMEM/run/nmfe75"
(which is a made up example). No default is available. You should be able to
figure this out through how you normally execute Nonmem, or ask a colleague.

nmquiet Silent messages from Nonmem.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

suffix.sim Deprecated. Use name.sim instead.

text.table A character string including the variables to export from Nonmem.

system.type A charachter string, either \"windows\" or \"linux\" - case insensitive. Windows
is only experimentally supported. Default is to use Sys.info()[["sysname"]].

dir.res Provide a path to a directory in which to save rds files with paths to results. De-
fault is to use dir.sims. After running ‘NMreadSim()‘ on these files, the original
simulation files can be deleted. Hence, providing both ‘dir.sims‘ and ‘dir.res‘
provides a structure that is simple to clean. ‘dir.sims‘ can be purged when ‘NM-
readSim‘ has been run and only small ‘rds‘ and ‘fst‘ files will be kept in ‘dir.res‘.
Notice, in case multiple models are simulated, multiple ‘rds‘ (to be read with
‘NMreadSim()‘) files will be created by default. In cases where multiple models
are simulated, see ‘file.res‘ to get just one file refering to all simulation results.

NMsim 15

file.res Path to an rds file that will contain a table of the simulated models. This is use-
ful for subsequently retrieving all the results using ‘NMreadSim()‘. The default
is to create a file called ‘NMsim_paths.rds‘ under the model simulation direc-
tory. However, if multiple models are simulated, this will result in multiple rds
files. Specifying a path ensures that one rds file containing information about all
simulated models will be created.

wait Wait for simulations to finish? Default is to do so if simulations are run locally
but not to if they are sent to the cluster. Waiting for them means that the results
will be read when simulations are done. If not waiting, path(s) to ‘rds‘ files to
read will be returned. Pass them through ‘NMreadSim()‘ (which also supports
waiting for the simulations to finish).

quiet If TRUE, messages from what is going on will be suppressed to the extend
implemented.

check.mod Check the provided control streams for contents that may cause issues for simu-
lation. Default is ‘TRUE‘, and it is only recommended to disable this if you are
fully aware of such a feature of your control stream, you know how it impacts
simulation, and you want to get rid of warnings.

... Additional arguments passed to method.sim.

Details

Loosely speaking, the argument method.sim defines _what_ NMsim will do, method.executes
define _how_ it does it. method.sim takes a function that converts an estimation control stream
into whatever should be run. Features like replacing ‘$INPUT‘, ‘$DATA‘, ‘$TABLE‘, and handling
seeds are NMsim features that are done in addition to the method.sim. Also the list.sections
argument is handled in addition to the method.sim. The subproblems and seed arguments are
available to all methods creating a $SIMULATION section.

Notice, the following functions are internally available to ‘NMsim‘ so you can run them by say
method.sim=NMsim_known without quotes. To see the code of that method, type NMsim_known.

• NMsim_default The default behaviour. Replaces any $ESTIMATION and $COVARIANCE
sections by a $SIMULATION section.

• NMsim_asis The simplest of all method. It does nothing (but again, NMsim handles ‘$INPUT‘,
‘$DATA‘, ‘$TABLE‘ and more. Use this for instance if you already created a simulation (or
estimation actually) control stream and want NMsim to run it on different data sets.

• NMsim_typical Like NMsim_default but with all ETAs=0, giving a "typical subject" simula-
tion. Do not confuse this with a "reference subject" simulation which has to do with covariate
values. Technically all ETAs=0 is obtained by replacing $OMEGA by a zero matrix.

• NMsim_known Simulates _known_ subjects, meaning that it reuses ETA values from estimation
run. This is what is refered to as emperical Bayes estimates. The .phi file from the estimation
run must be found next to the .lst file from the estimation.This means that ID values in the
(simulation) input data must be ID values that were used in the estimation too. Runs an
$ESTIMATION MAXEVAL=0 but pulls in ETAs for the ID’s found in data. No $SIMULATION step
is run which may affect how for instance residual variability is simulated, if at all.

• NMsim_VarCov Like NMsim_default but ‘$THETA‘, ‘$OMEGA‘, and ‘SIGMA‘ are drawn
from distribution estimated in covariance step. This means that a successful covariance step

16 NMsim_default

must be available from the estimation. In case the simulation leads to negative diagonal el-
ements in $OMEGA and $SIGMA, those values are truncated at zero. For simulation with
parameter variability based on bootstrap results, use NMsim_default.

Value

A data.frame with simulation results (same number of rows as input data). If ‘sge=TRUE‘ a char-
acter vector with paths to simulation control streams.

NMsim_asis Simulation method that uses the provided control stream as is

Description

The simplest of all method. It does nothing (but again, NMsim handles ‘$INPUT‘, ‘$DATA‘, ‘$TA-
BLE‘ and more. Use this for instance if you already created a simulation (or estimation actually)
control stream and want NMsim to run it on different data sets.

Usage

NMsim_asis(file.sim, file.mod, data.sim)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

Value

Path to simulation control stream

NMsim_default Transform an estimated Nonmem model into a simulation control
stream

Description

The default behaviour of NMsim. Replaces any $ESTIMATION and $COVARIANCE sections by a
$SIMULATION section.

NMsim_known 17

Usage

NMsim_default(
file.sim,
file.mod,
data.sim,
nsims = 1,
replace.sim = TRUE,
return.text = FALSE

)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

nsims Number of replications wanted. The default is 1. If greater, multiple control
streams will be generated.

replace.sim If there is a $SIMULATION section in the contents of file.sim, should it be
replaced? Default is yes. See the list.section argument to NMsim for how
to provide custom contents to sections with NMsim instead of editing the control
streams beforehand.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Character vector of simulation control stream paths

NMsim_known Known subject simulation method

Description

Simulates _known_ subjects, meaning that it reuses ETA values from estimation run. This is what
is refered to as emperical Bayes estimates. The .phi file from the estimation run must be found next
to the .lst file from the estimation.This means that ID values in the (simulation) input data must be
ID values that were used in the estimation too. Runs an $ESTIMATION MAXEVAL=0 but pulls in ETAs
for the ID’s found in data. No $SIMULATION step is run which may affect how for instance residual
variability is simulated, if at all.

Usage

NMsim_known(file.sim, file.mod, data.sim, file.phi, return.text = FALSE)

18 NMsim_typical

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

file.phi A phi file to take the known subjects from. The default is to replace the filename
extension on file.mod with .phi. A different .phi file would be used if you want
to reuse subjects simulated in a previous simulation.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Path to simulation control stream

NMsim_typical Typical subject simiulation method

Description

Like NMsim_default but with all ETAs=0, giving a "typical subject" simulation. Do not confuse
this with a "reference subject" simulation which has to do with covariate values. Technically all
ETAs=0 is obtained by replacing $OMEGA by a zero matrix.

Usage

NMsim_typical(file.sim, file.mod, data.sim, return.text = FALSE)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

return.text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Path to simulation control stream

NMsim_VarCov 19

NMsim_VarCov Simulate with parameter values sampled from a covariance step

Description

Like NMsim_default but ‘$THETA‘, ‘$OMEGA‘, and ‘SIGMA‘ are drawn from distribution esti-
mated in covariance step. This means that a successful covariance step must be available from the
estimation. In case the simulation leads to negative diagonal elements in $OMEGA and $SIGMA,
those values are truncated at zero. For simulation with parameter variability based on bootstrap
results, use NMsim_default.

Usage

NMsim_VarCov(file.sim, file.mod, data.sim, nsims = 1)

Arguments

file.sim See ?NMsim.

file.mod See ?NMsim.

data.sim See ?NMsim.

nsims Number of replications wanted. The default is 1. If greater, multiple control
streams will be generated.

Value

Character vector of simulation control stream paths

simPopEtas Generate a population based on a Nonmem model

Description

Generate a population based on a Nonmem model

Usage

simPopEtas(file.mod, N, seed, file.phi, as.fun)

20 unNMsimModTab

Arguments

file.mod Path to input control stream

N Number of subjects to generate

seed Optional seed. Will be passed to ‘set.seed‘. Same thing as running ‘set.seed‘
just before calling ‘simPopEtas()‘.

file.phi An optional phi file to write the generated subjects to.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

unNMsimModTab Remove NMsimModTab class and discard NMsimModTab meta data

Description

Remove NMsimModTab class and discard NMsimModTab meta data

Check if an object is ’NMsimModTab’

Basic arithmetic on NMsimModTab objects

Usage

unNMsimModTab(x)

is.NMsimModTab(x)

S3 method for class 'NMsimModTab'
merge(x, ...)

S3 method for class 'NMsimModTab'
t(x, ...)

S3 method for class 'NMsimModTab'
dimnames(x, ...)

S3 method for class 'NMsimModTab'
rbind(x, ...)

S3 method for class 'NMsimModTab'
cbind(x, ...)

Arguments

x an NMsimModTab object

... arguments passed to other methods.

unNMsimRes 21

Details

When ’dimnames’, ’merge’, ’cbind’, ’rbind’, or ’t’ is called on an ’NMsimModTab’ object, the
’NMsimModTab’ class is dropped, and then the operation is performed. So if and ’NMsimModTab’
object inherits from ’data.frame’ and no other classes (which is default), these operations will be
performed using the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’
or ’tbl’, their respective methods are used instead.

Value

x stripped from the ’NMsimModTab’ class

logical if x is an ’NMsimModTab’ object

An object that is not of class ’NMsimModTab’.

unNMsimRes Remove NMsimRes class and discard NMsimRes meta data

Description

Remove NMsimRes class and discard NMsimRes meta data

Check if an object is ’NMsimRes’

Basic arithmetic on NMsimRes objects

Usage

unNMsimRes(x)

is.NMsimRes(x)

S3 method for class 'NMsimRes'
merge(x, ...)

S3 method for class 'NMsimRes'
t(x, ...)

S3 method for class 'NMsimRes'
dimnames(x, ...)

S3 method for class 'NMsimRes'
rbind(x, ...)

S3 method for class 'NMsimRes'
cbind(x, ...)

Arguments

x an NMsimRes object
... arguments passed to other methods.

22 unNMsimRes

Details

When ’dimnames’, ’merge’, ’cbind’, ’rbind’, or ’t’ is called on an ’NMsimRes’ object, the ’NMsim-
Res’ class is dropped, and then the operation is performed. So if and ’NMsimRes’ object inherits
from ’data.frame’ and no other classes (which is default), these operations will be performed using
the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’ or ’tbl’, their
respective methods are used instead.

Value

x stripped from the ’NMsimRes’ class

logical if x is an ’NMsimRes’ object

An object that is not of class ’NMsimRes’.

Index

addEVID2, 2
addResVar, 3

cbind.NMsimModTab (unNMsimModTab), 20
cbind.NMsimRes (unNMsimRes), 21

dimnames.NMsimModTab (unNMsimModTab), 20
dimnames.NMsimRes (unNMsimRes), 21

genPhiFile, 5

inputArchiveDefault, 5
is.NMsimModTab (unNMsimModTab), 20
is.NMsimRes (unNMsimRes), 21

merge.NMsimModTab (unNMsimModTab), 20
merge.NMsimRes (unNMsimRes), 21

NMcreateDoses, 6
NMexec, 7
NMreadSim, 10
NMsim, 11
NMsim_asis, 16
NMsim_default, 16
NMsim_known, 17
NMsim_typical, 18
NMsim_VarCov, 19
NMsimModTabOperations (unNMsimModTab),

20
NMsimResOperations (unNMsimRes), 21

rbind.NMsimModTab (unNMsimModTab), 20
rbind.NMsimRes (unNMsimRes), 21

simPopEtas, 19

t.NMsimModTab (unNMsimModTab), 20
t.NMsimRes (unNMsimRes), 21

unNMsimModTab, 20
unNMsimRes, 21

23

	addEVID2
	addResVar
	genPhiFile
	inputArchiveDefault
	NMcreateDoses
	NMexec
	NMreadSim
	NMsim
	NMsim_asis
	NMsim_default
	NMsim_known
	NMsim_typical
	NMsim_VarCov
	simPopEtas
	unNMsimModTab
	unNMsimRes
	Index

