Package ‘fmeffects’

March 7, 2024
Title Model-Agnostic Interpretations with Forward Marginal Effects
Version 0.1.2

Description Create local, regional, and global explanations for any machine learning model with for-
ward marginal effects. You provide a model and data, and 'fmeffects' computes feature ef-
fects. The package is based on the theory in: C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bis-
chl, and C. Heumann (2022) <arXiv:2201.08837>.

License LGPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Suggests caret, knitr, mlr3verse, ranger, rmarkdown, rpart

Imports checkmate, data.table, partykit, ggparty, ggplot2, cowplot,
R6, testthat

Collate 'ExtrapolationDetector.R' FME.R' FMEPIot.R'
'NonLinearityMeasure.R' 'Partitioning.R' 'PartitioningCtree.R'
'PartitioningPlot.R' PartitioningRpart.R' 'Predictor.R'
'PredictorCaret.R' 'PredictorMLR3.R' 'PredictorParsnip.R'
'Pruner.R' 'S3.R' 'ame.R' 'bikes.R' 'misc.R' 'zzz.R’

URL https://holgstr.github.io/fmeffects/,

https://github.com/holgstr/fmeffects

BugReports https://github.com/holgstr/fmeffects/issues
VignetteBuilder knitr
NeedsCompilation no

Author Holger Lowe [cre, aut],
Christian Scholbeck [aut],
Christian Heumann [rev],
Bernd Bischl [rev],
Giuseppe Casalicchio [rev]

Maintainer Holger Lowe <hbj.loewe@gmail.com>
Depends R (>=3.5.0)

Repository CRAN

Date/Publication 2024-03-07 20:10:02 UTC

https://arxiv.org/abs/2201.08837
https://holgstr.github.io/fmeffects/
https://github.com/holgstr/fmeffects
https://github.com/holgstr/fmeffects/issues

2

fmeffects-package

R topics documented:

fmeffects-package 2
AMC . o v v e e e e e e e e e e e e e 3
AverageMarginalEffects L 4
bikes e e e 7
CAME .« . v v v e et e e e e e e e e e e e e e e e e e 8
fme e 9
ForwardMarginalEffect 11
makePredictor L 13
Partitioning 14
PartitioningCtree L. e e e 16
PartitioningRpart L 17
plot.ForwardMarginalEffect 18
plot.Partitioning e e e e e 18
Predictor e e 19
PredictorCaret 20
PredictorMLR3 21
PredictorParsnip e 22
print.ForwardMarginalEffect 23
print.Partitioning 23
summary.AverageMarginalEffects L o o oL 24
summary.ForwardMarginalEffect o oL 24
summary.Partitioning 25
Index 26
fmeffects-package Jfmeffects
Description

Computes forward marginal effects (FME) for arbitrary supervised machine learning models. You
provide a model and data, and *fmeffects’ gives you feature effects.

Author(s)

Maintainer: Holger Lowe <hbj.loewe@gmail . com>

Authors:
¢ Christian Scholbeck <christian.scholbeck@stat.uni-muenchen.de>
Other contributors:

e Christian Heumann <christian.heumann@stat.uni-muenchen.de> [reviewer]
e Bernd Bischl <bernd.bischl@stat.uni-muenchen.de> [reviewer]

* Giuseppe Casalicchio <giuseppe.casalicchio@stat.uni-muenchen.de> [reviewer]

ame 3

See Also
Useful links:

e https://holgstr.github.io/fmeffects/
e https://github.com/holgstr/fmeffects
* Report bugs at https://github.com/holgstr/fmeffects/issues

ame Computes AMEs for every feature (or a subset of features) of a model.

Description

This is a wrapper function for AverageMarginalEffects$new(. ..)$compute(). It computes Av-
erage Marginal Effects (AME) based on Forward Marginal Effects (FME) for a model. The AME
is a simple mean FME and computed w.r.t. a feature variable and a model.

Usage

ame(model, data, target, features = NULL, ep.method = "none”)

Arguments
model The (trained) model, with the ability to predict on new data. This must be an
Learner (mlr3) or train (caret) object.
data The data used for computing AMEs, must be data.frame or data.table.
target A string specifying the model’s target variable.
features A named character vector of the names of the feature variables for which AMEs
should be computed, together with the desired step sizes.
ep.method String specifying the method used for extrapolation detection. One of "none”
or "envelope". Defaults to "none".
Value

An AverageMarginalEffects object, with a field results containing a list of summary statistics,
including

* Feature: The name of the feature.

* step.size: The step.size w.r.t. the specified feature.

* AME: The Average Marginal Effect for a step of length step.size w.r.t. the specified feature.

* SD: The standard deviation of FME:s for the specified feature and step.size.

* 0.25: The 0.25-quantile of FMEs for the specified feature and step.size.

* 0.75: The 0.75-quantile of FMEs for the specified feature and step.size.

* n: The number of observations included for the computation of the AME. This can vary for the
following reasons: For categorical features, FMEs are only computed for observations where
the original category is not the step.size category. For numerical features, FMEs are only com-
puted for observations that are not extrapolation points (if ep.method is set to "envelope").

https://holgstr.github.io/fmeffects/
https://github.com/holgstr/fmeffects
https://github.com/holgstr/fmeffects/issues

4 AverageMarginalEffects

References

Scholbeck, C. A., Casalicchio, G., Molnar, C., Bischl, B., & Heumann, C. (2022). Marginal Effects
for Non-Linear Prediction Functions.

Examples

Train a model:

library(mlr3verse)

library(ranger)

data(bikes, package = "fmeffects")

set.seed(123)

row.id = sample(1:nrow(bikes), 100)

task = as_task_regr(x = bikes, id = "bikes"”, target = "count")
forest = 1lrn("regr.ranger")$train(task)

Compute AMEs for all features:
overview = ame(model = forest, data = bikes[row.id,], target = "count")
summary (overview)

Compute AMEs for a subset of features with non-default step.sizes:
overview = ame(model = forest,
data = bikes[row.id, 17,

target = "count”,
features = c(humidity = 0.1, weather = c("clear”, "rain")))
summary (overview)

Extract results:
overview$results

AverageMarginalEffects
R6 Class computing Average Marginal Effects (AME) based on For-
ward Marginal Effects (FME) for a model

Description

The AME is a simple mean FME and computed w.r.t. a feature variable and a model.

Public fields

predictor Predictor object

features vector of features for which AMEs should be computed
ep.method string specifying extrapolation detection method
results data.table with AMEs computed

computed logical specifying if compute() has been run

AverageMarginalEffects 5

Methods

Public methods:

e AverageMarginalEffects$new()
e AverageMarginalEffects$compute()
e AverageMarginalEffects$clone()

Method new(): Create a new AME object.

Usage:
AverageMarginalEffects$new(
model,
data,
target,
features = NULL,
ep.method = "none”

)

Arguments:

model The (trained) model, with the ability to predict on new data. This must be an Learner
(mlr3) or train (caret) object.

data The data used for computing AMEs, must be data.frame or data.table.
target A string specifying the model’s target variable.

features A named character vector of the names of the feature variables for which AMEs
should be computed, together with the desired step sizes.

ep.method String specifying the method used for extrapolation detection. One of "none"” or
"envelope"”. Defaults to "none".

Returns: A new AME object.

Examples:

Train a model:

library(mlr3verse)

library(ranger)

set.seed(123)

data(bikes, package = "fmeffects")

row.id = sample(1:nrow(bikes), 100)

task = as_task_regr(x = bikes, id = "bikes", target = "count")
forest = 1lrn("regr.ranger”)$train(task)

Compute AMEs for all features:
overview = AverageMarginalEffects$new(
model = forest,
data = bikes[row.id, 1,
target = "count”)$compute()
summary (overview)

Compute AMEs for a subset of features with non-default step.sizes:
overview = AverageMarginalEffects$new(model = forest,

6 AverageMarginalEffects

data = bikes[row.id, 1,

target = "count”,

features = c(humidity = 0.1,

weather = c("clear”, "rain")))$compute()
summary (overview)

Method compute(): Computes results, i.e., AMEs including the SD of FMEs, for an AME object.

Usage:
AverageMarginalEffects$compute()

Returns: An AME object with results.

Examples:

Compute results:
overview$compute()

Method clone(): The objects of this class are cloneable with this method.

Usage:
AverageMarginalEffects$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

H m o
Method ‘AverageMarginalEffects$new®
B m o

Train a model:

library(mlr3verse)

library(ranger)

set.seed(123)

data(bikes, package = "fmeffects”)

row.id = sample(1:nrow(bikes), 100)

task = as_task_regr(x = bikes, id = "bikes"”, target = "count")
forest = 1lrn("regr.ranger”)$train(task)

Compute AMEs for all features:
overview = AverageMarginalEffects$new(
model = forest,
data = bikes[row.id, 17,
target = "count")$compute()
summary (overview)

Compute AMEs for a subset of features with non-default step.sizes:
overview = AverageMarginalEffects$new(model = forest,
data = bikes[row.id, 1,
target = "count”,
features = c(humidity = 0.1,

bikes 7

weather = c("clear”, "rain")))$compute()
summary (overview)

e e
Method ‘AverageMarginalEffects$compute®
B oo

Compute results:
overview$compute()

bikes Regression data of the usage of rental bikes in Washington D.C., USA

Description

This data set contains information on hourly bike sharing usage in Washington, D.C. for the years
2011-2012. The target variable is count, the total number of bikes lent out to users at a specific
time.

Usage
data(bikes)

Format

An object of class data. table (inherits from data. frame) with 727 rows and 11 columns.

Details
This data frame contains the following columns:

season Season of the year

year Year; 0=2011, 1=2012

month Month of the year

holiday If a day is a public holiday (y/n)
weekday Day of the week

workingday If a day is aworking day (y/n)
weather Weather situation

temp Temperature in degrees celsius
humidity Humidity (relative)

windspeed Windspeed in miles per hour

count Total number of bikes lent out to users

Source

This is a subset of the original data, which can be found on the OpenML database (ID = 42712).

https://www.openml.org/search?type=data&id=42712&sort=runs&status=active

8 came

References

Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background
knowledge", Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg,
doi:10.1007/s13748-013-0040-3.

Vanschoren, Joaquin, et al. "OpenML: networked science in machine learning." ACM SIGKDD
Explorations Newsletter 15.2 (2014): 49-60.

came Computes a partitioning for a ForwardMarginalEffect

Description

This is a wrapper function that creates the correct subclass of Partitioning. It computes feature
subspaces for semi-global interpretations of FMEs via recursive partitioning (RP).

Usage

came (
effects,
number.partitions = NULL,
max.sd = Inf,

rp.method = "ctree”,
tree.control = NULL
)
Arguments
effects A ForwardMarginalEffect object with FMEs computed.

number.partitions
The exact number of partitions required. Either number.partitions or max.sd
can be specified.

max. sd The maximum standard deviation required in each partition. Among multiple
partitionings with this criterion identified, the one with lowest number of parti-
tions is selected. Either number.partitions or max. sd can be specified.

rp.method One of "ctree” or "rpart”. The RP algorithm used for growing the decision
tree. Defaults to "ctree”.

tree.control Control parameters for the RP algorithm. One of "ctree.control(...)" or
"rpart.control(...)". # @return Partitioning Object with identified fea-
ture subspaces.

References

Scholbeck, C. A., Casalicchio, G., Molnar, C., Bischl, B., & Heumann, C. (2022). Marginal Effects
for Non-Linear Prediction Functions.

fme 9

Examples

Train a model and compute FMEs:

library(mlr3verse)

library(ranger)

data(bikes, package = "fmeffects”)

task = as_task_regr(x = bikes, id = "bikes"”, target = "count")

forest = 1rn("regr.ranger”)$train(task)

effects = fme(model = forest, data = bikes, target = "count”, feature = "temp”,
step.size = 1, ep.method = "envelope")

Find a partitioning with exactly 3 subspaces:
subspaces = came(effects, number.partitions = 3)

Find a partitioning with a maximum standard deviation of 20, use ‘rpart‘:
library(rpart)
subspaces = came(effects, max.sd = 20, rp.method = "rpart”)

Analyze results:
summary (subspaces)
plot(subspaces)

Extract results:
subspaces$results
subspaces$tree

fme Computes FMEs.

Description

This is a wrapper function for FME$new(. ..)$compute(). It computes forward marginal effects
(FMEj5) for a specified change in feature values.

Usage

fme(
model,
data,
target,
feature,
step.size,
ep.method = "none"”,
compute.nlm = FALSE,
nlm.intervals = 1

10 fme

Arguments

model The (trained) model, with the ability to predict on new data. This must be an
Learner (mlr3) or train (caret) object.

data The data used for computing FMEs, must be data.frame or data.table.

target A string specifying the model’s target variable.

feature A character vector of the names of the feature variables affected by the step. For
numerical steps, this must have length 1 or 2. For categorical steps, this must
have length 1.

step.size A numeric vector of the step lengths in the features affected by the step. For
numerical steps, this must have length 1 or 2. For categorical steps, this is the
name of the reference category.

ep.method String specifying the method used for extrapolation detection. One of "none”

or "envelope"”. Defaults to "none".
compute.nlm Compute NLMs for FMEs for numerical steps. Defaults to FALSE.

nlm.intervals Number of intervals for computing NLMs. Results in longer computing time
but more accurate approximation of NLMs. Defaults to 1.

Value

FME Object with FMEs computed.

References

Scholbeck, C. A., Casalicchio, G., Molnar, C., Bischl, B., & Heumann, C. (2022). Marginal Effects
for Non-Linear Prediction Functions.

Examples

Train a model:

library(mlr3verse)

library(ranger)

data(bikes, package = "fmeffects”)

forest = 1Irn("regr.ranger”)$train(as_task_regr(x = bikes, id = "bikes"”, target = "count"))

Compute FMEs:
effects = fme(model = forest, data = bikes, target = "count”, feature = "temp”,
step.size = 1, ep.method = "envelope")

Analyze results:
summary (effects)
plot(effects)

Extract results:
effects$results

ForwardMarginalEffect 11

ForwardMarginalEffect R6 Class representing a forward marginal effect (FME)

Description

The FME is a forward difference in prediction due to a specified change in feature values.

Public fields

feature vector of features

predictor Predictor object

step.size vector of step sizes for features specified by "feature"
data.step the data.table with the data matrix after the step

ep.method string specifying extrapolation detection method
compute.nlm logical specifying if NLM should be computed
nlm.intervals number of intervals for computing NLMs

step.type "numerical” or "categorical”

extrapolation.ids vector of observation ids classified as extrapolation points
results data.table with FMEs and NLMs computed

ame Average Marginal Effect (AME) of observations in results

anlm Average Non-linearity Measure (ANLM) of observations in results

computed logical specifying if compute() has been run

Methods

Public methods:

e ForwardMarginalEffect$new()

* ForwardMarginalEffect$compute()
e ForwardMarginalEffect$plot()

e ForwardMarginalEffect$clone()

Method new(): Create a new ForwardMarginalEffect object.

Usage:
ForwardMarginalEffect$new(
predictor,
feature,
step.size,
ep.method = "none”,
compute.nlm = FALSE,
nlm.intervals = 1

)

Arguments:

12

ForwardMarginalEffect

predictor Predictor object.

feature Feature vector.

step.size Vector of step sizes.

ep.method String specifying extrapolation detection method.
compute.nlm Compute NLM with FMEs? Defaults to FALSE.
nlm.intervals How many intervals for NLM computation. Defaults to 1.

Returns: A new ForwardMarginalEffect object.

Examples:

Train a model:

library(mlr3verse)
library(ranger)
data(bikes, package = "fmeffects")

forest = 1rn("regr.ranger”)$train(as_task_regr(x = bikes, id = "bikes”, target = "count"”))

Create an ‘ForwardMarginalEffect® object:

effects = ForwardMarginalEffect$new(makePredictor(forest, bikes, "count”),
feature = c("temp"”, "humidity"),
step.size = c(1, 0.01),
ep.method = "envelope")

Method compute(): Computes results, i.e., FME (and NLMs) for non-extrapolation points, for
a ForwardMarginalEffect object.

Usage:
ForwardMarginalEffect$compute()
Returns: A ForwardMarginalEffect object with results.

Examples:

Compute results:
effects$compute()

Method plot(): Plots results, i.e., FME (and NLMs) for non-extrapolation points, for an FME
object.
Usage:
ForwardMarginalEffect$plot(with.nlm = FALSE, jitter = c(@, 0))
Arguments:
with.nlm Plots NLMs if computed, defaults to FALSE.
jitter lJitters data. A two-dimensional numeric vector, corresponds to "width” and "height”.
See ?ggplot2::geom_jitter for details. Not available if step.type is categorical. De-
faults to no jittering, i.e., c(0, 0).
Examples:

Compute results:
effects$plot()

Method clone(): The objects of this class are cloneable with this method.

makePredictor 13

Usage:
ForwardMarginalEffect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

e e
Method ‘ForwardMarginalEffect$new®
B m o

Train a model:

library(mlr3verse)

library(ranger)

data(bikes, package = "fmeffects"”)

forest = 1Irn("regr.ranger”)$train(as_task_regr(x = bikes, id = "bikes”, target = "count"))

Create an ‘ForwardMarginalEffect' object:

effects = ForwardMarginalEffect$new(makePredictor(forest, bikes, "count”),
feature = c("temp”, "humidity"),
step.size = c(1, 0.01),
ep.method "envelope")

o
Method ‘ForwardMarginalEffect$compute®
H m o

Compute results:
effects$compute()

e
Method ‘ForwardMarginalEffect$plot®
Bt m oo

Compute results:
effects$plot()

makePredictor User-friendly function to create a Predictor.

Description

A wrapper function that creates the correct subclass of Predictor by automatically from model.
Can be passed to the constructor of FME.

14 Partitioning

Usage

makePredictor(model, data, target)

Arguments
model the (trained) model, with the ability to predict on new data.
data the data used for computing FMEs, must be data.frame or data.table.
target a string specifying the target variable.

Examples

Train a model:

library(mlr3verse)
data(bikes, package = "fmeffects")
task = as_task_regr(x = bikes, id = "bikes", target = "count")

forest = 1rn("regr.ranger")$train(task)

Create the predictor:
predictor = makePredictor(forest, bikes, "count")

This instantiated an object of the correct subclass of ‘Predictor‘:
class(predictor)

Partitioning R6 Class representing a partitioning

Description

This is the abstract superclass for partitioning objects like PartitioningCtree and PartitioningRpart.
A Partitioning contains information about feature subspaces with conditional average marginal ef-
fects (cAME) computed for ForwardMarginalEffect objects.

Public fields

object aForwardMarginalEffect object with results computed
method the method for finding feature subspaces

value the value of method

results descriptive statistics of the resulting feature subspaces
tree the tree representing the partitioning, a party object
tree.control control parameters for the RP algorithm

computed logical specifying if compute() has been run

Partitioning 15

Methods

Public methods:
e Partitioning$new()
e Partitioning$compute()
e Partitioning$plot()
e Partitioning$clone()

Method new(): Create a Partitioning object

Usage:
Partitioning$new(...)

Arguments:
. Partitioning cannot be initialized, only its subclasses

Method compute(): Computes the partitioning, i.e., feature subspaces with more homogeneous
FMEs, for a ForwardMarginalEffect object.

Usage:
Partitioning$compute()

Returns: AnPartitioning object with results.

Examples:

Compute results for an arbitrary partitioning:
subspaces$compute()

Method plot(): Plots results, i.e., a decision tree and summary statistics of the feature sub-
spaces, for an Partitioning object after $compute () has been run.

Usage:
Partitioning$plot()

Examples:

Plot an arbitrary partitioning:
subspaces$plot()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Partitioning$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

o
Method ‘Partitioning$compute*
B o

Compute results for an arbitrary partitioning:

16 PartitioningCtree

subspaces$compute()

oo
Method ‘Partitioning$plot®
B o

Plot an arbitrary partitioning:
subspaces$plot()

PartitioningCtree FartitioningCtree

Description

This task specializes Partitioning for the ctree algorithm for recursive partitioning.

It is recommended to use came () for construction of Partitioning objects.

Super class

fmeffects::Partitioning ->PartitioningCtree

Methods

Public methods:

e PartitioningCtree$new()
e PartitioningCtree$clone()

Method new(): Create a new PartitioningCtree object.
Usage:
PartitioningCtree$new(object, method, value, tree.control = NULL)
Arguments:
object an FME object with results computed.
method the method for finding feature subspaces.
value the value of method.
tree.control control parameters for the RP algorithm.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PartitioningCtree$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PartitioningRpart

17

PartitioningRpart PartitioningRpart

Description

This task specializes Partitioning for the rpart algorithm for recursive partitioning.

It is recommended to use came () for construction of Partitioning objects.

Super class

fmeffects::Partitioning ->PartitioningRpart

Methods

Public methods:

e PartitioningRpart$new()
e PartitioningRpart$clone()

Method new(): Create a new PartitioningRpart object.

Usage:

PartitioningRpart$new(object, method, value, tree.control = NULL)

Arguments:

object An FME object with results computed.
method The method for finding feature subspaces.
value The value of method.

tree.control Control parameters for the RP algorithm.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PartitioningRpart$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

18

plot.Partitioning

plot.ForwardMarginalEffect
Plots an ForwardMarginalEffect object.

Description

Plots an ForwardMarginalEffect object.

Usage

S3 method for class 'ForwardMarginalEffect'
plot(x, ...)

Arguments
X object of class ForwardMarginalEffect.
additional arguments affecting the summary produced.
plot.Partitioning Plots an FME Partitioning.
Description

Plots an FME Partitioning.

Usage
S3 method for class 'Partitioning'
plot(x, ...)

Arguments
X object of class Partitioning.

additional arguments affecting the summary produced.

Predictor 19

Predictor R6 Class representing a predictor

Description

This is the abstract superclass for predictor objects like PredictorMLR3 and PredictorCaret. A
Predictor contains information about an ML model’s prediction function and training data.

Public fields

model The (trained) model, with the ability to predict on new data.
X A data.table with feature and target variables.
feature.names A character vector with the names of the features in X.

feature.types A character vector with the types (numerical or categorical) of the features in X.

Methods

Public methods:

* Predictor$new()

* Predictor$clone()

Method new(): Create a Predictor object

Usage:

Predictor$new(...)

Arguments:

. Predictor cannot be initialized, only its subclasses

Method clone(): The objects of this class are cloneable with this method.

Usage:
Predictor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

20 PredictorCaret

PredictorCaret PredictorCaret

Description

This task specializes Predictor for caret regression models. The model is assumedtobe ac(”train”,
"train.formula").

It is recommended to use makePredictor () for construction of Predictor objects.

Super class

fmeffects::Predictor ->PredictorCaret

Methods
Public methods:

* PredictorCaret$new()
e PredictorCaret$predict()
e PredictorCaret$clone()

Method new(): Create a new PredictorCaret object.
Usage:
PredictorCaret$new(model, data, target)
Arguments:
model train, train.formula object.
data The data used for computing FMEs, must be data.frame or data.table.
target A string specifying the target variable.

Method predict(): Predicts on an observation "newdata”.

Usage:
PredictorCaret$predict(newdata)

Arguments:

newdata The feature vector for which the target should be predicted.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PredictorCaret$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PredictorMLR3 21

PredictorMLR3 PredictorMLR3

Description

This task specializes Predictor for ml1r3 models. The model is assumed to be a LearnerRegr or
LearnerClassif.

It is recommended to use makePredictor () for construction of Predictor objects.

Super class

fmeffects::Predictor ->PredictorMLR3

Methods

Public methods:

* PredictorMLR3$new()
* PredictorMLR3$predict()
e PredictorMLR3$clone()

Method new(): Create a new PredictorMLR3 object.
Usage:
PredictorMLR3$new(model, data, target)
Arguments:
model LearnerRegr or LearnerClassif object.
data The data used for computing FMEs, must be data.frame or data.table.
target A string specifying the target variable.

Method predict(): Predicts on an observation "newdata”.

Usage:
PredictorMLR3$predict(newdata)

Arguments:

newdata The feature vector for which the target should be predicted.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PredictorMLR3$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

22 PredictorParsnip

PredictorParsnip PredictorParsnip

Description

This task specializes Predictor for parsnip models. The model is assumed to be a model_fit
object.

It is recommended to use makePredictor () for construction of Predictor objects.

Super class

fmeffects: :Predictor ->PredictorParsnip

Methods
Public methods:

e PredictorParsnip$new()
e PredictorParsnip$predict()
* PredictorParsnip$clone()

Method new(): Create a new PredictorParsnip object.
Usage:
PredictorParsnip$new(model, data, target)
Arguments:
model model_fit object.
data The data used for computing FMEs, must be data.frame or data.table.
target A string specifying the target variable.

Method predict(): Predicts on an observation "newdata”.

Usage:
PredictorParsnip$predict(newdata)

Arguments:

newdata The feature vector for which the target should be predicted.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PredictorParsnip$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

print. ForwardMarginalEffect

23

print.ForwardMarginalEffect
Prints an ForwardMarginalEffect object.

Description

Prints an ForwardMarginalEffect object.

Usage

S3 method for class 'ForwardMarginalEffect'

print(x, ...)
Arguments

X object of class ForwardMarginalEffect.

additional arguments affecting the summary produced.
print.Partitioning Prints an FME Partitioning.

Description

Prints an FME Partitioning.

Usage
S3 method for class 'Partitioning'’
print(x, ...)

Arguments
X object of class Partitioning.

additional arguments affecting the summary produced.

24 summary.ForwardMarginalEffect

summary .AverageMarginalEffects
Prints summary of an AverageMarginalEffects object.

Description

Prints summary of an AverageMarginalEffects object.

Usage
S3 method for class 'AverageMarginalEffects'
summary (object, ...)

Arguments
object object of class AverageMarginalEffects.

additional arguments affecting the summary produced.

summary.ForwardMarginalEffect
Prints summary of an ForwardMarginalEffect object.

Description

Prints summary of an ForwardMarginalEffect object.

Usage
S3 method for class 'ForwardMarginalEffect'
summary(object, ...)

Arguments
object object of class ForwardMarginalEffect.

additional arguments affecting the summary produced.

summary.Partitioning

25

summary.Partitioning Prints summary of an FME Partitioning.

Description

Prints summary of an FME Partitioning.

Usage
S3 method for class 'Partitioning'
summary (object, ...)

Arguments
object object of class Partitioning.

additional arguments affecting the summary produced.

Index

x datasets
bikes, 7

ame, 3
AverageMarginalEffects, 4

bikes, 7

came, 8
came(), 16, 17

fme, 9

fmeffects (fmeffects-package), 2
fmeffects-package, 2
fmeffects::Partitioning, 16, 17
fmeffects: :Predictor, 20-22
ForwardMarginalEffect, 11

makePredictor, 13
makePredictor(), 20-22

Partitioning, 14, 16, 17
PartitioningCtree, 14, 16
PartitioningRpart, 14, 17
plot.ForwardMarginalEffect, 18
plot.Partitioning, 18
Predictor, 13, 19, 20-22
PredictorCaret, 19, 20
PredictorMLR3, /9, 21
PredictorParsnip, 22
print.ForwardMarginalEffect, 23
print.Partitioning, 23

summary .AverageMarginalEffects, 24
summary.ForwardMarginalEffect, 24
summary.Partitioning, 25

	fmeffects-package
	ame
	AverageMarginalEffects
	bikes
	came
	fme
	ForwardMarginalEffect
	makePredictor
	Partitioning
	PartitioningCtree
	PartitioningRpart
	plot.ForwardMarginalEffect
	plot.Partitioning
	Predictor
	PredictorCaret
	PredictorMLR3
	PredictorParsnip
	print.ForwardMarginalEffect
	print.Partitioning
	summary.AverageMarginalEffects
	summary.ForwardMarginalEffect
	summary.Partitioning
	Index

