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Abstract

The R package kequate enables observed-score equating using the kernel method of
test equating. We present the recent developments of kequate, which provide additional
support for item-response theory observed score equating using 2-PL and 3-PL models
in the equivalent groups design and non-equivalent groups with anchor test design using
chain equating. The implementation also allows for local equating using IRT observed-
score equating. Support is provided for the R package ltm.
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1. Introduction

The kernel method of test equating (von Davier, Holland, and Thayer 2004) is a flexible
observed-score equating framework which enables the equating of two tests using all common
equating designs. Kernel equating has usually been described using pre-smoothing through
log-linear models but the framework provides support for input data of various types, such
as observed data and data derived from IRT models. Here, we focus on IRT observed-score
equating in the kernel method of test equating. We introduce IRT observed-score kernel
equating in the equivalent groups (EG) design and non-equivalent groups with anchor test
(NEAT) design using chain equating (CE) and illustrate how to conduct these equating meth-
ods using the R (R Development Core Team 2013) package kequate (Andersson, Bränberg,
and Wiberg 2013). It is also shown how local equating using IRT observed-score equating
van der Linden (2011) can be conducted in kequate.

This document has the following structure. In Section 2, IRT observed-score equating in the
kernel equating framework is described and in Section 3 the implementation of IRT observed-
score equating in kequate is introduced. In Section 4 examples of the available methods of
IRT observed-score equating in kequate are given and in Section 5 future additions to the
package are presented.

2. IRT observed-score kernel equating

The kernel equating framework enables the usage of score probabilities which are either ob-
served or estimated using a statistical model. Typically the kernel equating framework has
utilized score probabilities derived from log-linear models (Holland, King, and Thayer 1989;



2 IRT Equating with kequate

von Davier et al. 2004; Lee and von Davier 2011). The usage of score probabilities derived
from IRT models, which would enable IRT observed-score equating, has been suggested (von
Davier 2010) but has not been described in the literature. IRT observed-score equating has
however been described in traditional equipercentile equating using linear interpolation (Lord
and Wingersky 1984; Kolen and Brennan 2004). The asymptotic standard errors of equating
for IRT observed-score equating in various NEAT designs were given in Ogasawara (2003).
For kernel equating, the necessary components are the covariance matrices of the score prob-
abilities which are needed to calculate the asymptotic standard errors of equating. In this
section we show how the results of Ogasawara (2003) can be applied in the kernel equating
framework for the NEAT CE design in the case of an external anchor test under the three
parameter logistic model (3-PL). The results for the EG design and when using the two
parameter logistic model (2-PL) are similar, but simpler, and are therefore omitted.

2.1. IRT observed-score kernel equating in the NEAT CE design

Let X and Y denote two tests, each with k number of items. For the sake of simplicity we
assume an equal number of items on the tests in this section but the results apply to the case
where the number of items are not equal and the implementation in kequate allows for a non-
equal number of items. The tests consist of k∗ unique items and kA common items. Denote
the subtests of unique items X∗ and Y ∗ and the subtest of common items A. Each test is
administered to a separate group of test takers each from a separate population. Denote the
populations P and Q, respectively, with samples sizes n and m for the respective test groups.

Let ΘP and ΘQ be the random variables corresponding to the ability level of a member of
the population from which each test taker for tests X and Y is taken. Now, let PXl(θP ) and
PY l(θQ) be the probabilities to answer item l of tests X and Y correctly, viewed as a functions
of the ability levels θP and θQ. With the 3-PL model we have that

PXl(θP ) = cXl +
1 − cXl

1 + exp[−aXl(θP − bXl)]
, (1)

where aXl is the discrimination parameter for item l, bXl is the difficulty parameter for item l

and cXl is the guessing parameter for item l (Ogasawara 2003). PY l(θQ) is defined analogously.
The 2-PL model is also defined by Equation 1, if cXl = 0. Hence with the 3-PL model we
have a total of 3k number of parameters across all items for tests X and Y respectively. Let
αX and αY denote the 1 × 3k vectors of all item parameters for tests X and Y.

We define βX,x(θP ) and βY,y(θQ) as the probabilities to obtain score values x, y ∈ {0, 1, . . . , k}
on tests X and Y, respectively, as a function of the ability levels θP and θQ. Similarly, we define
βX∗,x∗(θP ) and βY ∗,y∗(θQ) as the probabilities to obtain the score values x∗, y∗ ∈ {0, 1, . . . , k∗}
and βAP ,a(θP ) and βAQ,a(θQ) as the probabilities to obtain the score values a ∈ {0, 1, . . . kA}.
These probabilities can be obtained by using the procedure outlined in Lord and Wingersky
(1984).

Now, let βX∗,x∗ , βY ∗,y∗ , βAP ,a and βAQ,a be the probabilities to obtain score values x∗, y∗ and
a across all ability levels and let βX∗ and βY ∗ be the 1 × (k∗ + 1) vectors of probabilities
βX∗,x∗ and βY ∗,y∗ to obtain each of the score values x∗, y∗ ∈ {0, 1, . . . , k∗} on the tests X∗

and Y ∗ and let βAP
and βAQ

be the 1 × (kA + 1) vectors of probabilities βAP ,a and βAQ,a to
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obtain each of the score values a ∈ {0, 1, . . . kA} on test A. We have that

βX∗,x∗ ≈
R

∑

r=1

βX,x∗(tr)W (tr), (2)

where tr denotes the ability level for the r-th quadrature point, r ∈ {1, 2, . . . , R}, and where
W (·) is a weight function such that each quadrature point is weighted in accordance with
the assumptions made about the distribution of the ability level. Corresponding expressions
apply for βY ∗,y∗ , βAP ,a and βAQ,a. We are interested in finding Σ(β∗

X ,βAP
)′ and Σ(β∗

Y ,βAQ
)′ .

The results are of the same form for both (β∗

X , βAP
)′ and (β∗

Y , βAQ
)′ so we consider only

(β∗

X , βAP
)′ hereafter. The vector (β∗

X , βAP
)′ is a function of parameters αX which are esti-

mated using marginal maximum likelihood. We thus have that
√

n(α̂X − αX) → N(0, ΣαX
)

as n → ∞. Since (β∗

X , βAP
)′ is a differentiable function of the item parameters, the variance

of (β∗

X , βAP
)′ can be derived using Cramer’s theorem, retrieving

√
n

[

ˆ(β∗

X , βAP
)′ − (β∗

X , βAP
)′

]

→ N

{

0,
∂(β∗

X , βAP
)′

∂αX

ΣαX



∂(β∗

X , βAP
)′

∂αX

]

′
}

, (3)

where
∂(β∗

X ,βAP
)′

∂αX
is a (k+1)×3k matrix of partial derivatives with 1×3 vector entries

∂βX∗,x∗

∂αXl

and
∂βAP ,a

∂αlA

, x∗ ∈ {0, 1, . . . , k∗}, l ∈ {1, 2, . . . , k∗}, a ∈ {0, 1, . . . , kA}, lA ∈ {1, 2, . . . , kA} of the

same form as those in Ogasawara (2003).

Since Equation 3 defines the asymptotic distribution of the score probabilities the results
can be directly applied in the kernel equating framework by the derivations provided in von
Davier et al. (2004).

3. Implementation of IRT observed-score equating in kequate

The package kequate for R supports IRT observed-score equating for the EG and NEAT CE
designs with the 2-PL or 3-PL IRT models. Asymptotic or bootstrap standard errors are
calculated for each of the methods. The input used can either be matrices of observed item
responses for each individual or objects containing IRT models which have been estimated
using the R package ltm (Rizopoulos 2006).

To conduct an IRT observed-score equating in kequate, the function irtose() is used. The
function irtose() has the following formal function call:

irtose(design="CE", P, Q, x, y, a=0, qpoints, model="2pl", see="analytical",

replications=50, kernel="gaussian", h=list(hx=0, hy=0, hxP=0, haP=0, hyQ=0,

haQ=0), hlin=list(hxlin=0, hylin=0, hxPlin=0, haPlin=0, hyQlin=0, haQlin=0),

KPEN=0, wpen=0.5, linear=FALSE, slog=1, bunif=1, altopt=FALSE)

Explanations of each of the arguments supplied to irtose() are given in Table 1.

If matrices of responses are provided as input to irtose(), the IRT models will be estimated
using the R package ltm. The settings used in ltm will then be the default ones, except for
the case of the 3-PL model where the nlminb optimizer is used instead of the default. Note
that the 3-PL model has issues with convergence, hence it will not always be possible to get
stable estimates of item parameters using this model. It is recommended to estimate the 3-PL
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Argument(s) Designs Description

design ALL A character vector indicating which design to use. Possible
designs are "CE" and "EG".

P, Q ALL Matrices or objects created by the R package ltm containing
either the responses for each question in groups P and Q or
the estimated IRT models in groups P and Q.

x, y ALL Score value vectors for test X and test Y.

a CE Score value vector for the anchor test A.

qpoints ALL A numeric vector containing the quadrature points used in
the equating. If not specified, the quadrature points from the
IRT models will be used.

model ALL A character vector indicating which IRT model to use. Avail-
able models are 2PL and 3PL. Default is "2PL".

see ALL A character vector indicating which standard errors of equat-
ing to use. Options are "analytical" and "bootstrap", with
default "analytical".

replications ALL The number of bootstrap replications if using the bootstrap
standard error calculations. Default is 50.

kernel ALL A character vector denoting which kernel to use, with options
"gaussian", "logistic", "stdgaussian" and "uniform".
Default is "gaussian".

h ALL Optional argument to specify the continuization parameters
manually as a list with suitable bandwidth parameters. In
an EG design design: hx and hy, in a NEAT CE design: hxP,
haP, hyQ and haQ. (If linear=TRUE, then these arguments
have no effect.)

hlin ALL Optional argument to specify the linear continuization pa-
rameters manually as a list with suitable bandwidth param-
eters. In an EG design: hxlin and hylin, in a NEAT CE
design: hxPlin, haPlin, hyQlin and haQlin.

slog ALL The parameter used in the logistic kernel. Default is 1.

bunif ALL The parameter used in the uniform kernel. Default is 0.5.

KPEN ALL Optional argument to specify the constant used in deciding
the optimal continuization parameter. Default is 0.

wpen ALL An argument denoting at which point the derivatives in the
second part of the penalty function should be evaluated. De-
fault is 1/4.

linear ALL Logical denoting if a linear equating only is to be performed.
Default is FALSE.

altopt ALL Logical which sets the bandwidth parameter equal to a vari-
ant of Silverman’s rule of thumb. Default is FALSE.

Table 1: Arguments supplied to irtose().



Bjorn Andersson, Marie Wiberg 5

models separately using the package ltm. Currently, kequate only provides support for IRT
models without particular restrictions on the parameters.

4. Examples

For these examples, data was simulated using R in accordance with the 2-PL and 3-PL IRT
models. The simulated data for both the 2-PL model and the 3-PL model have the same
ability level for each individual and the same discrimination and difficulty parameters for
each item. The simulation procedure is identical to that for the 2-PL and 3-PL IRT models
described in Ogasawara (2003). The R code which generated the data is given below.

R> library(kequate)

R> set.seed(7)

R> akX <- runif(15, 0.5, 2)

R> bkX <- rnorm(15)

R> ckX <- runif(15, 0.1, 0.2)

R> akY <- runif(15, 0.5, 2)

R> bkY <- rnorm(15)

R> ckY <- runif(15, 0.1, 0.2)

R> akA <- runif(15, 0.5, 2)

R> bkA <- rnorm(15)

R> ckA <- runif(15, 0.1, 0.2)

R> dataP <- matrix(0, nrow=1000, ncol=30)

R> dataQ <- matrix(0, nrow=1000, ncol=30)

R> data3plP <- matrix(0, nrow=1000, ncol=30)

R> data3plQ <- matrix(0, nrow=1000, ncol=30)

R> for(i in 1:1000){

+ ability <- rnorm(1)

+ dataP[i,1:15] <- (1/(1+exp(-akX*(ability-bkX)))) > runif(15)

+ dataP[i,16:30] <- (1/(1+exp(-akA*(ability-bkA)))) > runif(15)

+ data3plP[i,1:15] <- (ckX+(1-ckX)/(1+exp(-akX*(ability-bkX)))) > runif(15)

+ data3plP[i,16:30] <- (ckA+(1-ckA)/(1+exp(-akA*(ability-bkA)))) > runif(15)

+ }

R> for(i in 1:1000){

+ ability <- rnorm(1, mean=0.5)

+ dataQ[i,1:15] <- (1/(1+exp(-akY*(ability -bkY)))) > runif(15)

+ dataQ[i,16:30] <- (1/(1+exp(-akA*(ability -bkA)))) > runif(15)

+ data3plQ[i,1:15] <- (ckY+(1-ckY)/(1+exp(-akY*(ability-bkY)))) > runif(15)

+ data3plQ[i,16:30] <- (ckA+(1-ckA)/(1+exp(-akA*(ability-bkA)))) > runif(15)

+ }

4.1. IRT observed-score kernel equating with the 2-PL model

For the 2-PL model data was simulated in a non-equivalent groups with anchor test design
for two populations of size 1000 with differing ability levels. The main tests had 15 items
each and the anchor test had 15 items. The simulated data were stored in matrices dataP for
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group P and dataQ for group Q. To equate the two main tests using chain equating, we then
call the function irtose() as follows:

R> eq2pl <- irtose("CE", dataP, dataQ, 0:15, 0:15, 0:15)

To display a summary of the equating we write:

R> summary(eq2pl)

Design: IRT-OSE CE

Kernel: gaussian

Sample Sizes:

Test X: 1000

Test Y: 1000

Score Ranges:

Test X:

Min = 0 Max = 15

Test Y:

Min = 0 Max = 15

Test A:

Min = 0 Max = 15

Bandwidths Used:

hxP hyQ haP haQ hxPlin hyQlin haPlin

1 0.5656154 0.5559258 0.5170625 0.536149 2999.144 3296.431 3449.946

haQlin

1 3741.527

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 -0.4095018 0.1124073

2 1 0.3507320 0.1494146

3 2 1.1144228 0.1660853

4 3 1.9176735 0.1821037

5 4 2.7810503 0.1884568

6 5 3.6860775 0.1834772

7 6 4.6403829 0.1727179

8 7 5.6334253 0.1576295

9 8 6.6716804 0.1409382

10 9 7.7590188 0.1270293

11 10 8.9034599 0.1203290

12 11 10.1080795 0.1233701

13 12 11.3655142 0.1351404

14 13 12.6416920 0.1445380
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15 14 13.8754442 0.1377789

16 15 14.9887712 0.1024350

Comparing the Moments:

PREAx PREYa

1 0.04139275 0.023880160

2 -0.11944000 -0.060078687

3 -0.88808023 -0.009477535

4 -1.93665050 0.140270327

5 -3.18244190 0.369599419

6 -4.56972854 0.669296541

7 -6.06482017 1.035297905

8 -7.64492715 1.465999923

9 -9.29376512 1.960971937

10 -10.99914959 2.520359804

The equating shows that the tests are similar in difficulty but that test Y is slightly more
difficult than test X.

When supplying matrices of responses to each item as input to irtose(), the IRT models
are estimated using the package ltm. An equating is then conducted using the estimated IRT
models. The objects created by ltm are stored in the output from irtose(). To access the
objects we write:

R> irtobjects <- eq2pl@irt

This will create a list of the objects created by ltm and the adjusted asymptotic covariance
matrices of the item parameters. We save the objects from ltm for future usage:

R> sim2plP <- irtobjects$ltmP

R> sim2plQ <- irtobjects$ltmQ

4.2. IRT observed-score kernel equating with the 3-PL model

For the 3-PL model data was again simulated in a non-equivalent groups with anchor test
design for two populations of size 1000 with differing ability levels. As before, the main
tests had 15 items each and the anchor test had 15 items. In this example, the IRT models
were estimated using the functiontpm() in the package ltm, creating the objects sim3plP

and sim3plQ containing the IRT models. For details of IRT model estimation using ltm, see
Rizopoulos (2006). The resulting objects are then given as input to the function irtose() to
conduct an equating:

R> eq3pl <- irtose("CE", sim3plP, sim3plQ, 0:15, 0:15, 0:15, model="3pl")

R> summary(eq3pl)

Design: IRT-OSE CE

Kernel: gaussian
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Sample Sizes:

Test X: 1000

Test Y: 1000

Score Ranges:

Test X:

Min = 0 Max = 15

Test Y:

Min = 0 Max = 15

Test A:

Min = 0 Max = 15

Bandwidths Used:

hxP hyQ haP haQ hxPlin hyQlin haPlin

1 0.5554813 0.5406952 0.5472448 0.5543 2760.746 2863.484 3074.537

haQlin

1 3406.924

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 0.3329018 0.2755159

2 1 1.2860273 0.3022574

3 2 2.1723156 0.2972621

4 3 3.0109638 0.2765362

5 4 3.8245077 0.2533002

6 5 4.6244139 0.2306618

7 6 5.4286157 0.2057037

8 7 6.2509278 0.1800856

9 8 7.1052576 0.1569177

10 9 8.0046533 0.1395113

11 10 8.9649110 0.1288226

12 11 10.0060465 0.1241381

13 12 11.1412949 0.1247086

14 13 12.3531419 0.1334708

15 14 13.5821981 0.1449046

16 15 14.7470747 0.1318868

Comparing the Moments:

PREAx PREYa

1 0.007419064 0.005292439

2 -0.135681072 -0.020440048

3 -0.691806420 0.002909099

4 -1.603890059 0.088054942

5 -2.794730875 0.234723979

6 -4.199379252 0.440302162

7 -5.770833763 0.702405346
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8 -7.476270341 1.019352357

9 -9.292527825 1.390103812

10 -11.202647874 1.814104078

We plot the results with the method for the function plot() for the class keout created by
itrtose().

R> plot(eq3pl)

The plot is seen in Figure 1.
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Figure 1: The equated values and standard errors of equating for the IRT observed-score
equating using the 3-PL model.

4.3. IRT observed-score local equating

IRT observed-score equating can be utilized when conducting what is called local equating,
where different equating functions are calculated based on the ability level or a proxy of
the ability level of the individuals taking the tests to be equated. Local equating using IRT
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observed-score equating is conducted by fixing the ability level to a particular single value or a
sequence of values and then only considering this value or sequence of values when calculating
the score probabilities. These score probabilities are then used for the equating just as in a
regular IRT observed-score equating.

In kequate, local equating using IRT observed-score equating can be conducted by adjusting
the optional argument qpoints in the irtose() function call. For example, by specifying
qpoints=1 a local equating for the individuals with the ability level equal to 1 is conducted.
The argument qpoints can be set to a numeric vector of any length.

As an example, we conduct a local equating for individuals with ability level equal to -1, 0 and
1, respectively, using the simulated 2-PL data previously described. We then call irtose()

as follows:

R> eq2plLOW <- irtose("CE", sim2plP, sim2plQ, 0:15, 0:15, 0:15, qpoints=-1)

R> eq2plAVG <- irtose("CE", sim2plP, sim2plQ, 0:15, 0:15, 0:15, qpoints=0)

R> eq2plHIGH <- irtose("CE", sim2plP, sim2plQ, 0:15, 0:15, 0:15, qpoints=1)
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Figure 2: The equated values for each score value for three different ability levels in a local
equating in the NEAT CE design.
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The results of these equatings are displayed in Figure 2, showing that the equating function
is somewhat different for the three different ability levels.

5. Future developments

In the present implementation, only the 2-PL and 3-PL IRT models without parameter re-
strictions are supported in kequate. Future work will include support for the additional IRT
models available in ltm such as the Rasch model and the 1-PL model and the ability to use
the features of parameter restrictions available in ltm when conducting IRT observed-score
equating. Additionally, the NEAT design using post-stratification equating (PSE) with sup-
port for various ways of estimating the equating coefficients is planned to be included in the
package.
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