
Package ‘flashier’
October 17, 2023

Type Package

Date 2023-10-16

Title Empirical Bayes Matrix Factorization

Version 1.0.7

URL https://github.com/willwerscheid/flashier

BugReports https://github.com/willwerscheid/flashier/issues

Description Methods for matrix factorization based on Wang and Stephens (2021)
<https://jmlr.org/papers/v22/20-589.html>.

Depends R (>= 3.4), ebnm (>= 0.1-21), magrittr

Imports Matrix, parallel, dplyr, stringr, tibble, tidyr, softImpute,
irlba, ggplot2

Suggests ashr, cowplot, testthat, knitr, rmarkdown, RcppML, rsvd

License BSD_3_clause + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Jason Willwerscheid [aut, cre],
Peter Carbonetto [aut],
Wei Wang [aut],
Matthew Stephens [aut],
Eric Weine [ctb],
Gao Wang [ctb]

Maintainer Jason Willwerscheid <jwillwer@providence.edu>

Repository CRAN

Date/Publication 2023-10-17 09:40:02 UTC

1

https://github.com/willwerscheid/flashier
https://github.com/willwerscheid/flashier/issues
https://jmlr.org/papers/v22/20-589.html

2 R topics documented:

R topics documented:

fitted.flash . 3
fitted.flash_fit . 3
flash . 4
flash_add_intercept . 8
flash_backfit . 9
flash_clear_timeout . 10
flash_conv_crit_elbo_diff . 11
flash_conv_crit_max_chg . 12
flash_conv_crit_max_chg_F . 12
flash_conv_crit_max_chg_L . 13
flash_ebnm . 14
flash_factors_fix . 16
flash_factors_init . 17
flash_factors_remove . 18
flash_factors_reorder . 19
flash_factors_set_to_zero . 19
flash_factors_unfix . 20
flash_fit . 20
flash_greedy . 22
flash_greedy_init_default . 24
flash_greedy_init_irlba . 26
flash_greedy_init_softImpute . 26
flash_init . 27
flash_nullcheck . 28
flash_set_conv_crit . 29
flash_set_timeout . 30
flash_set_verbose . 31
flash_verbose_elbo . 33
flash_verbose_elbo_diff . 34
flash_verbose_max_chg . 35
flash_verbose_max_chg_F . 35
flash_verbose_max_chg_L . 36
gtex . 37
gtex_colors . 38
ldf . 38
plot.flash . 39
residuals.flash . 41
residuals.flash_fit . 41

Index 42

fitted.flash 3

fitted.flash Fitted method for flash objects

Description

Given a flash object, returns the "fitted values" E(LF ′) = E(L)E(F)′.

Usage

S3 method for class 'flash'
fitted(object, ...)

Arguments

object An object inheriting from class flash.

... Additional parameters are ignored.

Value

The matrix of "fitted values."

fitted.flash_fit Fitted method for flash fit objects

Description

Given a flash_fit object, returns the "fitted values" E(LF ′) = E(L)E(F)′.

Usage

S3 method for class 'flash_fit'
fitted(object, ...)

Arguments

object An object inheriting from class flash_fit.

... Additional parameters are ignored.

Value

The matrix of "fitted values."

4 flash

flash Empirical Bayes matrix factorization

Description

Fits an empirical Bayes matrix factorization (see Details for a description of the model). The result-
ing fit is referred to as a "flash" object (short for Factors and Loadings using Adaptive SHrinkage).
Two interfaces are provided. The flash function provides a simple interface that allows a flash
object to be fit in a single pass, while flash_xxx functions are pipeable functions that allow for
more complex flash objects to be fit incrementally (available functions are listed below under See
Also). See the vignettes and Examples for usage.

Usage

flash(
data,
S = NULL,
ebnm_fn = ebnm_point_normal,
var_type = 0L,
greedy_Kmax = 50L,
backfit = FALSE,
nullcheck = TRUE,
verbose = 1L

)

Arguments

data The observations. Usually a matrix, but can also be a sparse matrix of class
Matrix or a low-rank matrix representation as returned by, for example, svd,
irlba, rsvd, or softImpute (in general, any list that includes fields u, d, and v
will be interpreted as a low-rank matrix representation).

S The standard errors. Can be NULL (in which case all residual variance will be
estimated) or a matrix, vector, or scalar. S should be a scalar if standard errors
are identical across observations. It should be a vector if standard errors either
vary across columns but are constant within any given row, or vary across rows
but are constant within any given column (flash will use the length of the vector
to determine whether the supplied values correspond to rows or columns; if the
data matrix is square, then the sense must be specified using parameter S_dim in
function flash_init).

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

` and G(k)
f to which the priors on loadings and factors g(k)`

and g(k)f are assumed to belong. If the same function is to be used for both load-
ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second

flash 5

the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.
Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

var_type Describes the structure of the estimated residual variance. Can be NULL, 0, 1,
2, or c(1, 2). If NULL, then S accounts for all residual variance. If var_type
= 0, then the estimated residual variance (which is added to any variance given
by S) is assumed to be constant across all observations. Setting var_type = 1
estimates a single variance parameter for each row; var_type = 2 estimates one
parameter for each column; and var_type = c(1, 2) optimizes over all rank-
one matrices (that is, it assumes that the residual variance parameter sij can be
written sij = aibj , where the n-vector a and the p-vector b are to be estimated).
Note that if any portion of the residual variance is to be estimated, then it is usu-
ally faster to set S = NULL and to let flash estimate all of the residual variance.
Further, var_type = c(1, 2) is typically much slower than other options, so it
should be used with care.

greedy_Kmax The maximum number of factors to be added. This will not necessarily be the
total number of factors added by flash, since factors are only added as long as
they increase the variational lower bound on the log likelihood for the model.

backfit A "greedy" fit is performed by adding up to greedy_Kmax factors, optimizing
each newly added factor in one go without returning to optimize previously
added factors. When backfit = TRUE, flash will additionally perform a final
"backfit" where all factors are cyclically updated until convergence. The back-
fitting procedure typically takes much longer than the greedy algorithm, but it
also usually improves the final fit to a significant degree.

nullcheck If nullcheck = TRUE, then flash will check that each factor in the final flash
object improves the overall fit. Any factor that fails the check will be removed.

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Details

If Y is an n× p data matrix, then the rank-one empirical Bayes matrix factorization model is:

Y = `f ′ + E,

where ` is an n-vector of loadings, f is a p-vector of factors, and E is an n× p matrix of residuals
(or "errors"). Additionally:

eij ∼ N(0, s2ij) : i = 1, ..., n; j = 1, ..., p

` ∼ g` ∈ G`

f ∼ gf ∈ Gf .

6 flash

The residual variance parameters s2ij are constrained to have a simple structure and are fit via maxi-
mum likelihood. (For example, one might assume that all standard errors are identical: s2ij = s2 for
some s2 and for all i, j). The functions g` and gf are assumed to belong to some families of priors
G` and Gf that are specified in advance, and are estimated via variational approximation.

The general rank-K empirical Bayes matrix factorization model is:

Y = LF ′ + E

or
yij =

∑
k

`ikfjk + eij : i = 1, ..., n; j = 1, ..., p,

where L is now a matrix of loadings and F is a matrix of factors.

Separate priors g(k)` and g(k)f are estimated via empirical Bayes, and different prior families may be
used for different values of k. In general, then:

eij ∼ N(0, s2ij) : i = 1, ..., n; j = 1, ..., p

`ik ∼ g(k)` ∈ G(k)
` : i = 1, ..., n; k = 1, ...,K

fik ∼ g(k)f ∈ G(k)
f : j = 1, ..., p; k = 1, ...,K.

Typically, G(k)
` and G(k)

f will be closed under scaling, in which case `k and fk are only identifiable
up to a scaling factor dk. In other words, we can write:

Y = LDF ′ + E,

where D is a diagonal matrix with diagonal entries d1, ..., dK . The model can then be made identi-
fiable by constraining the scale of `k and fk for k = 1, ...,K.

Value

A flash object. Contains elements:

n_factors The total number of factor/loadings pairs K in the fitted model.

pve The proportion of variance explained by each factor/loadings pair. Since factors and loadings
are not required to be orthogonal, this should be interpreted loosely: for example, the total
proportion of variance explained could be larger than 1.

elbo The variational lower bound achieved by the fitted model.

residuals_sd Estimated residual standard deviations (these include any variance component given
as an argument to S).

L_pm, L_psd, L_lfsr Posterior means, standard deviations, and local false sign rates for loadings
L.

F_pm, F_psd, F_lfsr Posterior means, standard deviations, and local false sign rates for factors
F .

L_ghat The fitted priors on loadings ĝ(k)` .

F_ghat The fitted priors on factors ĝ(k)f .

flash 7

sampler A function that takes a single argument nsamp and returns nsamp samples from the pos-
terior distributions for factors F and loadings L.

flash_fit A flash_fit object. Used by flash when fitting is not performed all at once, but
incrementally via calls to various flash_xxx functions.

The following methods are available:

fitted.flash Returns the "fitted values" E(LF ′) = E(L)E(F)′.

residuals.flash Returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

ldf.flash Returns an LDF decomposition (see Details above), with columns of L and F scaled
as specified by the user.

References

Wei Wang and Matthew Stephens (2021). "Empirical Bayes matrix factorization." Journal of Ma-
chine Learning Research 22, 1–40.

See Also

flash_init, flash_greedy, flash_backfit, and flash_nullcheck. For more advanced func-
tionality, see flash_factors_init, flash_factors_fix, flash_factors_set_to_zero, flash_factors_remove,
flash_set_verbose, and flash_set_conv_crit. For extracting useful data from flash objects,
see fitted.flash, residuals.flash, and ldf.flash.

Examples

data(gtex)

Fit up to 3 factors and backfit.
fl <- flash(gtex, greedy_Kmax = 3L, backfit = TRUE)

This is equivalent to the series of calls:
fl <- flash_init(gtex) %>%

flash_greedy(Kmax = 3L) %>%
flash_backfit() %>%
flash_nullcheck()

Fit a unimodal distribution with mean zero to each set of loadings
and a scale mixture of normals with mean zero to each factor.
fl <- flash(gtex,

ebnm_fn = c(ebnm_unimodal,
ebnm_normal_scale_mixture),

greedy_Kmax = 3)

Fit point-laplace priors using a non-default optimization method.
fl <- flash(gtex,

ebnm_fn = flash_ebnm(prior_family = "point_laplace",
optmethod = "trust"),

greedy_Kmax = 3)

Fit a "Kronecker" (rank-one) variance structure (this can be slow).

8 flash_add_intercept

fl <- flash(gtex, var_type = c(1, 2), greedy_Kmax = 3L)

flash_add_intercept Add "intercept" to a flash object

Description

Adds an all-ones vector as a fixed set of loadings (if rowwise = TRUE) or fixed factor (if rowwise =
FALSE). Assuming (without loss of generality) that the fixed factor/loadings is indexed as k = 1, a
fixed set of loadings gives:

yi· ≈ f1 +

K∑
k=2

`ikfk,

so that the (estimated) factor f1 ∈ Rp is shared by all row-wise observations yi· ∈ Rp. A fixed
factor gives:

y·j ≈ `1 +

K∑
k=2

fjk`k,

so that the (estimated) set of loadings `1 ∈ Rn is shared by all column-wise observations y·j ∈ Rn.

Usage

flash_add_intercept(flash, rowwise = TRUE, ebnm_fn = ebnm_point_normal)

Arguments

flash A flash or flash_fit object to which an "intercept" is to be added.

rowwise Should the all-ones vector be added as a fixed set of loadings ("row-wise") or a
fixed factor ("column-wise")? See above for details.

ebnm_fn As with other factor/loadings pairs, a prior is put on the estimated factor (if
rowwise = TRUE) or set of loadings (if rowwise = FALSE). Parameter ebnm_fn
specifies the function used to estimate that prior; see flash for details.

Details

The estimated factor (if rowwise = TRUE) or set of loadings (if rowwise = FALSE) is initialized
at the column- or row-wise means of the data (or, if factor/loadings pairs have previously been
added, at the column- or row-wise means of the matrix of residuals) and then backfit via function
flash_backfit.

Value

The flash object from argument flash, with an "intercept" added.

flash_backfit 9

Examples

The following are equivalent:
init <- list(matrix(rowMeans(gtex), ncol = 1),

matrix(1, nrow = ncol(gtex)))
fl <- flash_init(gtex) %>%

flash_factors_init(init) %>%
flash_factors_fix(kset = 1, which_dim = "factors") %>%
flash_backfit(kset = 1)

fl <- flash_init(gtex) %>%
flash_add_intercept(rowwise = FALSE)

flash_backfit Backfit a flash object

Description

Backfits existing flash factor/loadings pairs. Whereas a "greedy" fit optimizes each newly added
factor/loadings pair in one go without returning to optimize previously added pairs, a "backfit"
updates all existing pairs in a cyclical fashion. See flash for examples of usage.

Usage

flash_backfit(
flash,
kset = NULL,
extrapolate = TRUE,
warmstart = TRUE,
maxiter = 500,
tol = NULL,
verbose = NULL

)

Arguments

flash A flash or flash_fit object.
kset A vector of integers specifying which factors to backfit. If kset = NULL, then all

existing factors will be backfitted.
extrapolate Whether to use an extrapolation technique inspired by Ang and Gillis (2019) to

accelerate the fitting process. Control parameters are handled via global options
and can be set by calling options("extrapolate.control") <- control.param.

warmstart Whether to use "warmstarts" when solving the EBNM subproblems by initializ-
ing solutions at the previous value of the fitted prior ĝ. An important side effect
of warmstarts for ashr-like prior families is to fix the grid at its initial setting.
Fixing the grid can lead to poor fits if there are large changes in the scale of the
estimated prior over the course of the fitting process. However, allowing the grid
to vary can occasionally result in decreases in ELBO.

10 flash_clear_timeout

maxiter The maximum number of backfitting iterations. An "iteration" is defined such
that all factors in kset get updated at each iteration.

tol The convergence tolerance parameter. After each update, the fit is compared to
the fit from before the update using a convergence criterion function (by default,
the difference in ELBO, but the criterion can be changed via flash_set_conv_crit).
The backfit is considered to have "converged" when the value of the convergence
criterion function over successive updates to all factor/loadings pairs is less than
or equal to tol. If, for example, factor/loadings pairs 1, . . . ,K are being se-
quentially backfitted, then fits are compared before and after the update to fac-
tor/loadings 1, before and after the update to factor/loadings 2, and so on through
factor/loadings K, and backfitting only terminates when the convergence crite-
rion function returns a value less than or equal to tol for all K updates. Note
that specifying tol here will override any value set by flash_set_conv_crit;
to use the "global" tolerance parameter, tol must be left unspecified (NULL). If
tol = NULL and a global tolerance parameter has not been set, then the default
tolerance used is np

√
ε, where n is the number of rows in the dataset, p is the

number of columns, and ε is equal to .Machine$double.eps.

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Value

The flash object from argument flash, backfitted as specified.

flash_clear_timeout Set timeout

Description

Used in a flash pipeline to clear timeout conditions set using flash_set_timeout.

Usage

flash_clear_timeout(flash)

Arguments

flash A flash or flash_fit object.

Value

The flash object from argument flash, with timeout settings cleared.

flash_conv_crit_elbo_diff 11

flash_conv_crit_elbo_diff

Calculate the difference in ELBO

Description

The default objective function used to determine convergence when fitting a flash object. Calcu-
lates the difference in the variational lower bound ("ELBO") from one iteration to the next.

Usage

flash_conv_crit_elbo_diff(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fn in function flash_set_conv_crit
to set the convergence criterion for a flash pipeline. See flash_set_conv_crit for details and ex-
amples.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_max_chg flash_conv_crit_max_chg_L, flash_conv_crit_max_chg_F

12 flash_conv_crit_max_chg_F

flash_conv_crit_max_chg

Calculate the maximum absolute difference in scaled loadings and fac-
tors

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) loadings
`ik and factors fjk. At each iteration, the loadings vectors `·1, . . . , `·K and factors f·1, . . . , f·K are
L2-normalized.

Usage

flash_conv_crit_max_chg(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg_L flash_conv_crit_max_chg_F

flash_conv_crit_max_chg_F

Calculate the maximum absolute difference in scaled factors

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) factors
fjk. At each iteration, the factors f·1, . . . , f·K are L2-normalized.

Usage

flash_conv_crit_max_chg_F(curr, prev, k)

flash_conv_crit_max_chg_L 13

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg flash_conv_crit_max_chg_L

flash_conv_crit_max_chg_L

Calculate the maximum absolute difference in scaled loadings

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) loadings
`ik. At each iteration, the loadings vectors `·1, . . . , `·K are L2-normalized.

Usage

flash_conv_crit_max_chg_L(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg flash_conv_crit_max_chg_F

14 flash_ebnm

flash_ebnm Construct an EBNM function

Description

flash_ebnm is a helper function that provides readable syntax for constructing ebnm functions that
can serve as arguments to parameter ebnm_fn in functions flash, flash_greedy, and flash_factors_init
(see Examples below). It is also possible to write a custom function from scratch: see Details below
for a simple example. A more involved example can be found in the "Advanced flashier" vignette.

Usage

flash_ebnm(...)

Arguments

... Parameters to be passed to function ebnm in package ebnm. An argument to
prior_family should be provided unless the default family of point-normal
priors is desired. Arguments to parameters x, s, or output must not be included.
Finally, if g_init is included, then fix_g = TRUE must be as well. To fix a prior
grid, use parameter scale rather than g_init.

Details

As input to parameter ebnm_fn in functions flash, flash_greedy, and flash_factors_init, it
should suffice for many purposes to provide functions from package ebnm as is (for example, one
might set ebnm_fn = ebnm_point_laplace). To use non-default arguments, function flash_ebnm
may be used (see Examples). Custom functions may also be written. In general, any function that
is used as an argument to ebnm_fn must accept parameters:

x A vector of observations.

s A vector of standard errors, or a scalar if all standard errors are equal.

g_init The prior g. Usually, this is left unspecified (NULL) and estimated from the data. If it is
supplied and fix_g = TRUE, then the prior is fixed at g_init; if fix_g = FALSE, then g_init
gives the initial value of g used during optimization.
In flashier, g is fixed during the wrap-up phase when estimating local false sign rates and
constructing a sampler; and g_init is used with fix_g = FALSE to "warmstart" backfits (see
flash_backfit). If none of these features (local false sign rates, samplers, or warmstarts) are
needed, then both g_init and fix_g can be ignored (the EBNM function must still accept
them as parameters, but it need not do anything with their arguments).

fix_g If TRUE, the prior is fixed at g_init instead of estimated. See the description of g_init
above.

output A character vector indicating which values are to be returned. Custom EBNM functions
can safely ignore this parameter (again, they must accept it as a parameter, but they do not
need to do anything with its argument).

The return object must be a list that includes fields:

flash_ebnm 15

posterior A data frame that includes columns mean and second_moment (the first and second
moments for each posterior distribution p(θi | si, ĝ), i = 1, ..., n). Optionally, a column lfsr
giving local false sign rates may also be included.

fitted_g The estimated prior ĝ. Within flashier, fitted_g is only ever used as an argument
to g_init in subsequent calls to the same EBNM function, so the manner in which it is
represented is unimportant.

log_likelihood The optimal log likelihood L(ĝ) :=
∑

i log p(xi | ĝ, si).
posterior_sampler An optional field containing a function that samples from the posterior distri-

butions of the "means" θi. If included, the function should take a single parameter nsamp and
return a matrix where rows correspond to samples and columns correspond to observations
(that is, there should be nsamp rows and n columns).

Value

A function that can be passed as argument to parameter ebnm_fn in functions flash, flash_greedy,
and flash_factors_init.

See Also

ebnm

Examples

A custom EBNM function might be written as follows:
my_ebnm_fn <- function(x, s, g_init, fix_g, output) {

ebnm_res <- ebnm_point_laplace(
x = x,
s = s,
g_init = g_init,
fix_g = fix_g,
output = output,
control = list(iterlim = 10)

)
return(ebnm_res)

}

The following are equivalent:
fl1 <- flash(

gtex,
ebnm_fn = my_ebnm_fn,
greedy_Kmax = 2

)
fl2 <- flash(

gtex,
ebnm_fn = flash_ebnm(

prior_family = "point_laplace",
control = list(iterlim = 10)

),
greedy_Kmax = 2

)

16 flash_factors_fix

flash_factors_fix Fix flash factors

Description

Fixes loadings `·k or factors f·k for one or more factor/loadings pairs, so that their values are not up-
dated during subsequent backfits. For a given pair, either the loadings or factor can be fixed, but not
both, and either all entries or a subset can be fixed. To unfix, use function flash_factors_unfix.
See flash_factors_init for an example of usage.

Usage

flash_factors_fix(
flash,
kset,
which_dim = c("factors", "loadings"),
fixed_idx = NULL,
use_fixed_in_ebnm = NULL

)

Arguments

flash A flash or flash_fit object.

kset A vector of integers indexing the factor/loadings pairs whose loadings or factors
are to be fixed.

which_dim Whether to fix factors or loadings.

fixed_idx If fixed_idx = NULL, then all loadings or factor values will be fixed. If only a
subset are to be fixed, then fixed_idx should be an appropriately-sized vector
or matrix of values that can be coerced to logical. For example, if a subset of
loadings for two factor/loadings pairs are to be fixed, then fixed_idx should be
a length-n vector or an n by 2 matrix (where n is the number of rows in the data
matrix).

use_fixed_in_ebnm

By default, fixed elements are ignored when solving the EBNM subproblem in
order to estimate the prior ĝ. This behavior can be changed by setting use_fixed_in_ebnm
= TRUE. This is a global setting which applies to all factor/loadings pairs; behav-
ior cannot vary from one factor/loadings pair to another.

Value

The flash object from argument flash, with factors or loadings fixed as specified.

flash_factors_init 17

flash_factors_init Initialize flash factors at specified values

Description

Initializes factor/loadings pairs at values specified by init. This function has two primary uses:
1. One can initialize multiple factor/loadings pairs at once using an SVD-like function and then
optimize them via function flash_backfit. Sometimes this results in a better fit than adding them
one at a time via flash_greedy. 2. One can initialize factor/loadings pairs and then fix the factor
(or loadings) via function flash_factors_fix to incorporate "known" factors into a flash object.
See below for examples of both use cases.

Usage

flash_factors_init(flash, init, ebnm_fn = ebnm_point_normal)

Arguments

flash A flash or flash_fit object to which factors are to be added.

init An SVD-like object (specifically, a list containing fields u, d, and v), a flash or
flash_fit object, or a list of matrices specifying the values at which factors and
loadings are to be initialized (for a data matrix of size n× p, this should be a list
of length two, with the first element a matrix of size n×k and the second a matrix
of size p× k). If a flash fit is supplied, then it will be used to initialize both the
first and second moments of posteriors on loadings and factors. Otherwise, the
supplied values will be used to initialize posterior means, with posterior second
moments initialized as the squared values of the first moments. Missing entries
are not allowed.

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

` and G(k)
f to which the priors on loadings and factors g(k)`

and g(k)f are assumed to belong. If the same function is to be used for both load-
ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second
the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.
Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

Value

The flash object from argument flash, with factors and loadings initialized as specified.

18 flash_factors_remove

Examples

Initialize several factors at once and backfit.
fl <- flash_init(gtex) %>%

flash_factors_init(init = svd(gtex, nu = 5, nv = 5)) %>%
flash_backfit()

Add fixed loadings with \ell_i identically equal to one. This can be
interpreted as giving a "mean" factor that accounts for different
row-wise means.
ones <- matrix(1, nrow = nrow(gtex), ncol = 1)
Initialize the factor at the least squares solution.
ls_soln <- t(solve(crossprod(ones), crossprod(ones, gtex)))
fl <- flash_init(gtex) %>%

flash_factors_init(init = list(ones, ls_soln)) %>%
flash_factors_fix(kset = 1, which_dim = "loadings") %>%
flash_backfit() %>%
flash_greedy(Kmax = 5L)

flash_factors_remove Remove factors from a flash object

Description

Sets factor/loadings pairs to zero and then removes them from the flash object. Note that this will
change the indices of existing pairs.

Usage

flash_factors_remove(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factor/loadings pairs to remove.

Value

The flash object from argument flash, with the factors specified by kset removed.

See Also

flash_factors_set_to_zero

flash_factors_reorder 19

flash_factors_reorder Reorder factors in a flash object

Description

Reorders the factor/loadings pairs in a flash object.

Usage

flash_factors_reorder(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying the new order of the factor/loadings pairs. All ex-
isting factors must be included in kset; to drop factors, use flash_factors_remove.

Value

The flash object from argument flash, with the factors reordered according to argument kset.

flash_factors_set_to_zero

Set flash factors to zero

Description

Sets factor/loadings pairs to zero but does not remove them from the flash object (so as to keep
the indices of existing pairs the same).

Usage

flash_factors_set_to_zero(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factor/loadings pairs to set to zero.

Value

The flash object from argument flash, with the factors specified by kset set to zero.

See Also

flash_factors_remove

20 flash_fit

flash_factors_unfix Unfix flash factors

Description

If loadings `·k or factors f·k for one or more factor/loadings pairs have been "fixed" using function
flash_factors_fix, then they can be unfixed using function flash_factors_unfix.

Usage

flash_factors_unfix(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers indexing the factor/loadings pairs whose values are to be
unfixed.

Value

The flash object from argument flash, with values for the factor/loadings pairs specified by kset
unfixed.

flash_fit Extract a flash_fit object

Description

flash_fit objects are the "internal" objects used by flash functions to fit an EBMF model.
Whereas flash objects (the end results of the fitting process) include user-friendly fields and meth-
ods, flash_fit objects were not designed for public consumption and can be unwieldy. Nonethe-
less, some advanced flash functionality requires the wielding of flash_fit objects. In particular,
initialization, convergence, and "verbose" display functions all take one or more flash_fit objects
as input (see parameter init_fn in function flash_greedy; parameter fn in flash_set_conv_crit;
and parameter fns in flash_set_verbose). For users who would like to write custom functions,
the accessor functions and methods enumerated below may prove useful. See flash_set_verbose
for an example.

Usage

flash_fit(flash)

flash_fit_get_pm(f, n)

flash_fit_get_p2m(f, n)

flash_fit 21

flash_fit_get_est_tau(f)

flash_fit_get_fixed_tau(f)

flash_fit_get_tau(f)

flash_fit_get_elbo(f)

flash_fit_get_KL(f, n)

flash_fit_get_g(f, n)

Arguments

flash A flash object.

f A flash_fit object.

n Set n = 1 to access loadings L and n = 2 to access factors F).

Details

The following S3 methods are available for flash_fit objects at all times except while optimizing
new factor/loadings pairs as part of a "greedy" fit:

fitted.flash_fit Returns the "fitted values" E(LF ′) = E(L)E(F)′.

residuals.flash_fit Returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

ldf.flash_fit Returns an LDF decomposition, with columns of L and F scaled as specified by
the user.

Value

See function descriptions below.

Functions

• flash_fit_get_pm(): The posterior means for the loadings matrix L (when parameter n is
equal to 1) or factor matrix F (when n = 2). While optimizing new factor/loadings pairs as
part of a "greedy" fit, only the posterior means for the new loadings `·k or factor f·k will be
returned.

• flash_fit_get_p2m(): The posterior second moments for the loadings matrix L (when pa-
rameter n is equal to 1) or factor matrix F (when n = 2). While optimizing new factor/loadings
pairs, only the posterior second moments for the new loadings `·k or factor f·k will be returned.

• flash_fit_get_est_tau(): Equal to 1/σ2, where σ2 is the estimated portion of the residual
variance (total, by row, or by column, depending on the variance type).

• flash_fit_get_fixed_tau(): Equal to 1/s2, where s2 is the fixed portion of the residual
variance (total, by row, or by column).

• flash_fit_get_tau(): The overall precision 1/(σ2 + s2).

22 flash_greedy

• flash_fit_get_elbo(): The variational lower bound (ELBO).

• flash_fit_get_KL(): A vector containing the KL-divergence portions of the ELBO, with
one value for each factor (when n = 2) or set of loadings (when n = 1). While optimizing new
factor/loadings pairs, only the KL-divergence for the new factor or loadings will be returned.

• flash_fit_get_g(): A list containing estimated priors on loadings ĝ` (when n = 1) or factors
ĝf (when n = 2). While optimizing new factor/loadings pairs, only the estimated prior on the
new factor or loadings will be returned.

flash_greedy Greedily add factors to a flash object

Description

Adds factor/loadings pairs to a flash object in a "greedy" manner. Up to Kmax pairs are added one at
a time. At each step, flash_greedy attempts to find an optimal additional (rank-one) factor given
all previously added factors. The additional factor is retained if it increases the variational lower
bound (ELBO); otherwise, fitting terminates. See flash for examples of usage.

Usage

flash_greedy(
flash,
Kmax = 1,
ebnm_fn = ebnm_point_normal,
init_fn = NULL,
extrapolate = FALSE,
warmstart = FALSE,
maxiter = 500,
tol = NULL,
verbose = NULL

)

Arguments

flash A flash or flash_fit object to which factors are to be added.

Kmax The maximum number of factors to be added. This will not necessarily be the
total number of factors added by flash_greedy, since factors are only added as
long as they increase the ELBO.

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

` and G(k)
f to which the priors on loadings and factors g(k)`

and g(k)f are assumed to belong. If the same function is to be used for both load-
ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second

flash_greedy 23

the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.

Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

init_fn The function used to initialize factor/loadings pairs. Functions flash_greedy_init_default,
flash_greedy_init_softImpute, and flash_greedy_init_irlba have been
supplied; note, in particular, that flash_greedy_init_softImpute can yield
better results than the default initialization function when there is missing data.
Custom initialization functions may also be used. If init_fn = NULL then flash_greedy_init_default
will be used, with an attempt made to set argument sign_constraints appro-
priately via test calls to the EBNM function(s) specified by parameter ebnm_fn.
If factors or loadings are constrained in some other fashion (e.g., bounded sup-
port), then the initialization function should be modified to account for the con-
straints — otherwise, the greedy algorithm can stop adding factor/loadings pairs
too early. Custom initialization functions should accept a single parameter re-
ferring to a flash_fit object and should output a list consisting of two vectors,
which will be used as initial values for the new loadings `·k and the new factor
f·k. Typically, a custom initialization function will extract the matrix of resid-
uals from the flash_fit object using method residuals.flash_fit and then
return a (possibly constrained) rank-one approximation to the matrix of residu-
als. See Examples below.

extrapolate Whether to use an extrapolation technique inspired by Ang and Gillis (2019) to
accelerate the fitting process. Control parameters are handled via global options
and can be set by calling options("extrapolate.control") <- control.param.

warmstart Whether to use "warmstarts" when solving the EBNM subproblems by initializ-
ing solutions at the previous value of the fitted prior ĝ. An important side effect
of warmstarts for ashr-like prior families is to fix the grid at its initial setting.
Fixing the grid can lead to poor fits if there are large changes in the scale of the
estimated prior over the course of the fitting process. However, allowing the grid
to vary can occasionally result in decreases in ELBO.

maxiter The maximum number of iterations when optimizing a greedily added factor/loadings
pair.

tol The convergence tolerance parameter. At each iteration, the fit is compared to
the fit from the previous iteration using a convergence criterion function (by de-
fault, the difference in ELBO, but the criterion can be changed via flash_set_conv_crit).
When the value returned by this function is less than or equal to tol, the newly
added factor/loadings pair is considered to have "converged," so that flash_greedy
moves on and attempts to add another new factor (or, if the maximum number of
factors Kmax has been reached, the process terminates). Note that specifying tol
here will override any value set by flash_set_conv_crit; to use the "global"
tolerance parameter, tol must be left unspecified (NULL). If tol = NULL and a
global tolerance parameter has not been set, then the default tolerance used is
np
√
ε, where n is the number of rows in the dataset, p is the number of columns,

and ε is equal to .Machine$double.eps.

24 flash_greedy_init_default

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Value

The flash object from argument flash, with up to Kmax new factor/loadings pairs "greedily" added.

See Also

flash_greedy_init_default, flash_greedy_init_softImpute, flash_greedy_init_irlba

Examples

The following are examples of advanced usage. See ?flash for basic usage.

Increase the maximum number of iterations in the default initialization
method.
my_init_fn <- function(f) flash_greedy_init_default(f, maxiter = 500)
fl <- flash_init(gtex) %>%

flash_greedy(init_fn = my_init_fn)

Use a custom initialization function that wraps function nmf from
package RcppML.
nmf_init_fn <- function(f) {

nmf_res <- RcppML::nmf(resid(f), k = 1, verbose = FALSE)
return(list(as.vector(nmf_res$w), as.vector(nmf_res$h)))

}
fl.nmf <- flash_init(gtex) %>%

flash_greedy(ebnm_fn = ebnm_unimodal_nonnegative,
init_fn = nmf_init_fn)

flash_greedy_init_default

Initialize a flash factor

Description

The default method for initializing the loadings `·k and factor values f·k of a new ("greedy") flash
factor. It is essentially an implementation of the power method, but unlike many existing imple-
mentations, it can handle missing data and sign constraints. For details, see Chapter 2.2.3 in the
reference below.

flash_greedy_init_default 25

Usage

flash_greedy_init_default(
flash,
sign_constraints = NULL,
tol = NULL,
maxiter = 100,
seed = 666

)

Arguments

flash A flash_fit object.

sign_constraints

This parameter can be used to constrain the sign of the initial factor and loadings.
It should be a vector of length two with entries equal to -1, 0, or 1. The first entry
constrains the sign of the loadings `·k, with -1 yielding nonpositive loadings,
+1 yielding nonnegative loadings, and 0 indicating that loadings should not be
constrained. The second entry of sign_constraints similarly constrains the
sign of factor values f·k. If sign_constraints = NULL, then no constraints will
be applied.

tol Convergence tolerance parameter. When the maximum (absolute) change over
all values `ik and fjk is less than or equal to tol, initialization terminates. At
each iteration, the factor and loadings are L2-normalized. The default tolerance
parameter is min(1/n, 1/p), where n is the number of rows in the data matrix
and p is the number of columns.

maxiter Maximum number of power iterations.

seed Since initialization is random, a default seed is set for reproducibility.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings `·k and the
vector of initial factor values f·k.

References

Jason Willwerscheid (2021), Empirical Bayes Matrix Factorization: Methods and Applications.
Ph.D. thesis, University of Chicago.

See Also

flash_greedy, flash_greedy_init_softImpute, flash_greedy_init_irlba

26 flash_greedy_init_softImpute

flash_greedy_init_irlba

Initialize a flash factor using IRLBA

Description

Initializes a new ("greedy") flash factor using irlba. This can be somewhat faster than flash_greedy_init_default
for large, dense data matrices. For sparse matrices of class Matrix, the default initialization should
generally be preferred.

Usage

flash_greedy_init_irlba(flash, seed = 666, ...)

Arguments

flash A flash_fit object.

seed Since initialization is random, a default seed is set for reproducibility.

... Additional parameters to be passed to irlba.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings `·k and the
vector of initial factor values f·k.

See Also

flash_greedy, flash_greedy_init_default, flash_greedy_init_softImpute

flash_greedy_init_softImpute

Initialize a flash factor using softImpute

Description

Initializes a new ("greedy") flash factor using softImpute. When there is missing data, this can
yield better results than flash_greedy_init_default without sacrificing much (if any) speed.

Usage

flash_greedy_init_softImpute(flash, seed = 666, ...)

flash_init 27

Arguments

flash A flash_fit object.

seed Since initialization is random, a default seed is set for reproducibility.

... Additional parameters to be passed to softImpute.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings `·k and the
vector of initial factor values f·k.

See Also

flash_greedy, flash_greedy_init_default, flash_greedy_init_irlba

flash_init Initialize flash object

Description

Sets up a flash object with no factors. Since all other flash_xxx functions take a flash or
flash_fit object as their first argument, calling flash_init should be the first step in any flash
pipeline. See flash for examples of usage.

Usage

flash_init(data, S = NULL, var_type = 0L, S_dim = NULL)

Arguments

data The observations. Usually a matrix, but can also be a sparse matrix of class
Matrix or a low-rank matrix representation as returned by, for example, svd,
irlba, rsvd, or softImpute (in general, any list that includes fields u, d, and v
will be interpreted as a low-rank matrix representation).

S The standard errors. Can be NULL (in which case all residual variance will be
estimated) or a matrix, vector, or scalar. S should be a scalar if standard errors
are identical across observations. It should be a vector if standard errors either
vary across columns but are constant within any given row, or vary across rows
but are constant within any given column (flash will use the length of the vector
to determine whether the supplied values correspond to rows or columns; if the
data matrix is square, then the sense must be specified using parameter S_dim in
function flash_init).

var_type Describes the structure of the estimated residual variance. Can be NULL, 0, 1,
2, or c(1, 2). If NULL, then S accounts for all residual variance. If var_type
= 0, then the estimated residual variance (which is added to any variance given
by S) is assumed to be constant across all observations. Setting var_type = 1
estimates a single variance parameter for each row; var_type = 2 estimates one

28 flash_nullcheck

parameter for each column; and var_type = c(1, 2) optimizes over all rank-
one matrices (that is, it assumes that the residual variance parameter sij can be
written sij = aibj , where the n-vector a and the p-vector b are to be estimated).
Note that if any portion of the residual variance is to be estimated, then it is usu-
ally faster to set S = NULL and to let flash estimate all of the residual variance.
Further, var_type = c(1, 2) is typically much slower than other options, so it
should be used with care.

S_dim If the argument to S is a vector and the data matrix is square, then S_dim must
specify whether S encodes row-wise or column-wise standard errors. More pre-
cisely, if S_dim = 1, then S will be interpreted as giving standard errors that vary
across rows but are constant within any particular row; if S_dim = 2, then it will
be interpreted as giving standard errors that vary across columns but are constant
within any particular column. If S is a matrix or scalar, or if the data matrix is
not square, then S_dim should be left unspecified (NULL).

Value

An initialized flash object (with no factors).

flash_nullcheck Nullcheck flash factors

Description

Sets factor/loadings pairs to zero if doing so improves the variational lower bound (ELBO). See
flash for examples of usage.

Usage

flash_nullcheck(flash, kset = NULL, remove = TRUE, tol = NULL, verbose = NULL)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factors to nullcheck. If kset = NULL, then
all existing factors will be checked.

remove Whether to remove factors that have been set to zero from the flash object.
Note that this might change the indices of existing factors.

tol The "tolerance" parameter: if a factor does not improve the ELBO by at least
tol, then it will be set to zero. Note that flash_nullcheck does not respect
"global" tolerance parameters set by flash_set_conv_crit (which only affects
the convergence tolerance for greedy fits and backfits). The default tolerance is
np
√
ε, where n is the number of rows in the dataset, p is the number of columns,

and ε is equal to .Machine$double.eps.

verbose When and how to display progress updates. For nullchecks, updates are only
displayed when verbose > 0.

flash_set_conv_crit 29

Value

The flash object from argument flash, with factors that do not improve the ELBO by at least tol
either set to zero or removed (depending on the argument to parameter remove).

See Also

flash_factors_remove, flash_factors_set_to_zero

flash_set_conv_crit Set convergence criterion and tolerance parameter

Description

Used in a flash pipeline to set the criterion for determining whether a greedy fit or backfit has
"converged."

Usage

flash_set_conv_crit(flash, fn = NULL, tol)

Arguments

flash A flash or flash_fit object.

fn The convergence criterion function (see Details below). If NULL, then only the
tolerance parameter is updated (thus a convergence criterion can be set at the
beginning of a flash pipeline, allowing the tolerance parameter to be updated
at will without needing to re-specify the convergence criterion each time). The
default convergence criterion, which is set when the flash object is initialized,
is flash_conv_crit_elbo_diff, which calculates the difference in the varia-
tional lower bound or "ELBO" from one iteration to the next.

tol The tolerance parameter (see Details below). The default, which is set when the
flash object is initialized (see flash_init), is np

√
ε, where n is the number of

rows in the dataset, p is the number of columns, and ε is equal to .Machine$double.eps.

Details

Function flash_set_conv_crit can be used to customize the convergence criterion for a flash
object. This criterion determines when to stop optimizing a newly added factor (see flash_greedy)
and when to stop backfitting (flash_backfit). Note that, because most alternative convergence
criteria do not make sense in the context of a nullcheck, it does not set the "convergence" crite-
rion for flash_nullcheck (for example, flash_conv_crit_max_chg_L would simply return the
maximum L2-normalized loading for each set of loadings `·k).

The criterion is defined by the function supplied as argument to fn, which must accept exactly three
parameters, curr, prev, and k. curr refers to the flash_fit object from the current iteration; prev,
to the flash_fit object from the previous iteration; and, if the iteration is a sequential backfitting
iteration (that is, a flash_backfit iteration with argument extrapolate = FALSE), k identifies the

30 flash_set_timeout

factor/loadings pair that is currently being updated (in all other cases, k is NULL). The function
must output a numeric value; if the value is less than or equal to tol, then the fit is considered
to have "converged." The meaning of "convergence" here varies according to the operation being
performed. In the greedy algorithm, fn simply compares the fit from one iteration to the next.
During a backfit, it similarly compares fits from one iteration to the next, but it only considers the
fit to have converged when the value of fn over successive updates to all factor/loadings pairs is
less than or equal to tol. If, for example, factor/loadings pairs 1, . . . ,K are being sequentially
backfitted, then fits are compared before and after the update to factor/loadings 1, before and after
the update to factor/loadings 2, and so on through factor/loadingsK, and backfitting only terminates
when fn returns a value less than or equal to tol for all K updates.

Package flashier provides a number of functions that may be supplied as convergence criteria: see
flash_conv_crit_elbo_diff (the default criterion), flash_conv_crit_max_chg, flash_conv_crit_max_chg_L,
and flash_conv_crit_max_chg_F. Custom functions may also be defined. Typically, they will
compare the fit in curr (the current iteration) to the fit in prev (the previous iteration). To facilitate
working with flash_fit objects, package flashier provides a number of accessors, which are
enumerated in the documentation for object flash_fit. Custom functions should return a numeric
value that can be compared against tol; see Examples below.

Value

The flash object from argument flash, with the new convergence criterion reflected in updates to
the "internal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx
functions in the same flash pipeline (unless, of course, flash_set_conv_crit is again called
within the same pipeline).

Examples

fl <- flash_init(gtex) %>%
flash_set_conv_crit(flash_conv_crit_max_chg, tol = 1e-3) %>%
flash_set_verbose(
verbose = 3,
fns = flash_verbose_max_chg,
colnames = "Max Chg",
colwidths = 20

) %>%
flash_greedy(Kmax = 3)

flash_set_timeout Set timeout

Description

Used in a flash pipeline to set a maximum amount of fitting time. Note that timeout conditions
are only checked during greedy fits and backfits, so that the total amount of fitting time can ex-
ceed the time set by flash_set_timeout (especially if, for example, there is a nullcheck involv-
ing many factor/loading pairs). Also note that timeout conditions must be cleared using function
flash_clear_timeout before any re-fitting is attempted.

flash_set_verbose 31

Usage

flash_set_timeout(
flash,
tim,
units = c("hours", "secs", "mins", "days", "weeks")

)

Arguments

flash A flash or flash_fit object.

tim A numeric value giving the maximum amount of fitting time, with the units of
time specified by parameter units.

units The units of time according to which parameter tim is to be interpreted.

Value

The flash object from argument flash, with the timeout settings reflected in updates to the "in-
ternal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx func-
tions until they are modified either by flash_clear_timeout or by another call to flash_set_timeout.

Examples

fl <- flash_init(gtex) %>%
flash_set_timeout(1, "secs") %>%
flash_greedy(Kmax = 30) %>%
flash_backfit() %>%
flash_nullcheck() %>%
flash_clear_timeout() # Always clear timeout at the end of a pipeline.

flash_set_verbose Set verbose output

Description

Used in a flash pipeline to set the output that will be printed after each greedy or backfitting
iteration.

Usage

flash_set_verbose(
flash,
verbose = 1L,
fns = NULL,
colnames = NULL,
colwidths = NULL

)

32 flash_set_verbose

Arguments

flash A flash or flash_fit object.

verbose When and how to display progress updates. Set to 0 for no updates; 1 for up-
dates after a "greedy" factor is added or a backfit is completed; 2 for additional
notifications about the variational lower bound (ELBO); and 3 for updates after
every iteration. By default, per-iteration update information includes the change
in ELBO and the maximum (absolute) change over all L2-normalized loadings
`1, . . . , `K and factors f1, . . . , fK . Update information is customizable via pa-
rameters fns, colnames, and colwidths.
A single tab-delimited table of values may also be output using option verbose
= -1. This format is especially convenient for downstream analysis of the fitting
history. For example, it may be used to plot the value of the ELBO after each
iteration (see the "Advanced Flashier" vignette for an illustration).

fns A vector of functions. Used to calculate values to display after each greedy/backfit
iteration when verbose is either -1 or 3 (see Details below). Ignored for other
values of verbose (0, 1, or 2).

colnames A vector of column names, one for each function in fns.

colwidths A vector of column widths, one for each function in fns.

Details

Function flash_set_verbose can be used to customize the output that is printed to console while
fitting a flash object. After each greedy or backfitting iteration (see, respectively, flash_greedy
and flash_backfit), each function in argument fns is successively evaluated and the result is
printed to console in a table with column names defined by argument colnames and column widths
defined by argument colwidths.

Each function in fns must accept exactly three parameters, curr, prev, and k: curr refers to
the flash_fit object from the current iteration; prev, to the flash_fit object from the previous
iteration; and, if the iteration is a sequential backfitting iteration (that is, a flash_backfit iter-
ation with argument extrapolate = FALSE), k identifies the factor/loadings pair that is currently
being updated (in all other cases, k is NULL). Package flashier provides a number of functions
that may be used to customize output: see flash_verbose_elbo, flash_verbose_elbo_diff,
flash_verbose_max_chg, flash_verbose_max_chg_L, and flash_verbose_max_chg_F. Custom
functions may also be defined. They might inspect the current flash_fit object via argument curr;
compare the fit in curr to the fit from the previous iteration (provided by argument prev); or ignore
both flash_fit objects entirely (for example, to track progress over time, one might simply call
Sys.time). To facilitate working with flash_fit objects, package flashier provides a number
of accessors, which are enumerated in the documentation for object flash_fit. Custom functions
should return a character string that contains the output exactly as it is to displayed; see Examples
below.

Value

The flash object from argument flash, with the new verbose settings reflected in updates to the
"internal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx
functions until they are modified by another call to flash_set_verbose.

flash_verbose_elbo 33

Examples

Suppress all verbose output.
fl <- flash_init(gtex) %>%

flash_set_verbose(0) %>%
flash_greedy(Kmax = 5)

Set custom verbose output.
sparsity_F <- function(curr, prev, k) {

g_F <- flash_fit_get_g(curr, n = 2)
g_F_pi0 <- g_F$pi[1] # Mixture weight of the "null" component.
return(g_F_pi0)

}
verbose_fns <- c(flash_verbose_elbo, flash_verbose_max_chg_F, sparsity_F)
colnames <- c("ELBO", "Max Chg (Tiss)", "Sparsity (Tiss)")
colwidths <- c(12, 18, 18)
fl <- flash_init(gtex) %>%

flash_set_verbose(
verbose = 3,
fns = verbose_fns,
colnames = colnames,
colwidths = colwidths

) %>%
flash_greedy(Kmax = 3)

Output can be changed as needed.
fl <- flash_init(gtex) %>%

flash_set_verbose(verbose = 1) %>%
flash_greedy(Kmax = 5L) %>%
flash_backfit(verbose = 3) %>%
flash_greedy(Kmax = 1L)

flash_verbose_elbo Display the current ELBO

Description

Displays the value of the variational lower bound (ELBO) at the current iteration.

Usage

flash_verbose_elbo(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.
prev The flash_fit object from the previous iteration.
k Only used during sequential backfits (that is, calls to flash_backfit where

extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

34 flash_verbose_elbo_diff

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_elbo_diff

Display the difference in ELBO

Description

Displays the difference in the variational lower bound (ELBO) from one iteration to the next.

Usage

flash_verbose_elbo_diff(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_max_chg, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_max_chg 35

flash_verbose_max_chg Display the maximum difference in scaled loadings and factors

Description

Displays the maximum (absolute) change over all (posterior expected values for) loadings `ik and
factors fjk. At each iteration, the loadings vectors `·1, . . . , `·K and factors f·1, . . . , f·K are L2-
normalized.

Usage

flash_verbose_max_chg(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_max_chg_F

Display the maximum difference in scaled factors

Description

Displays the maximum (absolute) change over all (posterior expected values for) factors fjk. At
each iteration, the factors f·1, . . . , f·K are L2-normalized.

36 flash_verbose_max_chg_L

Usage

flash_verbose_max_chg_F(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_L

flash_verbose_max_chg_L

Display the maximum difference in scaled loadings

Description

Displays the maximum (absolute) change over all (posterior expected values for) loadings `ik. At
each iteration, the loadings vectors `·1, . . . , `·K are L2-normalized.

Usage

flash_verbose_max_chg_L(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

gtex 37

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_F

gtex GTEx data

Description

Derived from data made available by the Genotype Tissue Expression (GTEx) project (Lonsdale et
al. 2013), which provides z-scores for assessing the significance of effects of genetic variants (single
nucleotide polymorphisms, or SNPs) on gene expression across 44 human tissues. To reduce the
data to a more manageable size, Urbut et al. (2019) chose the "top" SNP for each gene — that is,
the SNP associated with the largest (absolute) z-score over all 44 tissues. This yields a 16, 069 ×
44 matrix of z-scores, with rows corresponding to SNP-gene pairs and columns corresponding to
tissues. The dataset included here is further subsampled down to 1000 rows.

Format

gtex is a matrix with 1000 rows and 44 columns, with rows corresponding to SNP-gene pairs and
columns corresponding to tissues.

Source

<https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds>

References

Lonsdale et al. (2013). "The Genotype-Tissue Expression (GTEx) project." Nature Genetics 45(6),
580–585.

Urbut, Wang, Carbonetto, and Stephens (2019). "Flexible statistical methods for estimating and
testing effects in genomic studies with multiple conditions." Nature Genetics 51(1), 187–195.

Examples

data(gtex)
summary(gtex)

38 ldf

gtex_colors Colors for plotting GTEx data

Description

A custom palette used by Wang and Stephens (2021) to plot an empirical Bayes matrix factorization
of data from the GTEx project (of which the gtex data in package flashier is a subsample). The
palette is designed to link similar tissues together visually. For example, brain tissues all have the
same color (yellow); arterial tissues are shades of pink or red; etc.

Format

gtex_colors is a named vector of length 44, with names corresponding to tissues (columns) in the
gtex dataset and values giving hexadecimal color codes.

Source

<https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt>

References

Wei Wang and Matthew Stephens (2021). "Empirical Bayes matrix factorization." Journal of Ma-
chine Learning Research 22, 1–40.

Examples

fl <- flash(gtex, greedy_Kmax = 4)
plot(fl, incl_scree = FALSE, pm_colors = gtex_colors)

ldf LDF method for flash and flash fit objects

Description

Given a flash or flash_fit object, returns the LDF decomposition Y ≈ LDF ′.

Usage

ldf(object, type)

S3 method for class 'flash'
ldf(object, type = "f")

S3 method for class 'flash_fit'
ldf(object, type = "f")

plot.flash 39

Arguments

object An object inheriting from class flash or flash_fit.

type Takes identical arguments to function norm. Use "f" or "2" for the 2-norm
(Euclidean norm); "o" or "1" for the 1-norm (taxicab norm); and "i" or "m" for
the infinity norm (maximum norm).

Details

When the prior families G(k)
` and G(k)

f are closed under scaling (as is typically the case), then the
EBMF model (as described in the documention to function flash) is only identifiable up to scaling
by a diagonal matrix D:

Y = LDF ′ + E.

Method ldf scales columns `k and fk so that, depending on the argument to parameter type, their
1-norms, 2-norms, or infinity norms are equal to 1.

Value

A list with fields L, D, and F, each of which corresponds to one of the matrices in the decomposition
Y ≈ LDF ′ (with the columns of L and F scaled according to argument type). Note that D is
returned as a vector rather than a matrix (the vector of diagonal entries in D). Thus, "fitted values"
LDF ′ can be recovered as L %*% diag(D) %*% t(F).

Methods (by class)

• ldf(flash): LDF decomposition for flash objects

• ldf(flash_fit): LDF decomposition for flash_fit objects

plot.flash Plot method for flash objects

Description

Given a flash object, produces up to two figures: one showing the proportion of variance explained
per factor/loadings pair, and one that plots posterior means for either factors or loadings (depending
on the argument to parameter pm_which).

Usage

S3 method for class 'flash'
plot(
x,
include_scree = TRUE,
include_pm = TRUE,
order_by_pve = TRUE,
kset = NULL,
pm_which = c("factors", "loadings"),

40 plot.flash

pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
...

)

Arguments

x An object inheriting from class flash.

include_scree Whether to include a figure ("scree plot") showing the proportion of variance
explained by each factor/loadings pair.

include_pm Whether to include a figure showing the posterior means for either loadings L
or factors F (depending on the argument to parameter pm_which). One plot
panel is produced for each factor/loadings pair k. If argument pm_groups is
left unspecified, then bar plots will be produced, with each bar corresponding to
a single value `ik or fjk. Otherwise, overlapping histograms will be produced,
with each histogram corresponding to one of the groups specified by pm_groups.

order_by_pve If TRUE, then the factor/loadings pairs will be re-ordered according to proportion
of variance explained (from highest to lowest).

kset A vector of integers specifying the factor/loadings pairs to be plotted. If kset =
NULL, then all will be plotted.

pm_which Whether to plot loadings L or factors F in the plots of posterior means. This
parameter is ignored when include_pm = FALSE.

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values `i· or fj· are to be shown in the plots of
posterior means. If the dataset has row or column names, then names rather
than indices may be specified. If pm_subset = NULL, then all values will be
plotted. This parameter is ignored when include_pm = FALSE.

pm_groups A vector specifying the group to which each row of the data yi· or column y·j be-
longs (groups may be numeric indices or strings). If pm_groups = NULL, then a
bar plot of the ungrouped data is produced (see include_pm above). Otherwise,
a group must be provided for each plotted row i or column j, so that the length
of pm_groups is exactly equal to the number of rows or columns in the full
dataset or, if pm_subset is specified, in the subsetted dataset. When pm_groups
is not NULL, a set of overlapping histograms is produced for each factor/loadings
pair, with one histogram per group (again see include_pm). This parameter is
ignored when include_pm = FALSE.

pm_colors A vector specifying a color for each bar (if pm_groups = NULL) or histogram
(if pm_groups is not NULL). Passed directly to parameter values in ggplot2
function scale_color_manual. This parameter is ignored when include_pm =
FALSE.

... Additional parameters are ignored.

Value

If arguments include_scree and include_pm specify that only one figure be produced, then
plot.flash() returns a ggplot2 object. If both figures are to be produced, then plot.flash()

residuals.flash 41

prints both plots but does not return a value.

residuals.flash Residuals method for flash objects

Description

Given a flash object, returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

Usage

S3 method for class 'flash'
residuals(object, ...)

Arguments

object An object inheriting from class flash.

... Additional parameters are ignored.

Value

The matrix of expected residuals.

residuals.flash_fit Residuals method for flash fit objects

Description

Given a flash_fit object, returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

Usage

S3 method for class 'flash_fit'
residuals(object, ...)

Arguments

object An object inheriting from class flash_fit.

... Additional parameters are ignored.

Value

The matrix of expected residuals.

Index

∗ data
gtex, 37
gtex_colors, 38

.Machine, 10, 23, 28, 29

ebnm, 5, 14, 15, 17, 23

fitted.flash, 3, 7
fitted.flash_fit, 3, 21
flash, 3, 4, 8–20, 22, 24, 27–32, 38, 39, 41
flash_add_intercept, 8
flash_backfit, 7, 8, 9, 11–14, 17, 29, 32–36
flash_clear_timeout, 10, 30, 31
flash_conv_crit_elbo_diff, 11, 12, 13, 29,

30
flash_conv_crit_max_chg, 11, 12, 13, 30
flash_conv_crit_max_chg_F, 11, 12, 12, 13,

30
flash_conv_crit_max_chg_L, 11–13, 13, 29,

30
flash_ebnm, 5, 14, 17, 23
flash_factors_fix, 7, 16, 17, 20
flash_factors_init, 5, 7, 14–17, 17, 23
flash_factors_remove, 7, 18, 19, 29
flash_factors_reorder, 19
flash_factors_set_to_zero, 7, 18, 19, 29
flash_factors_unfix, 16, 20
flash_fit, 3, 7, 11–13, 20, 23, 29, 30, 32–36,

38, 39, 41
flash_fit_get_elbo (flash_fit), 20
flash_fit_get_est_tau (flash_fit), 20
flash_fit_get_fixed_tau (flash_fit), 20
flash_fit_get_g (flash_fit), 20
flash_fit_get_KL (flash_fit), 20
flash_fit_get_p2m (flash_fit), 20
flash_fit_get_pm (flash_fit), 20
flash_fit_get_tau (flash_fit), 20
flash_greedy, 5, 7, 14, 15, 17, 20, 22, 23,

25–27, 29, 32

flash_greedy_init_default, 23, 24, 24, 26,
27

flash_greedy_init_irlba, 23–25, 26, 27
flash_greedy_init_softImpute, 23–26, 26
flash_init, 4, 7, 27, 27, 29
flash_nullcheck, 7, 28, 29
flash_set_conv_crit, 7, 10, 11, 20, 23, 28,

29
flash_set_timeout, 10, 30
flash_set_verbose, 5, 7, 10, 20, 24, 31,

34–37
flash_verbose_elbo, 32, 33, 34–37
flash_verbose_elbo_diff, 32, 34, 34,

35–37
flash_verbose_max_chg, 32, 34, 35, 36, 37
flash_verbose_max_chg_F, 32, 34, 35, 35, 37
flash_verbose_max_chg_L, 32, 34–36, 36

gtex, 37, 38
gtex_colors, 38

irlba, 4, 26, 27

ldf, 38
ldf.flash, 7
ldf.flash_fit, 21

Matrix, 4, 27

norm, 39

plot.flash, 39

residuals.flash, 7, 41
residuals.flash_fit, 21, 41
rsvd, 4, 27

scale_color_manual, 40
softImpute, 4, 26, 27
svd, 4, 27
Sys.time, 32

42

	fitted.flash
	fitted.flash_fit
	flash
	flash_add_intercept
	flash_backfit
	flash_clear_timeout
	flash_conv_crit_elbo_diff
	flash_conv_crit_max_chg
	flash_conv_crit_max_chg_F
	flash_conv_crit_max_chg_L
	flash_ebnm
	flash_factors_fix
	flash_factors_init
	flash_factors_remove
	flash_factors_reorder
	flash_factors_set_to_zero
	flash_factors_unfix
	flash_fit
	flash_greedy
	flash_greedy_init_default
	flash_greedy_init_irlba
	flash_greedy_init_softImpute
	flash_init
	flash_nullcheck
	flash_set_conv_crit
	flash_set_timeout
	flash_set_verbose
	flash_verbose_elbo
	flash_verbose_elbo_diff
	flash_verbose_max_chg
	flash_verbose_max_chg_F
	flash_verbose_max_chg_L
	gtex
	gtex_colors
	ldf
	plot.flash
	residuals.flash
	residuals.flash_fit
	Index

