ReppDist Introduction
JB Duck-Mayr
2018-10-21

The Rcpp package provides a C++4 library to make it easier to use C++ with R. R and Rcpp provide
functions for a variety of statistical distributions. Several R packages make functions available to R for
additional statistical distributions. However, to access these functions from C++ code, a costly call to the R
functions must be made.!

ReppDist provides a C++ header-only library with functions for additional statistical distributions that
can be called from C++ when writing code using Rcpp or ReppArmadillo. Functions are available that
return NumericVectors as well as doubles, and for multivariate or matrix distributions, Armadillo vectors and
matrices.

ReppDist provides functions for the following distributions:

e the four parameter beta distribution

e the location-scale t distribution

¢ the truncated normal distribution

e the truncated t distribution

¢ a truncated location-scale t distribution
e the triangle distribution

e the multivariate normal distribution*

o the multivariate t distribution*

o the Wishart distribution™®

o the inverse Wishart distribution*

Distributions marked with an asterisk rely on RcppArmadillo.

After discussing how to include ReppDist headers into your code to use these functions, each function provided
by the package is listed (such that you can see the function and argument names, as well as the return and
argument types), with a brief explanation.

Including RccpDist in Your Code

ReppDist provides several header files you can include in your code. ReppDist.h includes all of them, as well
as Repp.h or ReppArmadillo.h as appropriate (see “Use Rpp, or ReppArmadillo?” below). So, in any C++
file you need to use functions from RcppDist, you can simply use

#include <RcppDist.h>

which will also take care of Repp(Armadillo) headers for you. You can alternatively pull in only the header(s)
you need; for example, if you only need functions for the four parameter beta distribution, you can just use

#include <4beta.h>

However, you'll then be responsible for pulling in Repp/ReppArmadillo headers as appropriate. The header
names that correspond to the various distributions are as follows:

1Some of the R packages alluded to have written these functions in C++ (in some cases using Rcpp). However, these packages
do not make such functions available as a header library for other package writers intending to make use of the functions in C++
code, thus the motivation for this package.

Distribution Header

Four Parameter Beta 4beta.h
Location-Scale t Ist.h
Truncated Normal truncnorm.h
Truncated t trunct.h
Truncated Location-Scale t trunclst.h
Triangle triangular.h
Multivariate Normal mvnorm.h
Multivariate t mvt.h

Wishart and Inverse Wishart wishart.h

Using Rcpp, or RcppArmadillo?

Including ReppDist.h by default will pull in the ReppArmadillo headers (and therefore the Repp headers),
as well as the ReppDist headers. If you would prefer to use Repp but not ReppArmadillo (i.e. include the
Repp headers but not the ReppArmadillo headers), include the line

#define RCPPDIST DONT USE_ARMA

before any inclusion of RcppDist.h, though this will make the asterisked (multivariate and Wishart)
distributions unavailable.

Using RcppDist in a Package
With Rcpp

To use ReppDist in a package that does not link to ReppArmadillo, you must

e Set up your package to use Rcpp, such as via Rcpp::Rcpp.package.skeleton(your_package) or
devtools: :use_rcpp(your_package).?

e Add ReppDist to the LinkingTo field of your DESCRIPTION file.

o In any C++ file that calls a RcppDist function, add #include <RcppDist.h> (or a more specific
header from the package such as 1st.h and Rcpp.h)

e Remember to define RCPPDIST_DONT_USE_ARMA before any include of RcppDist.h.

With RcppArmadillo

To use RcppDist in a package that links to ReppArmadillo, you must

e Set up your package to use RcppArmadillo, such as via
RcppArmadillo: :RcppArmadillo.package.skeleton(your_package) 3

e Add ReppDist to the LinkingTo field of your DESCRIPTION file.

e In any C++ file that calls a ReppDist function, add #include <RcppDist.h> (or a more specific
header from the package such as mvt.h and RcppArmadillo.h)

2See the Repp-package vignette from Repp for more details.
3See the RcppArmadillo manual or help files for more details, in particular the ‘ReppArmadillo-package’ and ‘ReppAr-
madillo.package.skeleton’ entries.

Using RcppDist in a Standalone file
With Rcpp

If you are using ReppDist in a standalone file (i.e., not as part of a package), and you don’t want to pull in
the Armadillo headers, you’ll need

#define RCPPDIST_DONT USE_ARMA

#include <RcppDist.h>

// [[Repp: :depends (ReppDist)]]

at the top of your file. If you want to pull in just one or more of the distribution specific headers, you won’t
need the define, but don’t forget to also include Rcpp.h; as an example:

#include <Rcpp.h>

#include <triangular.h>

// [[Rcpp::depends (RcppDist)]]

With RcppArmadillo

If you are using ReppDist in a standalone file (i.e., not as part of a package), and you do want the Armadillo
headers, you’ll need

#include <RcppDist.h>
// [[Recpp::depends (RcppArmadillo, RcppDist)]]

at the top of your file. If you want to pull in just one or more of the distribution specific headers, don’t forget
to also include RcppArmadillo.h; as an example:

#include <RcppArmadillo.h>

#include <mvnorm.h>

// [[Recpp::depends (RcppArmadillo, RcppDist)]]

RcppDist Functions

Much like distributions in R, functions are prefixed by d, p, q, and r to mean density, distribution, quantile,
and random number generating functions respectively. Functions that return a double rather than, say, a
NumericVector are instead prefixed by d_, p_, q , and r_. Below are more detailed descriptions of the
functions provided by each header.

4beta.h (Four Parameter Beta Distribution)

The four parameter beta distribution is a beta distribution supported over an interval [a, b] rather than only
[0,1]. The functions provided in this header are:

Rcpp: :NumericVector débeta(Rcpp: :NumericVector& x,
double shapel, double shape2, double a,
double b, bool log_p = false)

Rcpp: :NumericVector pébeta(Rcpp: :NumericVector& q,
double shapel, double shape2, double a,
double b, bool lower_tail = true,

bool log_p = false)

Rcpp: :NumericVector gébeta(Rcpp: :NumericVector& p,
double shapel, double shape2, double a,
double b, bool lower_tail = true,
bool log_p = false)

Rcpp: :NumericVector rébeta(int n, double shapel,
double shape?2, double a, double b)

double d_4beta(double x, double shapel, double shape2,
double a, double b, int log_p = 0)

double p_4betal(double q, double shapel, double shape2,
double a, double b, int lower_tail =1,

int log_p = 0)

double g_4beta(double p, double shapel, double shape2,
double a, double b, int lower_tail = 1,
int log_p = 0)

double r_4beta(double shapel, double shape2, double a,
double b)

Where

o x and q are quantiles (either a single value or a vector depending)

e p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e shapel and shape?2 are the positive shape parameters of the Beta distribution

e a and b are the minimum and maximum values of the distribution respectively

o log_p is a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

Ist.h (Location-Scale t Distribution)

The location-scale t distribution is a t distribution shifted by a location parameter p and scaled by a scaling
parameter o. The functions provided in this header are:

Rcpp: :NumericVector dlst(Rcpp: :NumericVector& x, double df,
double mu, double sigma, bool log_p = false)

Rcpp: :NumericVector plst(Rcpp: :NumericVector& q, double df,
double mu, double sigma, bool lower_tail = true,

bool log_p = false)

Rcpp: :NumericVector glst(Rcpp: :NumericVector& p, double df,
double mu, double sigma, bool lower_tail = true,
bool log_p = false)

Rcpp: :NumericVector rlst(int n, double df, double mu,
double sigma)

double d_1st(double x, double df, double mu,
double sigma, int log_p = 0)

double p_lst(double q, double df, double mu,

double sigma, int lower_tail = 1, int log_p = 0)
double q_lst(double p, double df, double mu,

double sigma, int lower_tail = 1, int log_p = 0)
double r_1st(double df, double mu, double sigma)

Where

o x and q are quantiles (either a single value or a vector depending)

« p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e df is the positive degrees of freedom

o mu is the location/shifting parameter

e sigma is the scaling parameter

o log_p is a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

truncnorm.h (Truncated Normal Distribution)

The truncated normal distribution is a normal distribution supported over an interval [a, b] rather than
(—00,00). The functions provided in this header are:

Rcpp: :NumericVector dtruncnorm(Rcpp: :NumericVector& x,
double mu, double sigma, double a, double b,
bool log_p = false)

Rcpp: :NumericVector ptruncnorm(Rcpp: :NumericVector& x,
double mu, double sigma, double a, double b,
bool lower_tail = true, bool log_p = false)

Rcpp: :NumericVector gtruncnorm(Rcpp: :NumericVector& p,
double mu, double sigma, double a, double b,
bool lower_tail = true, bool log_p = false)

Rcpp: :NumericVector rtruncnorm(int n, double mu,
double sigma, double a, double b)

double d_truncnorm(double x, double mu, double sigma,
double a, double b, int log_p = 0)

double p_truncnorm(double x, double mu, double sigma,
double a, double b, int lower_tail =1,
int log_p = 0)

double g_truncnorm(double p, double mu, double sigma,
double a, double b, int lower_tail = 1,
int log_p = 0)

double r_truncnorm(double mu, double sigma, double a,

double b)

Where

o x and q are quantiles (either a single value or a vector depending)

e p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e mu is the mean of the distribution

e sigma is the standard deviation

e a and b are the minimum and maximum values of the distribution respectively

o log_p is a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

trunct.h (Truncated t Distribution)

The truncated t distribution is a t distribution supported over an interval [a, b] rather than (—oo, 00). The
functions provided in this header are:

Rcpp: :NumericVector dtrunct(Rcpp: :NumericVector& x,
double df, double a, double b,
bool log_p = false)

Rcpp: :NumericVector ptrunct(Rcpp: :NumericVector& x,
double df, double a, double b,
bool lower_tail = true, bool log_p = false)
Rcpp: :NumericVector qtrunct(Rcpp: :NumericVector& p,
double df, double a, double b,
bool lower_tail = true, bool log_p = false)
Rcpp: :NumericVector rtrunct(int n, double df,
double a, double b)
double d_trunct(double x, double df, double a,
double b, int log_p = 0)
double p_trunct(double x, double df, double a,
double b, int lower_tail = 1, int log_p = 0)
double g_trunct(double p, double df, double a,
double b, int lower_tail = 1, int log_p = 0)
double r_trunct(double df, double a, double b)
Where

o x and q are quantiles (either a single value or a vector depending)

e p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e df is the positive degrees of freedom

e a and b are the minimum and maximum values of the distribution respectively

o log_pis a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

trunclst.h (Truncated Location-Scale t Distribution)

The truncated location-scale t distribution is a location-scale t distribution supported over an interval [a, b]
rather than (—o0, 00). The functions provided in this header are:

Rcpp: :NumericVector dtrunclst(Rcpp: :NumericVector& x,

double df, double mu, double sigma, double a,
double b, bool log_p = false)

Rcpp: :NumericVector ptrunclst(Rcpp: :NumericVector& x,
double df, double mu, double sigma, double a,
double b, bool lower_tail = true,

bool log_p = false)

Rcpp: :NumericVector gtrunclst(Rcpp: :NumericVector& p,
double df, double mu, double sigma, double a,
double b, bool lower_tail = true,

bool log_p = false)

Rcpp: :NumericVector rtrunclst(int n, double df,

double mu, double sigma, double a, double b)
double d_trunclst(double x, double df, double mu,

double sigma, double a, double b,

int log_p = 0)

double p_trunclst(double x, double df, double mu,
double sigma, double a, double b,
int lower_tail = 1, int log_p = 0)

double g_trunclst(double p, double df, double mu,
double sigma, double a, double b,
int lower_tail = 1, int log_p = 0)

double r_trunclst(double df, double mu, double sigma,
double a, double b)

Where

o x and q are quantiles (either a single value or a vector depending)

e p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e df is the positive degrees of freedom

o mu is the location/shifting parameter

o sigma is the scaling parameter

e a and b are the minimum and maximum values of the distribution respectively

o log_p is a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

triangular.h (Triangle Distribution)

The triangle (or triangular) distribution is supported over an interval [a,b] with a mode ¢; as the name
suggests, the density function is shaped like a triangle with vertices at a, b, and ¢. The functions provided in
this header are:

double d_tri(double x, double a, double b,
double c, int log_p = 0)
double p_tri(double x, double a, double b,

double c, int lower_tail = 1, int log_p = 0)

double g_tri(double p, double a, double b,
double c, int lower_tail = 1, int log_p = 0)

double r_tri(double a, double b, double c)

Rcpp: :NumericVector dtri(Rcpp: :NumericVector& x, double a,
double b, double c, bool log_p = false)

Rcpp: :NumericVector ptri(Rcpp: :NumericVector& x, double a,
double b, double c, bool lower_tail = true,
bool log_p = false)

Rcpp: :NumericVector qtri(Rcpp: :NumericVector& p, double a,
double b, double c, bool lower_tail = true,
bool log_p = false)

Rcpp: :NumericVector rtri(int n, double a, double b,

double c)

Where

o x and g are quantiles (either a single value or a vector depending)

e p is a single probability or a vector of probabilities

e n is the numer of observations to draw

e a and b are the minimum and maximum values of the distribution respectively

e c is the mode of the distribution

o log_p is a bool or int (the default is false/0); if true (or > 0), the probabilities are given as log(p)
o lower_tail is a bool or int; if true (or > 0), the probabilities are P[X < z], otherwise, P[X > z].

mvnorm.h (Multivariate Normal Distribution)

The multivariate normal distribution is a generalization of the normal distribution to multiple dimensions.
Then each draw is a vector, the mean parameter y is a vector, and rather than a scalar standard deviation
parameter o, we have a covariance matrix ¥ (or here denoted S). The functions provided in this header are:

arma::vec dmvnorm(arma::mat& x, arma: :vec& mu,
arma: :mat& S, bool log_p = false)
arma::mat rmvnorm(arma::uword n, arma::vec& mu,

arma::mat& S)

Where

e x is a matrix of quantiles, such that each row is a quantile

e 1 is the numer of observations to draw

e mu is the mean vector

e S is the covariance matrix

e log_pis a bool (the default is false); if true, the probabilities are given as log(p)

mvt.h (Multivariate t Distribution)

The multivariate t distribution is a generalization of the t distribution to multiple dimensions. Then each
draw is a vector, and in addition to the degrees of freedom, we have a correlation matrix ¥ (or here denoted
S), and this implementation allows for a location vector p. The functions provided in this header are:

arma: :vec dmvt(arma: :mat& x, arma: :vec& mu,

arma: :mat& S, double df, bool log_p = false)
arma: :mat rmvt(arma: :uword n, arma: :vec& mu,

arma: :mat& S, double df)
Where

e x is a matrix of quantiles, such that each row is a quantile

e 1 is the numer of observations to draw

e mu is the location vector

e S is the correlation matrix

o log_p is a bool (the default is false); if true, the probabilities are given as log(p)

wishart.h (Wishart and Inverse Wishart Distributions)

The Wishart distribution is a generalization of the gamma distribution to multiple dimensions defined over
symmetric, nonnegative-definite random matrices. Its parameters are the degrees of freedom and a scale
matrix S. If X ~ Wishart(df, S), then X! ~ Inverse Wishart(df, S~!). Due to their use in the density
functions for these distributions, a multivariate gamma function and logged multivariate gamma function
are also provided. Note that for now, all functions for this distribution are designed to deal with only one
random matrix. The functions provided in this header are:

double mvgamma (int p, double x)
double lmvgamma (int p, double x)
double dwish(arma: :mat& X, int df, arma: :mat& S,

bool log_p = false)
arma: :mat rwish(int df, arma: :mat& S)

double diwish(arma: :mat& X, int df, arma: :mat& S,
bool log_p = false)

arma::mat riwish(int df, arma: :mat& S)

Where

e p and x are the arguments to the multivariate gamma function

e X is a matrix, a draw from the Wishart or Inverse Wishart distribution

e df is the degrees of feedom

o S is the scale matrix

e log_pis a bool (the default is false); if true, the probabilities are given as log(p)

	Including RccpDist in Your Code
	Using Rcpp, or RcppArmadillo?
	Using RcppDist in a Package
	With Rcpp
	With RcppArmadillo

	Using RcppDist in a Standalone file
	With Rcpp
	With RcppArmadillo

	RcppDist Functions
	4beta.h (Four Parameter Beta Distribution)
	lst.h (Location-Scale t Distribution)
	truncnorm.h (Truncated Normal Distribution)
	trunct.h (Truncated t Distribution)
	trunclst.h (Truncated Location-Scale t Distribution)
	triangular.h (Triangle Distribution)
	mvnorm.h (Multivariate Normal Distribution)
	mvt.h (Multivariate t Distribution)
	wishart.h (Wishart and Inverse Wishart Distributions)

