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Abstract

Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs
(1954), are a generalization of the well-known Markov models. For semi-Markov models,
sojourn times can be arbitrarily distributed, while sojourn times of Markov models are con-
strained to be exponentially distributed (in continuous time) or geometrically distributed
(in discrete time). The aim of this paper is to present the R package SMM, devoted to the
simulation and estimation of discrete-time multi-state semi-Markov and Markov models. For
the semi-Markov case we have considered: parametric and non-parametric estimation; with
and without censoring at the beginning and/or at the end of sample paths; one or several
independent sample paths. Several discrete-time distributions are considered for the para-
metric estimation of sojourn time distributions of semi-Markov chains: Uniform, Geometric,
Poisson, Discrete Weibull and Binomial Negative.

Keywords: Markov models, semi-Markov models, discrete time, censoring, R package, parametric
and non-parametric estimation, AIC, BIC.

1. Introduction

Semi-Markov models, independently introduced by Lévy (1954), Smith (1955) and Takacs (1954),
are a generalization of the well-known Markov models. For semi-Markov models, sojourn times
can be arbitrarily distributed, while sojourn times of Markov models are constrained to be
exponentially distributed (in continuous time) or geometrically distributed (in discrete time).
For this reason, semi-Markov processes are more general and more adapted for applications than
the Markov processes.

Semi-Markov processes have become important tools in probability and statistical modelling
with applications in various domains like survival analysis, biology, reliability, DNA analysis,
insurance and finance, earthquake modelling, meteorology studies, etc.; see, e.g., Sansom and
Thomson (2001), Heutte and Huber-Carol (2002), Ouhbi and Limnios (2003), Chryssaphinou,
Karaliopoulou, and Limnios (2008), Janssen and Manca (2006), Bulla and Bulla (2006), Votsi,
Limnios, Tsaklidis, and Papadimitriou (2012), D’Amico, Petroni, and Prattico (2013), Votsi,
Limnios, Tsaklidis, and Papadimitriou (2014), D’Amico, Manca, Corini, Petroni, and Prattico
(2016), Barbu, Karagrigoriou, and Makrides (2016), D’Amico, Janssen, and Manca (2016).

Note that the semi-Markov theory is developed mainly in a continuous-time setting, while much
less works address the discrete-time case. We refer the reader to Limnios and Oprişan (2001)
for continuous-time framework and to Barbu and Limnios (2008b) and references therein for
discrete-time framework. The R (R Core Team 2017) package SMM that we present in this
paper is developed in discrete time. Note that undertaking works also in discrete time (modelling
stochastic tools, associated estimation procedures, corresponding software, etc.) is an important
matter for several reasons. In our opinion, the most relevant of these reasons is that the time scale
is intrinsically discrete in several applications. For instance, in DNA studies, when modelling
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a nucleotide or protein sequence by means of a stochastic process, the “time” of that process
is in fact the position along the sequence, so it is discrete. Other examples are encountered in
some reliability/survival analysis applications where the time represents the number of cycles
of a system or the counting of days/hours/etc. We can argue further for the importance of
developing works also in discrete time (in parallel to their analogous developed in continuous
time), by mentioning the simplicity of computations in discrete time, the fact that a discrete-time
stochastic process does not explode, the potential use of discrete processes after the discretization
of continuous ones, etc.

Few R packages have been developed to handle semi-Markov models or hidden semi-Markov
models. For semi-Markov models we have the recent semiMarkov R package (Król and Saint-
Pierre 2015) that performs maximum likelihood estimation for parametric continuous-time semi-
Markov processes, where the distribution can be chosen between Exponential, Weibull or expo-
nentiated Weibull. That package computes associated hazard rates; covariates can also be taken
into account through the Cox proportional hazard model. Two R packages are also dedicated
to hidden semi-Markov models, implementing estimation and prediction methods: the hsmm R
package (Bulla, Bulla, and Nenadić 2010) and the mhsmm R package (O’Connell and Højsgaard
2011).

Note that there is no R package developed for discrete-time multi-state semi-Markov models.
Thus the purpose of this paper is to present an R package that we have developed, called
SMM, which performs parametric and non-parametric estimation and simulation for multi-state
discrete-time semi-Markov processes. For the parametric estimation, several discrete distribu-
tions are considered for the sojourn times: Uniform, Geometric, Poisson, Discrete Weibull and
Negative Binomial. The non-parametric estimation concerns the sojourn time distributions,
where no assumptions are done on the shape of distributions. Moreover, the estimation can be
done on the basis of one or several trajectories, with or without censoring. The aim of this paper
is to describe the different possibilities of this package. To summarize, the package SMM that
we present deals with different problems:

� Parametric estimation for sojourn time distributions (Uniform, Geometric, Poisson, Dis-
crete Weibull and Negative Binomial) or non-parametric estimation;

� One or several sample paths;

� Four different types of sojourn times: a general one depending on the current state and on
the next state to be visited, one depending only on the next state, one depending only on
the current state, and one depending neither on the current state nor on the next state;

� Four different types of censoring: censoring at the beginning of sample paths, censoring at
the end of sample paths, censoring at the beginning and at the end or no censoring at all.

Several remarks need to be done here.

First, concerning the censoring, the simplest situation is the one when all the sojourn times are
completely observed (non censored). A more complicated and realistic framework is when the last
sojourn time is not completely observed, thus being right censored; in most practical situations
this case occurs. An analogous situation is when the first sojourn time is not completely observed,
thus being also right censored. In practice, this case occurs when one does not know the beginning
of a phenomenon modelled by a semi-Markov chain. The most complete framework is when both
the first and the last sojourn times are right censored. Details on parametric estimation of semi-
Markov chains can be found in Barbu, Bérard, Cellier, Sautreuil, and Vergne (2017).

Second, when considering estimation starting* from several independent sample paths of a semi-
Markov chain, it is assumed that all the trajectories are censored in the same way; note that this
is not a real constraint, but we imposed this condition only in order to avoid useless technical
notations that would make the comprehension more difficult.

Third, note that it is important for the four types of models (of sojourn times) to be considered
separately because: (i) in practical situations, one model could be more adapted than some
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other; (ii) different models will yield specific parameter estimators, so it is important to study
them separately.

The paper is organized as follows. Section 2 describes the semi-Markov models used in this
package. Section 3 illustrates the different functions of the SMM package. We end the paper by
presenting some concluding remarks on this R package in Section 4.

The SMM package is available from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/web/packages/SMM/.

2. Semi-Markov models

Let us consider a random system with finite state space E = {1, . . . , s}, s < ∞. Let (Ω,A,P)
be a probability space and assume that the time evolution of the system is governed by a
stochastic process Y = (Yk)k∈N∗ , defined on (Ω,A,P) with values in E; that is to say that Yk
gives the state of the system at time k. Let T = (Tm)m∈N∗ , defined on (Ω,A,P) with values
in N, be the successive time points when state changes in (Yk)k∈N∗ occur (the jump times)
and let also J = (Jm)m∈N∗ , defined on (Ω,A,P) with values in E, be the successively visited
states at these time points. The relation between the process Y and the process J of the suc-
cessively visited states is given by Yk = JN(k), or, equivalently, Jm = YTm ,m, k ∈ N, where
N(k) := max{m ∈ N | Tm ≤ k} is the discrete-time counting process of the number of jumps in
[1, k] ⊂ N.

In this paper we consider four different semi-Markov models corresponding to the following four
types of sojourn times.

� Sojourn times depending on the current state and on the next state:

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j);

� Sojourn times depending only on the current state:

fi•(k) = P(Tm+1 − Tm = k|Jm = i);

� Sojourn times depending only on the next state to be visited:

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j);

� Sojourn times depending neither on the current state nor on the next state:

f(k) = P(Tm+1 − Tm = k).

Note that the sojourn times of the type fi•(·), f•j(·) or f(·) are particular cases of the general
type fij(·). Nonetheless, in some specific applications, particular cases can be important because
adapted to the phenomenon under study; that is the reason why we investigate these cases
separately.

https://cran.r-project.org/web/packages/SMM/
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2.1. General case: sojourn times of the type fij(.)

Definition 1 (semi-Markov chain SMC and Markov renewal chain MRC) If we have

P(Jm+1 = j, Tm+1 − Tm = k|Jm = i, Jm−1, . . . , J1, Tm, . . . , T1)

= P(Jm+1 = j, Tm+1 − Tm = k|Jm = i), (1)

then Y = (Yk)k is called a semi-Markov chain (SMC) and (J, T ) = (Jm, Tm)m is called a Markov
renewal chain (MRC).

All along this paper we assume that the MRC or SMC are homogeneous with respect to the
time in the sense that Equation (1) is independent of m.

Note that if (J, T ) is a MRC, then it can be proved that J = (Jm)m∈N∗ is a Markov chain with
state space E, called the embedded Markov chain of the MRC (J, T ) (or of the SMC Y ).

Definition 2 For a semi-Markov chain we define:

� the semi-Markov kernel (qij(k))i,j∈E,k∈N,

qij(k) = P(Jm+1 = j, Tm+1 − Tm = k|Jm = i);

� the initial distribution (µi)i∈E ,

µi = P(J1 = i) = P(Y1 = i);

� the transition matrix (pij)i,j∈E of the embedded Markov chain J = (Jm)m,

pij = P(Jm+1 = j|Jm = i);

� the conditional sojourn time distributions (fij(k))i,j∈E,k∈N,

fij(k) = P(Tm+1 − Tm = k|Jm = i, Jm+1 = j).

Note that

qij(k) = pijfij(k). (2)

Clearly, a semi-Markov chain is uniquely determined a.s. by an initial distribution (µi)i∈E and a
semi-Markov kernel (qij(k))i,j∈E,k∈N or, equivalently, by an initial distribution (µi)i∈E , a Markov
transition matrix (pij)i,j∈E and conditional sojourn time distributions (fij(k))i,j∈E,k∈N.

Another assumptions we do are: (i) We do not allow transitions to the same state, i.e., pii = 0
for all i ∈ E, or equivalently qii(k) = 0, for all i ∈ E, k ∈ N; (ii) We assume that there are not
instantaneous transitions, that is qij(0) ≡ 0 or equivalently fij(0) ≡ 0 for all i, j ∈ E; note that
this implies that T is a strictly increasing sequence.

For the conditional sojourn time distributions, one can consider the associated cumulative dis-
tribution function defined by

Fij(k) := P(Tm+1 − Tm ≤ k|Jm = i, Jm+1 = j) =
k∑
t=1

fij(t).

For any distribution function F (·) we can consider the associated survival/reliability function
defined by

F (k) := 1− F (t).
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Consequently we have

F ij(k) := P(Tm+1 − Tm > k|Jm = i, Jm+1 = j) = 1−
k∑
t=1

fij(t) =
∞∑

t=k+1

fij(t).

2.2. Particular cases: sojourn times of the type fi.(.), f.j(.) and f(.)

We have considered up to here general semi-Markov models with the semi-kernel of the type given
in (2). Particular types of this semi-Markov model can be taken into account, by considering
particular cases of holding time distributions fij(k), where this distributions depend only on
the current state i, or only on the next state j, or neither on i nor on j. For each case, let
us define the semi-Markov kernel and the distribution function associated to the sojourn time
distribution.

� Sojourn times depending only on the current state:

qij(k) := pijfi•(k), where (3)

fi•(k) = P(Tm+1 − Tm = k|Jm = i) =
∑
v∈E

pivfiv(k),

Fi•(k) := P(Tm+1 − Tm ≤ k|Jm = i) =
k∑
t=1

fi•(t) =
k∑
t=1

∑
v∈E

pivfiv(t).

� Sojourn times depending only on the next state:

qij(k) := pijf•j(k), where (4)

f•j(k) = P(Tm+1 − Tm = k|Jm+1 = j),

F•j(k) := P(Tm+1 − Tm ≤ k|Jm+1 = j) =

k∑
t=1

f•j(t).

� Sojourn times depending neither on the current state nor on the next state:

qij(k) := pijf(k), where (5)

f(k) = P(Tm+1 − Tm = k).

F (k) := P(Tm+1 − Tm ≤ k) =
k∑
t=1

f(t).

We also denote the associated survival/reliability functions respectively by F i•(k), F •j(k), F (k).

3. The SMM package

The SMM R package is principally devoted to the simulation and estimation of discrete-time
semi-Markov models in different cases by the two following functions:

� simulSM() for the simulation of sequences from a semi-Markov model (Section 3.1):

– One or several trajectories

– According to classical distributions for the sojourn times (Uniform, Geometric, Pois-
son, Discrete Weibull and Negative Binomial) or according to distributions given by
the user



6 SMM: Estimation and simulation of semi-Markov models

– Four different types of censoring mechanisms: censoring at the beginning of sample
paths, censoring at the end, censoring at the beginning and at the end, no censoring

– Four different types of sojourn times: depending on the current state and on the
next state, depending only on the current state, depending only on the next state,
depending neither on the current state nor on the next state

� estimSM() for the estimation of model parameters (Section 3.2);

– One or several trajectories

– Parametric (Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial)
or non-parametric distributions for the sojourn times

– Four different types of censoring mechanisms: censoring at the beginning of sample
paths, censoring at the end, censoring at the beginning and at the end, no censoring

– Four different types of sojourn times: depending on the current state and on the
next state, depending only on the current state, depending only on the next state,
depending neither on the current state nor on the next state

The SMM R package is also devoted to the simulation and estimation of discrete-time Markov
models by the two following functions:

� simulMk() for the simulation of sequences from a kth order Markov model;

� estimMk() for the estimation of the parameters of the model.

All the different possibilities of the package are illustrated in Figure 1.

Figure 1: Schema of the SMM package.
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3.1. Simulation of semi-Markov models

3.1.1 Simulation according to classical distributions

In this part, we will consider the simulation according to classical distributions.

Parameters: This simulation is carried out by the function simulSM(). The different pa-
rameters of the function are:

� E: Vector of state space of length S

� NbSeq: Number of simulated sequences

� lengthSeq: Vector containing the lengths of each simulated sequence

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� init: Vector of initial distribution of length S

� Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
size S × S

� distr: Sojourn time distributions:

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull"
or "nbinom".

� param: Parameters of sojourn time distributions:

– is an array of parameters of size S × S × 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S × 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

� cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time
is censored) or 0 (if not). All the sequences must be censored in the same way.

� cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

� File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is
created

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend on the current state and
on the next state.

## state space

E = c("a","c","g","t")

S = length(E)

## sequence sizes

lengthSeq3 = c(1000, 10000, 2000)

## creation of the initial distribution

vect.init = c(1/4,1/4,1/4,1/4)
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## creation of transition matrix

Pij = matrix(c(0 ,0.2 ,0.3 ,0.4 ,0.2 ,0 ,0.5 ,0.2 ,0.5 ,0.3 ,0 ,0.4 ,0.3 ,0.5 ,0.2 ,0) ,

ncol =4)

## creation of the distribution matrix

distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",

"pois", "pois", "dweibull", "geom",

"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)

## creation of an array containing the parameters

param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,

2,3,0.6,0.6,4,0.3,0.4,4),

nrow = S, ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,

0,0,0.8,0,4,0,0,4),

nrow = S, ncol = S, byrow = TRUE)

param.array = array(c(param1.matrix , param2.matrix), c(S,S,2))

## simulation of 3 sequences

seq3 = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fij", init = vect.init ,

Ptrans = Pij , distr = distr.matrix , param = param.array ,

File.out = "seq3.txt")

## for the reproducibility of the results

seq3 = read.fasta("seq3.txt")

First, note that in this simulation, the parameters cens.beg and cens.end are equal to 0, that
is to say the simulated sequences are not censored.

Second, note also that the parameters of the distributions are given in the following way: for
example, f13(·) is Geometric distribution with parameter 0.4, while f14(·) is Negative Binomial
with parameters 4 and 2. In other words, the parameters of f13(·) are given in the vector
param.array[1,3,] that is equal to (0.4, 0) and the parameters of f14(·) are given in the
vector param.array[1,4,] that is equal to (4, 2); that means that if a distribution has only
1 parameter, the corresponding vector of parameters will have 0 on the second position.

Values: The function simulSM() returns a list of simulated sequences. These sequences can
be saved in a fasta file by using the parameter File.out.

seq3 [[1]][1:15]

[1] "c" "t" "g" "a" "a" "g" "t" "t" "t" "t" "a" "a" "a" "g" "g"

3.1.2 Simulation according to distributions given by the user

Now we will consider the simulation according to distributions given by the user.

Parameters: This simulation is carried out by the function simulSM(). The different pa-
rameters of the function are:

� E: Vector of state space of length S

� NbSeq: Number of simulated sequences

� lengthSeq: Vector containing the lengths of each simulated sequence

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� init: Vector of initial distribution of length S
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� Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
size S × S

� laws: Sojourn time distributions introduced by the user:

– is an array of size S × S ×Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S ×Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

� cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time
is censored) or 0 (if not). All the sequences must be censored in the same way.

� cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

� File.out: Name of fasta file for saving the sequences; if File.out = NULL, no file is
created.

The R commands below generate three sequences of size 1000, 10000 and 2000 respectively with
the finite state space E = {a, c, g, t}, where the sojourn times depend only on the next state.

## state space

E = c("a","c","g","t")

S = length(E)

## sequence sizes

lengthSeq3 = c(1000, 10000, 2000)

## creation of the initial distribution

vect.init = c(1/4,1/4,1/4,1/4)

## creation of transition matrix

Pij = matrix(c(0 ,0.2 ,0.3 ,0.4 ,0.2 ,0 ,0.5 ,0.2 ,0.5 ,0.3 ,0 ,0.4 ,0.3 ,0.5 ,0.2 ,0) ,

ncol =4)

## creation of a matrix corresponding to the conditional

## sojourn time distributions

Kmax = 6

nparam.matrix = matrix(c(0.2 ,0.1 ,0.3 ,0.2 ,0.2 ,0 ,0.4 ,0.2 ,0.1 ,

0 ,0.2 ,0.1 ,0.5 ,0.3 ,0.15 ,0.05 ,0 ,0 ,

0.3 ,0.2 ,0.1 ,0.2 ,0.2 ,0) ,

nrow = S, ncol = Kmax , byrow = TRUE)

## simulation of 3 sequences with censoring at the beginning

seqNP3_begin = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fj", init = vect.init , Ptrans = Pij ,

laws = nparam.matrix , File.out = "seqNP3_begin.txt",

cens.beg = 1, cens.end = 0)

## simulation of 3 sequences with censoring at the end

seqNP3_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fj", init = vect.init , Ptrans = Pij ,

laws = nparam.matrix , File.out = "seqNP3_end.txt",

cens.beg = 0, cens.end = 1)

## simulation of 3 sequences censored at the beginning and at the end

seqNP3_begin_end = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fj", init = vect.init , Ptrans = Pij ,

laws = nparam.matrix , File.out = "seqNP3_begin_end.txt",

cens.beg = 1, cens.end = 1)

## simulation of 3 sequences without censoring

seqNP3_no = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fj", init = vect.init , Ptrans = Pij ,

laws = nparam.matrix , File.out = "seqNP3_no.txt")

## for the reproducibility of the results

seqNP3_begin = read.fasta("seqNP3_begin.txt")

seqNP3_end = read.fasta("seqNP3_end.txt")

seqNP3_begin_end = read.fasta("seqNP3_begin_end.txt")
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seqNP3_no = read.fasta("seqNP3_no.txt")

seqNP3_begin [[1]][1:15]

Note that in this simulation all the different censoring are considered.

Values: The function simulSM() returns a list of simulated sequences. These sequences can
be saved in a fasta file by using the parameter File.out.

seqNP3_begin [[1]][1:15]

[1] "t" "g" "a" "g" "g" "g" "g" "a" "a" "a" "a" "t" "a" "g" "g"

3.2. Estimation of semi-Markov models

In this subsection we explain and illustrate the estimation of a semi-Markov model in the para-
metric case and non-parametric case.

3.2.1 Parametric estimation of semi-Markov models
We will consider the distributions fij(k) = fij(k; θij) depending on unknown parameters θij ∈
Rmij , where the dimension of parameters set mij is known; no assumptions is done on (pij)ij .
From data, we want to estimate pij et θij , i, j ∈ E.
Let us assume that we have at our disposal several independent sample paths of a semi-Markov
chain, say L, each of them of length nl, l = 1, . . . , L, censored at the beginning and at the end
of the trajectory, i.e.,

yl1, y
l
2, . . . , y

l
nl
,

or, equivalently,

jl0, k
l
0, j

l
1, k

l
1, j

l
2, k

l
2, . . . , j

l
tl , k

l
tl , j

l
tl+1, k

l
tl+1

with
∑tl+1

i=0 k
l
i = nl, where jl0, . . . , j

l
tl+1

are the successive distinct visited states, kl0 is the first

sojourn time, assumed to be right censored, kl
tl+1

is the last sojourn time, assumed also to be

right censored, while kl1, . . . , k
l
tl

are the other successive sojourn times, assumed to be complete
(observed, non censored).

To estimate the parameters of model, we use the maximum likelihood estimation (cf. Barbu
et al. (2017)):

argmax
puv ,θuv ;u,v∈E

(l(puv, θuv;u, v ∈ E)) (6)

=

 argmax
puv ,θuv ;v∈E

∑
v∈E

Nuv(L, n1:L) log(puv) +
∑
v∈E

maxl(nl)∑
k=1

Nuv(k;L, n1:L) log(fuv(k; θuv))

+
∑
v∈E

maxl(nl)∑
k=1

N
b
uv(k;L) log(F uv(k; θuv))

+

maxl(nl)∑
k=1

N
e
u•(k;L) log

(
1−

k∑
m=1

∑
v∈E

puvfuv(m; θuv)

)
u∈E

 ,

where we introduced the following counting processes
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Nij(L, n1:L) =
L∑
l=1

N l(nl)−1∑
m=1

1{J l
m=i;J l

m+1=j}
,

Nij(k;L, n1:L) =

N l(nl)−1∑
m=1

1{J l
m=i;J l

m+1=j;T
l
m+1−T l

m=k},

N
b
ij(k;L) =

L∑
l=1

1{J l
0=i;J

l
1=j;T

l
1−T l

0>k}
,

N
e
i•(k;L) =

L∑
l=1

1{J l

T l
Nl(nl)

=i,Xl

T l
Nl(nl)+1

>k},

where

N l(nl) = max{m ∈ N | T lm ≤ nl}

is the counting process of jump number in [1;nl] of the trajectory l.

Note that:

- Nij(L, n1:L) represents the number of transitions from state i to state j along the L sample
paths;

- Nij(k;L, n1:L) represents the number of transitions from state i to state j along the L sample
paths, with sojourn time of length k in state i;

- N
b
ij(k;L) represents the number of trajectories starting in state i, with a next transition to

state j and censored sojourn time in state i greater than k;

- N
e
i•(k;L) represents the number of trajectories ending in state i with a censored sojourn time

in state i greater than k.

Note also that in the expression (6) of the log-likelihood, the first two terms correspond to the
transition probabilities and the observed (non censored) sojourn times, the third term is the con-
tribution to the likelihood of the first sojourn times, assumed to be right censored, while the last
term is the contribution to the likelihood of the last sojourn times, assumed to be right censored.

Up to here we presented the estimation for the general case, that is to say taking into account
the censoring at the beginning and at the end and the sojourn times depending on the current
state and on the next state. Thus the maximization problem (6) is written with the sojourn
times depending on the current state and on the next state (the general model of the type
qij(k) = pijfij(k) given in (2)), but the different cases of sojourn times are written and coded
in the package. Note also that different types of censoring are also written and coded in the
package.

Parameters: The estimation is carried out by the function estimSM(). The different pa-
rameters of the function are:

� file: Path of the fasta file which contains the sequences from which to estimate

� seq: List of the sequence(s) from which to estimate
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� E: Vector of state space of length S

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� distr: Sojourn time distributions:

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull"
or "nbinom".

� cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time
is censored) or 0 (if not). All the sequences must be censored in the same way.

� cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument)
or as a file in fasta format (file argument).

## data

seq3 = read.fasta("seq3.txt")

E = c("a","c","g","t")

## creation of the distribution matrix

distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",

"pois", "pois", "dweibull", "geom",

"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)

## estimation of simulated sequences

estSeq3 = estimSM(seq = seq3 , E = E, TypeSojournTime = "fij",

distr = distr.matrix , cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring. The estimation performed will corre-
spond to the likelihood given in (6), without the third and forth terms. For more details on the
parametric estimation, one can see Barbu et al. (2017).

Values: The function estimSM() returns a list containing:

� init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeq3$init

[1] 0.3333333 0.6666667 0.0000000 0.0000000

� Ptrans: Matrix of size S × S with estimated transition probabilities of the embedded
Markov chain J = (Jm)m

estSeq3$Ptrans

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2097826 0.4989130 0.2913043

[2,] 0.2062500 0.0000000 0.2968750 0.4968750

[3,] 0.3046944 0.5110717 0.0000000 0.1842338

[4,] 0.3960084 0.1995798 0.4044118 0.0000000

� param: Array with estimated parameters of the sojourn time distributions
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estSeq3$param

, , 1

[,1] [,2] [,3] [,4]

[1,] 0.0000000 1.979275 0.4250000 3.6891763

[2,] 0.6711864 0.000000 4.9578947 0.6117130

[3,] 1.8488372 3.043328 0.0000000 0.5859155

[4,] 4.0450928 0.296875 0.4221491 0.0000000

, , 2

[,1] [,2] [,3] [,4]

[1,] 0 0 0 1.9257056

[2,] 0 0 0 0.8603673

[3,] 0 0 0 0.0000000

[4,] 0 0 0 0.0000000

Note that, for example, estSeq3$param[1,3,] is the vector containing the parameters of
the distribution f13(·).

� q: Array of size S × S ×Kmax with estimated semi-Markov kernel

estSeq3$q[,,1:3]

, , 1

[,1] [,2] [,3] [,4]

[1,] 0.000000000 0.02898554 0.212038043 0.06185857

[2,] 0.138432203 0.00000000 0.002086351 0.19293011

[3,] 0.047965028 0.02436585 0.000000000 0.10794546

[4,] 0.006933346 0.05925026 0.170722072 0.00000000

, , 2

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.05737035 0.12192187 0.07826697

[2,] 0.04551839 0.00000000 0.01034391 0.10036991

[3,] 0.08867953 0.07415325 0.00000000 0.04469854

[4,] 0.02804603 0.04166034 0.09865190 0.00000000

, , 3

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.05677584 0.07010508 0.06293531

[2,] 0.01496706 0.00000000 0.02564200 0.06330691

[3,] 0.08197701 0.11283632 0.00000000 0.01850897

[4,] 0.05672440 0.02929243 0.05700609 0.00000000

Note that, for example, q13(2) = P(Jm+1 = 3, Tm+1 − Tm = 2|Jm = 1) = 0.12192187.

3.2.2 Non-parametric estimation of semi-Markov models
Here we will consider two types of estimation for semi-Markov chains: a direct estimation,
obtaining thus empirical estimators (in fact, approached MLEs), cf. Barbu and Limnios (2006,
2008a) and an estimation based on a couple Markov chain associated to the semi-Markov chain
(see Trevezas and Limnios 2011).

No censoring: direct estimation
Let {Y1, Y2, . . . , Yn} be a trajectory of a semi-Markov chain Y = (Yn)n∈N, censored at an arbi-
trary fixed time n.
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� The case qij(k) = pijfij(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)

Ni•(n)
, f̂ij(k;n) =

Nij(k;n)

Nij(n)
, q̂ij(k;n) =

Nij(k;n)

Ni•(n)
.

where Nij(n) =
∑N(n)−1

m=1 1{Jm=i;Jm+1=j}, Ni•(n) =
∑N(n)−1

m=1 1{Jm=i},

Nij(k;n) =
∑N(n)−1

m=1 1{Jm=i;Jm+1=j;Tm+1−Tm=k}.

� The case qij(k) = pijfi•(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)

Ni•(n)
, f̂i•(k;n) =

Ni•(k;n)

Nij(n)
, q̂ij(k;n) =

Ni•(k;n)

Ni•(n)
,

where Ni•(k;n) =
∑N(n)−1

m=1 1{Jm=i;Tm+1−Tm=k}.

� The case qij(k) = pijf•j(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)

Ni•(n)
, f̂•j(k;n) =

N•j(k;n)

Nij(n)
, q̂ij(k;n) =

N•j(k;n)

Ni•(n)
,

where N•j(k;n) =
∑N(n)−1

m=1 1{Jm+1=j;Tm+1−Tm=k}.

� The case qij(k) = pijf(k): The maximum likelihood estimators are

p̂ij(n) =
Nij(n)

Ni•(n)
, f̂(k;n) =

N(k;n)

Nij(n)
, q̂ij(k;n) =

N(k;n)

Ni•(n)
,

where N(k;n) =
∑N(n)−1

m=1 1{Tm+1−Tm=k}.

Censoring: couple Markov chain For a semi-Markov chain Y = (Yn)n∈N, let U = (Un)n∈N
be the backward recurrence time of the SMC, defined by

Un := n− TN(n). (7)

We can show (cf. Limnios and Oprişan 2001) that the chain (Y, U) = (Yn, Un)n∈N is a Markov
chain with state space E×N. We will denote its transition matrix by p̃ := (p(i,t1)(j,t2))i,j∈E,t1,t2∈N.

The maximum likelihood estimators of qij(k) (Trevezas and Limnios 2011) are given by

q̂ij(k;n) = p̂(i,k−1)(j,0)(n)

k−2∏
t=0

p̂(i,t)(i,t+1)(n), (8)

where p̂(i,t1)(j,t2)(n) represents the classical MLE of the transition probability p(i,t1)(j,t2). Thus
we obtain the corresponding estimator of pij

p̂ij =
∞∑
k=0

q̂ij(k). (9)

In order to compute the estimators of the sojourn times, we consider the four different types of
semi-Markov kernels defined in Equations (2), (3), (4) and (5).
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Parameters: The estimation is carried out by the function estimSM() and several parameters
must be given.

� file: Path of the fasta file which contains the sequences from which to estimate

� seq: List of the sequence(s) from which to estimate

� E: Vector of state space of length S

� TypeSojournTime: Type of sojourn time; always equal to ”NP” for the non-parametric
estimation

� cens.beg: Type of censoring at the beginning of sample paths; 1 (if the first sojourn time
is censored) or 0 (if not). All the sequences must be censored in the same way.

� cens.end: Type of censoring at the end of sample paths; 1 (if the last sojourn time is
censored) or 0 (if not). All the sequences must be censored in the same way.

Note that the sequences from which we estimate can be given either as an R list (seq argument)
or as a file in fasta format (file argument). The parameter distr is always equal to ”NP”.

## data

seqNP3_no = read.fasta("seqNP3_no.txt")

E = c("a","c","g","t")

## estimation of simulated sequences

estSeqNP3= estimSM(seq = seqNP3_no, E = E, TypeSojournTime = "fj",

distr = "NP", cens.end = 0, cens.beg = 0)

Here, we estimate simulated sequences with no censoring.

Values: The function estimSM() returns a list containing:

� init: Vector of size S with estimated initial probabilities of the semi-Markov chain

estSeqNP3$init

[1] 0.0000000 0.6666667 0.3333333 0.0000000

� Ptrans: Matrix of size S × S with estimated transition probabilities of the embedded
Markov chain J = (Jm)m

estSeqNP3$Ptrans

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.2057578 0.4928027 0.3014395

[2,] 0.2089796 0.0000000 0.2889796 0.5020408

[3,] 0.3134948 0.4934256 0.0000000 0.1930796

[4,] 0.3782051 0.2139423 0.4078526 0.0000000

� laws: Array of size S×S×Kmax with estimated values of the sojourn time distributions

estSeqNP3$laws[,,1:2]

, , 1

[,1] [,2] [,3] [,4]

[1,] 0.0000000 0.4039248 0.4747405 0.2984

[2,] 0.1998307 0.0000000 0.4747405 0.2984

[3,] 0.1998307 0.4039248 0.0000000 0.2984

[4,] 0.1998307 0.4039248 0.4747405 0.0000

, , 2
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[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.1978741 0.3128028 0.2128

[2,] 0.09652837 0.0000000 0.3128028 0.2128

[3,] 0.09652837 0.1978741 0.0000000 0.2128

[4,] 0.09652837 0.1978741 0.3128028 0.0000

� q: Array of size S × S ×Kmax with estimated semi-Markov kernel

estSeqNP3$q[,,1:3]

, , 1

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.08552075 0.2277731 0.08552075

[2,] 0.04163265 0.00000000 0.1420408 0.15510204

[3,] 0.06020761 0.19584775 0.0000000 0.05674740

[4,] 0.07852564 0.08814103 0.1947115 0.00000000

, , 2

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.04403048 0.15918713 0.06689246

[2,] 0.01959184 0.00000000 0.08897959 0.09877551

[3,] 0.03667820 0.09826990 0.00000000 0.04567474

[4,] 0.02964744 0.03846154 0.12419872 0.00000000

, , 3

[,1] [,2] [,3] [,4]

[1,] 0.00000000 0.01862828 0.08213378 0.03217612

[2,] 0.06285714 0.00000000 0.04326531 0.05142857

[3,] 0.08650519 0.05467128 0.00000000 0.01176471

[4,] 0.11939103 0.02323718 0.07051282 0.00000000

3.3. Supplementary functions

In this package, others functions are available. These functions enable to compute the initial
distribution for a semi-Markov model, the log-likelihood of a semi-Markov model and the AIC
and BIC of a semi-Markov model.

� InitialLawSM(): Estimation of initial distribution for a semi-Markov model

Parameters:

� q: Array of size S × S ×Kmax with estimated semi-Markov kernel

seq = list(c("a","c","c","g","t","a","a","a","a",

"g","c","t","t","t","g"))

res = estimSM(seq = seq , E = c("a","c","g","t"), distr = "NP")

Warning message:

In .comptage(J, L, S, Kmax): Warning: missing transitions

q = res$q

p = res$Ptrans

InitialLawSM(E = c("a","c","g","t"), seq = seq , q = q)

$init

[1] 0.2205882 0.2205882 0.2058824 0.3529412

Values: The function InitialLawSM() returns a list containing a vector of the initial distri-
bution.

� LoglikelihoodSM (): Computation of the log-likelihood
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Parameters:

� E: Vector of state space of length S

� seq: List of the sequence(s) from which to estimate

� mu: Vector of initial distribution of length S

� Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
size S × S

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� distr: Sojourn time distributions:

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull"
or "nbinom".

� param: Parameters of sojourn time distributions:

– is an array of parameters of size S × S × 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S × 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

� laws: Sojourn time distributions introduced by the user:

– is an array of size S × S ×Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S ×Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## state space

E = c("a","c","g","t")

S = length(E)

## creation of transition matrix

Pij = matrix( c(0 ,0.2 ,0.3 ,0.4 ,0.2 ,0 ,0.5 ,0.2 ,0.5 ,0.3 ,0 ,0.4 ,0.3 ,0.5 ,0.2 ,0) , ncol =4)

## simulation

seq5000 = simulSM(E = E, NbSeq = 1, lengthSeq = 5000,

TypeSojournTime = "f", init = c(1/4,1/4,1/4,1/4),

Ptrans = Pij , distr = "pois", param = 2, File.out =

"seq5000.txt")

## for the reproducibility of the results

seq5000 = read.fasta("seq5000.txt")

## computation of the log -likelihood

LoglikelihoodSM(seq = seq5000 , E = E, mu = rep(1/4,4),

Ptrans = Pij , distr = "pois", param = 2,

TypeSojournTime = "f")

$L

$L[[1]]

[1] -1713.638

$Kmax

[1] 10
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Values: The function likelihoodSM() returns a list containing:

� L: List with the value of the likelihood for each sequence

� Kmax: Maximal sojourn time

We also consider model selection criteria in order to evaluate and choose among candidate
models; the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
are considered.

� AIC_SM(): computation of the AIC

AIC(M) = −2 logL+ 2M,

where L is the log-likelihood, M is the number of parameters involved in the model

Parameters:

� E: Vector of state space of length S

� seq: List of the sequence(s) from which to estimate

� mu: Vector of initial distribution of length S

� Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
size S × S

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� distr: Sojourn time distributions:

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull"
or "nbinom".

� param: Parameters of sojourn time distributions:

– is an array of parameters of size S × S × 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S × 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

� laws: Sojourn time distributions introduced by the user:

– is an array of size S × S ×Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S ×Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.
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## state space

E = c("a","c","g","t")

S = length(E)

lengthSeq3 = c(1000, 10000, 2000)

## creation of the initial distribution

vect.init = c(1/4,1/4,1/4,1/4)

## creation of transition matrix

Pij = matrix( c(0 ,0.2 ,0.3 ,0.4 ,0.2 ,0 ,0.5 ,0.2 ,0.5 ,0.3 ,0 ,0.4 ,0.3 ,0.5 ,0.2 ,0) , ncol =4)

## creation of the distribution matrix

distr.matrix = matrix(c("dweibull", "pois", "geom", "nbinom",

"geom", "nbinom", "pois", "dweibull",

"pois", "pois", "dweibull", "geom",

"pois","geom", "geom", "nbinom"),

nrow = S, ncol = S, byrow = TRUE)

## creation of an array containing the parameters

param1.matrix = matrix(c(0.6,2,0.4,4,0.7,2,5,0.6,2,3,0.6,

0.6,4,0.3,0.4,4), nrow = S,

ncol = S, byrow = TRUE)

param2.matrix = matrix(c(0.8,0,0,2,0,5,0,0.8,0,0,0.8,

0,4,0,0,4), nrow = S, ncol = S,

byrow = TRUE)

param.array = array(c(param1.matrix , param2.matrix), c(S,S,2))

## simulation of 3 sequences

seq.crit = simulSM(E = E, NbSeq = 3, lengthSeq = lengthSeq3 ,

TypeSojournTime = "fij", init = vect.init ,

Ptrans = Pij , distr = distr.matrix ,

param = param.array , File.out = "seq.crit.txt")

## for the reproducibility of the results

seq.crit = read.fasta("seq.crit.txt")

## computation of the AIC

AIC_SM(seq = seq.crit , E = E, mu = rep(1/4,4), Ptrans = Pij ,

distr = distr.matrix , param = param.array ,

TypeSojournTime = "fij")

[[1]]

[1] 1745.884

[[2]]

[1] 16878.04

[[3]]

[1] 3334.383

Values: The function AIC_SM() returns a list with the value of AIC for each sequence.

� BIC_SM(): computation of the BIC

BIC(M) = −2 logL+ log(n)M

where L is the log-likelihood, M is the number of parameters involved in the model and n is the
sample size.

Parameters:

� E: Vector of state space of length S

� seq: List of the sequence(s) from which to estimate

� mu: Vector of initial distribution of length S
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� Ptrans: Matrix of transition probabilities of the embedded Markov chain J = (Jm)m of
size S × S

� TypeSojournTime: Type of sojourn time; it can be "fij", "fi", "fj" or "f" according to
the four cases previously discussed

� distr: Sojourn time distributions:

– is a matrix of distributions of size S × S if TypeSojournTime is equal to "fij",

– is a vector of distributions of size S if TypeSojournTime is equal to "fi" or "fj",

– is a distribution if TypeSojournTime is equal to "f",

where the distributions to be used can be one of "uniform", "geom", "pois", "weibull"
or "nbinom".

� param: Parameters of sojourn time distributions:

– is an array of parameters of size S × S × 2 if TypeSojournTime is equal to "fij"

– is a matrix of parameters of size S × 2 if TypeSojournTime is equal to "fi" or "fj"

– is a vector of parameters if TypeSojournTime is equal to "f"

� laws: Sojourn time distributions introduced by the user:

– is an array of size S × S ×Kmax if TypeSojournTime is equal to "fij",

– is a matrix of size S ×Kmax if TypeSojournTime is equal to "fi" or "fj",

– is a vector of length Kmax if TypeSojournTime is equal to "f",

where Kmax is the maximum length for the sojourn times.

## computation of the BIC

BIC_SM(seq = seq3 , E = E, mu = rep(1/4,4), Ptrans = Pij ,

distr = distr.matrix , param = param.array ,

TypeSojournTime = "fij")

[[1]]

[1] 1814.607

[[2]]

[1] 16978.99

[[3]]

[1] 3412.796

Values: The function BIC_SM() returns a list with the value of BIC for each sequence.

3.4. Markov case

In the SMM R package, we also implemented the estimation and the simulation of discrete-time
multi-state Markov models. As in the semi-Markov case, others functions are available, enabling
to estimate the initial distribution, to compute the log-likelihood and also the AIC and BIC of
a Markov model.

� estimMk(): Estimation of a Markov chain of order k

## state space

E <- c("a","c","g","t")

## for the reproducibility of the results

seq.markov = read.fasta("seq.markov.txt")

## estimation of simulated sequences

res.markov = estimMk(seq = seq.markov , E = E, k = 2)
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Values: The function estimMk() returns a list containing:

� init: Vector of initial probabilities of the Markov chain

res.markov$init

[1] 0.2502619 0.2520476 0.2489524 0.2487381

� Ptrans: Matrix of transition probabilities of the Markov chain

res.markov$Ptrans

[,1] [,2] [,3] [,4]

[1,] 0.2324027 0.2658278 0.2583563 0.2438065

[2,] 0.2479584 0.2639198 0.2475872 0.2405345

[3,] 0.2497096 0.2477739 0.2500968 0.2528068

[4,] 0.2578125 0.2511161 0.2451637 0.2459077

[5,] 0.2391624 0.2586334 0.2439383 0.2582660

[6,] 0.2368821 0.2543726 0.2558935 0.2536122

[7,] 0.2497154 0.2523719 0.2481973 0.2497154

[8,] 0.2474903 0.2567568 0.2579151 0.2378378

[9,] 0.2485833 0.2493389 0.2493389 0.2527389

[10,] 0.2677888 0.2379495 0.2536343 0.2406274

[11,] 0.2542768 0.2511664 0.2387247 0.2566096

[12,] 0.2555386 0.2528648 0.2463713 0.2452254

[13,] 0.2481696 0.2520231 0.2315992 0.2682081

[14,] 0.2766199 0.2394847 0.2391057 0.2447897

[15,] 0.2591063 0.2500939 0.2478408 0.2429591

[16,] 0.2322479 0.2499019 0.2706944 0.2471557

� simulMk(): Simulation of a Markov chain of order k

## state space

E <- c("a","c","g","t")

S = length(E)

vect.init <- c(1/4,1/4,1/4,1/4)

k<-2

p <- matrix (0.25, nrow = S^k, ncol = S)

## simulation of 3 sequences with the simulMk function

seq.markov = simulMk(E = E, nbSeq = 3, lengthSeq = c(1000, 10000, 2000) ,

Ptrans = p, init = vect.init , k = 2, File.out= "seq.markov.txt")

## for the reproducibility of the results

seq.markov = read.fasta("seq.markov.txt")

seq.markov [[1]][1:25]

[1] "c" "g" "t" "t" "g" "a" "c" "g" "c" "t" "a" "t" "g" "a" "a" "a" "a" "g"

"t" "g" "a" "a" "c" "t" "c"

� InitialLawMk(): Estimation of the initial distribution of a Markov chain of order k

seq = list(c("a","c","c","g","t","a","a","a","a","g","c","t","t","t","g"))

res = estimMk(seq = seq , E = c("a","c","g","t"), k = 1)

Warning message:

In estimMk(seq = seq , E = c("a", "c", "g", "t"), k = 1):

missing transitions

p = res$Ptrans

InitialLawMk(E = c("a","c","g","t"), seq = seq , Ptrans = p, k = 1)

$init

[1] 0.2205882 0.2205882 0.2058824 0.3529412

� LoglikelihoodMk(): Computation of the log-likelihood
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Parameters:

� mu: Initial distribution

� Ptrans: Probability transition matrix

� k: Order of the Markov chain

## state space

E = c("a","c","g","t")

S = length(E)

## creation of transition matrix

p = matrix(rep(1/4,S*S),ncol =4)

## simulation of two sequences of length 20 and 50 respectively

seq.markov2 = simulMk(E = E, nbSeq = 2, lengthSeq = c(20,50),

Ptrans = p, init = rep(1/4,4), k = 1,

File.out = "seq.markov2.txt")

## for the reproducibility of the results

seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the log -likelihood

LoglikelihoodMk(seq = seq.markov2 , E = E, mu = rep(1/4,4), Ptrans = p, k = 1)

$L

$L[[1]]

[1] -27.72589

$L[[2]]

[1] -69.31472

Values: The function likelihoodSM() returns a list containing the value of the likelihood
for each sequence.

� AIC_Mk(): Computation of the AIC for a Markov chain of order k

Parameters:

� mu: Initial distribution

� Ptrans: Probability transition matrix

� k: Order of the Markov chain

## for the reproducibility of the results

seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC

AIC_Mk(seq = seq.markov2 , E = E, mu = rep(1/4,4), Ptrans = p, k = 1)

[[1]]

[1] 79.45177

[[2]]

[1] 162.6294

Values: The function AIC_Mk() returns a list containing the value of the AIC for each
sequence.

� BIC_Mk(): Computation of the BIC for a Markov chain of order k
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Parameters:

� mu: Initial distribution

� Ptrans: Probability transition matrix

� k: Order of the Markov chain

## for the reproducibility of the results

seq.markov2 = read.fasta("seq.markov2.txt")

## computation of the AIC

BIC_Mk(seq = seq.markov2 , E = E, mu = rep(1/4,4), Ptrans = p, k = 1)

[[1]]

[1] 91.40056

[[2]]

[1] 185.5737

Values: The function BIC_Mk() returns a list containing the value of the BIC for each
sequence.

4. Concluding remarks

In this paper we have presented SMM, an R package for simulation and estimation of discrete-
time multi-state semi-Markov models. The conditional sojourn time can be modeled by an
arbitrary distribution for a semi-Markov model, which enables a generalization with respect to
Markov models, where the sojourn time is only modelled by a Geometric distribution (in discrete
time) or an Exponential distribution (in continuous time). The SMM package offers a variety
of conditional sojourn time distributions (Poisson, Uniform, Negative Binomial, Geometric and
Discrete Weibull). This package provides also non-parametric estimation and simulation and
takes into account censored data of several types.

To summarize, the importance and interest of the R package SMM that we have developed comes
from:

- considering versatile tools, namely discrete-time multi-state semi-Markov processes, that are
of use in a variety of applied fields, like survival analysis, biology, reliability, DNA analysis,
insurance and finance, earthquake modeling, meteorology studies, etc.;

- implementing parametric and non-parametric estimation/simulation;

- considering several censoring schemes, important in various applications;

- taking into account one or several independent sample paths;

- considering different types of semi-Markov kernels: either of the general type qij(k) = pijfij(k)
with the holding time distributions fij(k) depending on the current state and next state to be
visited, or with the holding time distributions depending only on the current state, qij(k) :=
pijfi•(k), or with the holding time distributions depending only on the next state to be visited,
qij(k) := pijf•j(k), or with the holding time distributions depending neither on the current, nor
on the future state, qij(k) := pijf(k). As already mentioned, it is important that these four
types of models be considered separately.
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In conclusion, the R package SMM that we have developed deals with an important and versatile
tool, useful for researchers, practitioners and engineers in various fields.
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