
Package ‘magick’
March 23, 2025

Type Package

Title Advanced Graphics and Image-Processing in R

Version 2.8.6

Description Bindings to 'ImageMagick': the most comprehensive open-source image
processing library available. Supports many common formats (png, jpeg, tiff,
pdf, etc) and manipulations (rotate, scale, crop, trim, flip, blur, etc).
All operations are vectorized via the Magick++ STL meaning they operate either
on a single frame or a series of frames for working with layers, collages,
or animation. In RStudio images are automatically previewed when printed to
the console, resulting in an interactive editing environment. The latest
version of the package includes a native graphics device for creating
in-memory graphics or drawing onto images using pixel coordinates.

License MIT + file LICENSE

URL https://docs.ropensci.org/magick/

https://ropensci.r-universe.dev/magick

BugReports https://github.com/ropensci/magick/issues

SystemRequirements ImageMagick++: ImageMagick-c++-devel (rpm) or
libmagick++-dev (deb)

VignetteBuilder knitr

Depends R (>= 4.1.0)

Imports Rcpp (>= 0.12.12), magrittr, curl

LinkingTo Rcpp

Suggests av (>= 0.3), spelling, jsonlite, methods, knitr, rmarkdown,
rsvg, webp, pdftools, ggplot2, gapminder, IRdisplay, tesseract
(>= 2.0), gifski

Encoding UTF-8

RoxygenNote 7.3.2

Language en-US

NeedsCompilation yes

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>)

1

https://docs.ropensci.org/magick/
https://ropensci.r-universe.dev/magick
https://github.com/ropensci/magick/issues
https://orcid.org/0000-0002-4035-0289

2 analysis

Maintainer Jeroen Ooms <jeroenooms@gmail.com>

Repository CRAN

Date/Publication 2025-03-23 18:20:02 UTC

Contents

analysis . 2
animation . 4
as_EBImage . 6
attributes . 7
autoviewer . 7
coder_info . 8
color . 9
composite . 12
defines . 14
device . 15
edges . 17
editing . 18
effects . 22
fx . 23
geometry . 24
image_ggplot . 26
morphology . 27
ocr . 28
options . 30
painting . 31
segmentation . 33
thresholding . 34
transform . 36
video . 38
wizard . 39
index . 40

Index 41

analysis Image Analysis

Description

Functions for image calculations and analysis. This part of the package needs more work.

analysis 3

Usage

image_compare(image, reference_image, metric = "", fuzz = 0)

image_compare_dist(image, reference_image, metric = "", fuzz = 0)

image_fft(image)

Arguments

image magick image object returned by image_read() or image_graph()

reference_image

another image to compare to

metric string with a metric from metric_types() such as "AE" or "phash"

fuzz relative color distance (value between 0 and 100) to be considered similar in the
filling algorithm

Details

For details see Image++ documentation. Short descriptions:

• image_compare calculates a metric by comparing image with a reference image.

• image_fft returns Discrete Fourier Transform (DFT) of the image as a magnitude / phase
image pair. I wish I knew what this means.

Here image_compare() is vectorized over the first argument and returns the diff image with the
calculated distortion value as an attribute.

See Also

Other image: _index_, animation, attributes(), color, composite, defines, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

out1 <- image_blur(logo, 3)
out2 <- image_oilpaint(logo, 3)
input <- c(logo, out1, out2, logo)
if(magick_config()$version >= "6.8.7"){

diff_img <- image_compare(input, logo, metric = "AE")
attributes(diff_img)

}

http://www.imagemagick.org/script/command-line-options.php#metric
https://www.imagemagick.org/Magick++/Image++.html

4 animation

animation Image Frames and Animation

Description

Operations to manipulate or combine multiple frames of an image. Details below.

Usage

image_animate(
image,
fps = 10,
delay = NULL,
loop = 0,
dispose = c("background", "previous", "none"),
optimize = FALSE

)

image_coalesce(image)

image_morph(image, frames = 8)

image_mosaic(image, operator = NULL)

image_flatten(image, operator = NULL)

image_average(image)

image_append(image, stack = FALSE)

image_apply(image, FUN, ...)

image_montage(
image,
geometry = NULL,
tile = NULL,
gravity = "Center",
bg = "white",
shadow = FALSE

)

Arguments

image magick image object returned by image_read() or image_graph()

fps frames per second. Ignored if delay is not NULL.

delay delay after each frame, in 1/100 seconds. Must be length 1, or number of frames.
If specified, then fps is ignored.

animation 5

loop how many times to repeat the animation. Default is infinite.

dispose a frame disposal method from dispose_types()

optimize optimize the gif animation by storing only the differences between frames. In-
put images must be exactly the same size.

frames number of frames to use in output animation

operator string with a composite operator from compose_types()

stack place images top-to-bottom (TRUE) or left-to-right (FALSE)

FUN a function to be called on each frame in the image

... additional parameters for FUN

geometry a geometry string that defines the size the individual thumbnail images, and the
spacing between them.

tile a geometry string for example "4x5 with limits on how the tiled images are to
be laid out on the final result.

gravity a gravity direction, if the image is smaller than the frame, where in the frame is
the image to be placed.

bg a background color string

shadow enable shadows between images

Details

For details see Magick++ STL documentation. Short descriptions:

• image_animate coalesces frames by playing the sequence and converting to gif format.

• image_morph expands number of frames by interpolating intermediate frames to blend into
each other when played as an animation.

• image_mosaic inlays images to form a single coherent picture.

• image_montage creates a composite image by combining frames.

• image_flatten merges frames as layers into a single frame using a given operator.

• image_average averages frames into single frame.

• image_append stack images left-to-right (default) or top-to-bottom.

• image_apply applies a function to each frame

The image_apply function calls an image function to each frame and joins results back into a single
image. Because most operations are already vectorized this is often not needed. Note that FUN()
should return an image. To apply other kinds of functions to image frames simply use lapply,
vapply, etc.

See Also

Other image: _index_, analysis, attributes(), color, composite, defines, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

https://legacy.imagemagick.org/Usage/anim_basics/#dispose
https://www.imagemagick.org/Magick++/Enumerations.html#CompositeOperator
https://www.imagemagick.org/Magick++/STL.html

6 as_EBImage

Examples

Combine images
logo <- image_read("https://jeroen.github.io/images/Rlogo.png")
oldlogo <- image_read("https://jeroen.github.io/images/Rlogo-old.png")

Create morphing animation
both <- image_scale(c(oldlogo, logo), "400")
image_average(image_crop(both))
image_animate(image_morph(both, 10))

Create thumbnails from GIF
banana <- image_read("https://jeroen.github.io/images/banana.gif")
length(banana)
image_average(banana)
image_flatten(banana)
image_append(banana)
image_append(banana, stack = TRUE)

Append images together
wizard <- image_read("wizard:")
image_append(image_scale(c(image_append(banana[c(1,3)], stack = TRUE), wizard)))

image_composite(banana, image_scale(logo, "300"))

Break down and combine frames
front <- image_scale(banana, "300")
background <- image_background(image_scale(logo, "400"), 'white')
frames <- image_apply(front, function(x){image_composite(background, x, offset = "+70+30")})
image_animate(frames, fps = 10)
Simple 4x3 montage
input <- rep(logo, 12)
image_montage(input, geometry = 'x100+10+10', tile = '4x3', bg = 'pink', shadow = TRUE)

With varying frame size
input <- c(wizard, wizard, logo, logo)
image_montage(input, tile = '2x2', bg = 'pink', gravity = 'southwest')

as_EBImage Convert to EBImage

Description

Convert a Magick image to EBImage class. Note that EBImage only supports multi-frame images
in greyscale.

Usage

as_EBImage(image)

https://bioconductor.org/packages/release/bioc/html/EBImage.html

attributes 7

Arguments

image magick image object returned by image_read() or image_graph()

attributes Image Attributes

Description

Attributes are properties of the image that might be present on some images and might affect image
manipulation methods.

Usage

image_comment(image, comment = NULL)

image_info(image)

Arguments

image magick image object returned by image_read() or image_graph()

comment string to set an image comment

Details

Each attribute can be get and set with the same function. The image_info() function returns a data
frame with some commonly used attributes.

See Also

Other image: _index_, analysis, animation, color, composite, defines, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

autoviewer RStudio Graphics AutoViewer

Description

This enables a addTaskCallback that automatically updates the viewer after the state of a magick
graphics device has changed. This is enabled by default in RStudio.

Usage

autoviewer_enable()

autoviewer_disable()

8 coder_info

Examples

Only has effect in RStudio (or other GUI with a viewer):
autoviewer_enable()

img <- magick::image_graph()
plot(1)
abline(0, 1, col = "blue", lwd = 2, lty = "solid")
abline(0.1, 1, col = "red", lwd = 3, lty = "dotted")

autoviewer_disable()
abline(0.2, 1, col = "green", lwd = 4, lty = "twodash")
abline(0.3, 1, col = "black", lwd = 5, lty = "dotdash")

autoviewer_enable()
abline(0.4, 1, col = "purple", lwd = 6, lty = "dashed")
abline(0.5, 1, col = "yellow", lwd = 7, lty = "longdash")

coder_info Magick Configuration

Description

ImageMagick can be configured to support various additional tool and formats via external libraries.
These functions show which features ImageMagick supports on your system.

Usage

coder_info(format)

magick_config()

magick_set_seed(seed)

Arguments

format image format such as png, tiff or pdf.

seed integer with seed value to use

Details

Note that coder_info raises an error for unsupported formats.

References

https://www.imagemagick.org/Magick++/CoderInfo.html

https://www.imagemagick.org/Magick++/CoderInfo.html

color 9

Examples

coder_info("png")
coder_info("jpg")
coder_info("pdf")
coder_info("tiff")
coder_info("gif")
Reproduce random image
magick_set_seed(123)
image_blank(200,200, pseudo_image = "plasma:fractal")

color Image Color

Description

Functions to adjust contrast, brightness, colors of the image. Details below.

Usage

image_modulate(image, brightness = 100, saturation = 100, hue = 100)

image_quantize(
image,
max = 256,
colorspace = "rgb",
dither = TRUE,
treedepth = NULL

)

image_map(image, map, dither = FALSE)

image_ordered_dither(image, threshold_map)

image_channel(image, channel = "lightness")

image_separate(image, channel = "default")

image_combine(image, colorspace = "sRGB", channel = "default")

image_transparent(image, color, fuzz = 0)

image_background(image, color, flatten = TRUE)

image_colorize(image, opacity, color)

image_contrast(image, sharpen = 1)

10 color

image_normalize(image)

image_enhance(image)

image_equalize(image)

image_median(image, radius = 1)

Arguments

image magick image object returned by image_read() or image_graph()

brightness modulation of brightness as percentage of the current value (100 for no change)

saturation modulation of saturation as percentage of the current value (100 for no change)

hue modulation of hue is an absolute rotation of -180 degrees to +180 degrees from
the current position corresponding to an argument range of 0 to 200 (100 for no
change)

max preferred number of colors in the image. The actual number of colors in the
image may be less than your request, but never more.

colorspace string with a colorspace from colorspace_types for example "gray", "rgb" or
"cmyk"

dither a boolean (defaults to TRUE) specifying whether to apply Floyd/Steinberg error
diffusion to the image: averages intensities of several neighboring pixels

treedepth depth of the quantization color classification tree. Values of 0 or 1 allow selec-
tion of the optimal tree depth for the color reduction algorithm. Values between
2 and 8 may be used to manually adjust the tree depth.

map reference image to map colors from

threshold_map A string giving the dithering pattern to use. See the ImageMagick documenta-
tion for possible values

channel a string with a channel from channel_types for example "alpha" or "hue" or
"cyan"

color a valid color string such as "navyblue" or "#000080". Use "none" for trans-
parency.

fuzz relative color distance (value between 0 and 100) to be considered similar in the
filling algorithm

flatten should image be flattened before writing? This also replaces transparency with
background color.

opacity percentage of opacity used for coloring

sharpen enhance intensity differences in image

radius replace each pixel with the median color in a circular neighborhood

Details

For details see Magick++ STL documentation. Short descriptions:

• image_modulate adjusts brightness, saturation and hue of image relative to current.

https://www.imagemagick.org/Magick++/Enumerations.html#ColorspaceType
https://legacy.imagemagick.org/Usage/option_link.cgi?ordered-dither
https://legacy.imagemagick.org/Usage/option_link.cgi?ordered-dither
https://www.imagemagick.org/Magick++/Enumerations.html#ChannelType
https://www.imagemagick.org/Magick++/Color.html
https://www.imagemagick.org/Magick++/STL.html

color 11

• image_quantize reduces number of unique colors in the image.

• image_ordered_dither reduces number of unique colors using a dithering threshold map.

• image_map replaces colors of image with the closest color from a reference image.

• image_channel extracts a single channel from an image and returns as grayscale.

• image_transparent sets pixels approximately matching given color to transparent.

• image_background sets background color. When image is flattened, transparent pixels get
background color.

• image_colorize overlays a solid color frame using specified opacity.

• image_contrast enhances intensity differences in image

• image_normalize increases contrast by normalizing the pixel values to span the full range of
colors

• image_enhance tries to minimize noise

• image_equalize equalizes using histogram equalization

• image_median replaces each pixel with the median color in a circular neighborhood

Note that colors are also determined by image properties imagetype and colorspace which can be
modified via image_convert().

See Also

Other image: _index_, analysis, animation, attributes(), composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

manually adjust colors
logo <- image_read("logo:")
image_modulate(logo, brightness = 200)
image_modulate(logo, saturation = 150)
image_modulate(logo, hue = 200)

Reduce image to 10 different colors using various spaces
image_quantize(logo, max = 10, colorspace = 'gray')
image_quantize(logo, max = 10, colorspace = 'rgb')
image_quantize(logo, max = 10, colorspace = 'cmyk')

image_ordered_dither(logo, 'o8x8')
Change background color
translogo <- image_transparent(logo, 'white')
image_background(translogo, "pink", flatten = TRUE)

Compare to flood-fill method:
image_fill(logo, "pink", fuzz = 20)

Other color tweaks
image_colorize(logo, 50, "red")
image_contrast(logo)

https://www.imagemagick.org/Magick++/Enumerations.html#ImageType
https://www.imagemagick.org/Magick++/Enumerations.html#ColorspaceType

12 composite

image_normalize(logo)
image_enhance(logo)
image_equalize(logo)
image_median(logo)

Alternate way to convert into black-white
image_convert(logo, type = 'grayscale')

composite Image Composite

Description

Similar to the ImageMagick composite utility: compose an image on top of another one using a
CompositeOperator.

Usage

image_composite(
image,
composite_image,
operator = "atop",
offset = "+0+0",
gravity = "northwest",
compose_args = ""

)

image_border(image, color = "lightgray", geometry = "10x10", operator = "copy")

image_frame(image, color = "lightgray", geometry = "25x25+6+6")

image_shadow_mask(image, geometry = "50x10+30+30")

image_shadow(
image,
color = "black",
bg = "none",
geometry = "50x10+30+30",
operator = "copy",
offset = "+20+20"

)

image_shade(image, azimuth = 30, elevation = 30, color = FALSE)

Arguments

image magick image object returned by image_read() or image_graph()

https://www.imagemagick.org/Magick++/Enumerations.html#CompositeOperator

composite 13

composite_image

composition image
operator string with a composite operator from compose_types()
offset string with either a gravity_type or a geometry_point to set position of top im-

age.
gravity string with gravity value from gravity_types.
compose_args additional arguments needed for some composite operations
color Set to true to shade the red, green, and blue components of the image.
geometry a geometry string to set height and width of the border, e.g. "10x8". In addition

image_frame allows for adding shadow by setting an offset e.g. "20x10+7+2".
bg background color
azimuth position of light source
elevation position of light source

Details

The image_composite function is vectorized over both image arguments: if the first image has n
frames and the second m frames, the output image will contain n * m frames.

The image_border function creates a slightly larger solid color frame and then composes the original
frame on top. The image_frame function is similar but has an additional feature to create a shadow
effect on the border (which is really ugly).

See Also

Other image: _index_, analysis, animation, attributes(), color, defines, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

Compose images using one of many operators
imlogo <- image_scale(image_read("logo:"), "x275")
rlogo <- image_read("https://jeroen.github.io/images/Rlogo-old.png")

Standard is atop
image_composite(imlogo, rlogo)

Same as 'blend 50' in the command line
image_composite(imlogo, rlogo, operator = "blend", compose_args="50")

Offset can be geometry or gravity
image_composite(logo, rose, offset = "+100+100")
image_composite(logo, rose, gravity = "East")

Add a border frame around the image
image_border(imlogo, "red", "10x10")
image_frame(imlogo)
image_shadow(imlogo)
image_shade(imlogo)

https://www.imagemagick.org/Magick++/Enumerations.html#CompositeOperator
https://www.imagemagick.org/Magick++/Enumerations.html#GravityType
https://www.imagemagick.org/Magick++/Geometry.html

14 defines

defines Set encoder defines

Description

So called ’defines’ are properties that are passed along to external filters and libraries. Usually
defines are used in image_read or image_write to control the image encoder/decoder, but you can
also set these manually on the image object.

Usage

image_set_defines(image, defines)

Arguments

image magick image object returned by image_read() or image_graph()

defines a named character vector with extra options to control reading. These are the
-define key{=value} settings in the command line tool. Use an empty string
for value-less defines, and NA to unset a define.

Details

The defines values must be a character string, where the names contain the defines keys. Each
name must be of the format "enc:key" where the first part is the encoder or filter to which the key is
passed. For example "png:...." defines can control the encoding and decoding of png images.

The image_set_defines function does not make a copy of the image, so the defined values remain in
the image object until they are overwritten or unset.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

Write an image
x <- image_read("https://jeroen.github.io/images/frink.png")
image_write(x, "frink.png")

Pass some properties to PNG encoder
defines <- c("png:compression-filter" = "1", "png:compression-level" = "0")
image_set_defines(x, defines)
image_write(x, "frink-uncompressed.png")

Unset properties
defines[1:2] = NA
image_set_defines(x, defines)

http://www.imagemagick.org/script/command-line-options.php#define

device 15

image_write(x, "frink-final.png")

Compare size and cleanup
file.info(c("frink.png", "frink-uncompressed.png", "frink-final.png"))
unlink(c("frink.png", "frink-uncompressed.png", "frink-final.png"))

device Magick Graphics Device

Description

Graphics device that produces a Magick image. Can either be used like a regular device for making
plots, or alternatively via image_draw to open a device which draws onto an existing image using
pixel coordinates. The latter is vectorized, i.e. drawing operations are applied to each frame in the
image.

Usage

image_graph(
width = 800,
height = 600,
bg = "white",
pointsize = 12,
res = 72,
clip = TRUE,
antialias = TRUE

)

image_draw(image, pointsize = 12, res = 72, antialias = TRUE, ...)

image_capture()

Arguments

width in pixels

height in pixels

bg background color

pointsize size of fonts

res resolution in pixels

clip enable clipping in the device. Because clipping can slow things down a lot, you
can disable it if you don’t need it.

antialias TRUE/FALSE: enables anti-aliasing for text and strokes

image an existing image on which to start drawing

... additional device parameters passed to plot.window such as xlim, ylim, or mar.

16 device

Details

The device is a relatively recent feature of the package. It should support all operations but there
might still be small inaccuracies. Also it is a bit slower than some of the other devices, in particular
for rendering text and clipping. Hopefully this can be optimized in the next version.

By default image_draw sets all margins to 0 and uses graphics coordinates to match image size in
pixels (width x height) where (0,0) is the top left corner. Note that this means the y axis increases
from top to bottom which is the opposite of typical graphics coordinates. You can override all this
by passing custom xlim, ylim or mar values to image_draw.

The image_capture function returns the current device as an image. This only works if the current
device is a magick device or supports dev.capture.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

Regular image
frink <- image_read("https://jeroen.github.io/images/frink.png")

Produce image using graphics device
fig <- image_graph(res = 96)
ggplot2::qplot(mpg, wt, data = mtcars, colour = cyl)
dev.off()

Combine
out <- image_composite(fig, frink, offset = "+70+30")
print(out)

Or paint over an existing image
img <- image_draw(frink)
rect(20, 20, 200, 100, border = "red", lty = "dashed", lwd = 5)
abline(h = 300, col = 'blue', lwd = '10', lty = "dotted")
text(10, 250, "Hoiven-Glaven", family = "monospace", cex = 4, srt = 90)
palette(rainbow(11, end = 0.9))
symbols(rep(200, 11), seq(0, 400, 40), circles = runif(11, 5, 35),

bg = 1:11, inches = FALSE, add = TRUE)
dev.off()
print(img)

Vectorized example with custom coordinates
earth <- image_read("https://jeroen.github.io/images/earth.gif")
img <- image_draw(earth, xlim = c(0,1), ylim = c(0,1))
rect(.1, .1, .9, .9, border = "red", lty = "dashed", lwd = 5)
text(.5, .9, "Our planet", cex = 3, col = "white")
dev.off()
print(img)

edges 17

edges Edge / Line Detection

Description

Best results are obtained by finding edges with image_canny() and then performing Hough-line
detection on the edge image.

Usage

image_edge(image, radius = 1)

image_canny(image, geometry = "0x1+10%+30%")

image_hough_draw(
image,
geometry = NULL,
color = "red",
bg = "transparent",
size = 3,
overlay = FALSE

)

image_hough_txt(image, geometry = NULL, format = c("mvg", "svg"))

Arguments

image magick image object returned by image_read() or image_graph()

radius edge size in pixels

geometry geometry string, see details.

color a valid color string such as "navyblue" or "#000080". Use "none" for trans-
parency.

bg background color

size size in points to draw the line

overlay composite the drawing atop the input image. Only for bg = 'transparent'.

format output format of the text, either svg or mvg

Details

For Hough-line detection, the geometry format is {W}x{H}+{threshold} defining the size and
threshold of the filter used to find ’peaks’ in the intermediate search image. For canny edge detection
the format is {radius}x{sigma}+{lower%}+{upper%}. More details and examples are available
at the imagemagick website.

https://www.imagemagick.org/Magick++/Color.html
https://legacy.imagemagick.org/Usage/transform/

18 editing

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

if(magick_config()$version > "6.8.9"){
shape <- demo_image("shape_rectangle.gif")
rectangle <- image_canny(shape)
rectangle |> image_hough_draw('5x5+20')
rectangle |> image_hough_txt(format = 'svg') |> cat()
}

editing Image Editing

Description

Read, write and join or combine images. All image functions are vectorized, meaning they operate
either on a single frame or a series of frames (e.g. a collage, video, or animation). Besides paths
and URLs, image_read() supports commonly used bitmap and raster object types.

Usage

image_read(
path,
density = NULL,
depth = NULL,
strip = FALSE,
coalesce = TRUE,
defines = NULL

)

image_read_svg(path, width = NULL, height = NULL)

image_read_pdf(path, pages = NULL, density = 300, password = "")

image_read_video(path, fps = 1, format = "png")

image_write(
image,
path = NULL,
format = NULL,
quality = NULL,
depth = NULL,
density = NULL,

editing 19

comment = NULL,
flatten = FALSE,
defines = NULL,
compression = NULL

)

image_convert(
image,
format = NULL,
type = NULL,
colorspace = NULL,
depth = NULL,
antialias = NULL,
matte = NULL,
interlace = NULL,
profile = NULL

)

image_data(image, channels = NULL, frame = 1)

image_raster(image, frame = 1, tidy = TRUE)

image_display(image, animate = TRUE)

image_browse(image, browser = getOption("browser"))

image_strip(image)

image_blank(width, height, color = "none", pseudo_image = "", defines = NULL)

image_destroy(image)

image_join(...)

image_attributes(image)

image_get_artifact(image, artifact = "")

demo_image(path)

Arguments

path a file, url, or raster object or bitmap array

density resolution to render pdf or svg

depth color depth (either 8 or 16)

strip drop image comments and metadata

coalesce automatically image_coalesce() gif images

20 editing

defines a named character vector with extra options to control reading. These are the
-define key{=value} settings in the command line tool. Use an empty string
for value-less defines, and NA to unset a define.

width in pixels

height in pixels

pages integer vector with page numbers. Defaults to all pages.

password user password to open protected pdf files

fps how many images to capture per second of video. Set to NULL to get all frames
from the input video.

format output format such as "png", "jpeg", "gif", "rgb" or "rgba".

image magick image object returned by image_read() or image_graph()

quality number between 0 and 100 for jpeg quality. Defaults to 75.

comment text string added to the image metadata for supported formats

flatten should image be flattened before writing? This also replaces transparency with
background color.

compression a string with compression type from compress_types

type string with imagetype value from image_types for example grayscale to con-
vert into black/white

colorspace string with a colorspace from colorspace_types for example "gray", "rgb" or
"cmyk"

antialias enable anti-aliasing for text and strokes

matte set to TRUE or FALSE to enable or disable transparency

interlace string with interlace

profile path to file with ICC color profile

channels string with image channel(s) for example "rgb", "rgba", "cmyk","gray", or
"ycbcr". Default is either "gray", "rgb" or "rgba" depending on the image

frame integer setting which frame to extract from the image

tidy converts raster data to long form for use with geom_raster. If FALSE output is
the same as as.raster().

animate support animations in the X11 display

browser argument passed to browseURL

color a valid color string such as "navyblue" or "#000080". Use "none" for trans-
parency.

pseudo_image string with pseudo image specification for example "radial-gradient:purple-yellow"

... several images or lists of images to be combined

artifact string with name of the artifact to extract, see the image_deskew for an example.

http://www.imagemagick.org/script/command-line-options.php#define
https://www.imagemagick.org/Magick++/Enumerations.html#ImageType
https://www.imagemagick.org/Magick++/Enumerations.html#ColorspaceType
https://www.imagemagick.org/Magick++/Enumerations.html#InterlaceType
https://www.imagemagick.org/Magick++/Color.html
http://www.imagemagick.org/script/formats.php#pseudo

editing 21

Details

All standard base vector methods such as [, [[, c(), as.list(), as.raster(), rev(), length(),
and print() can be used to work with magick image objects. Use the standard img[i] syntax to
extract a subset of the frames from an image. The img[[i]] method is an alias for image_data()
which extracts a single frame as a raw bitmap matrix with pixel values.

For reading svg or pdf it is recommended to use image_read_svg() and image_read_pdf() if
the rsvg and pdftools R packages are available. These functions provide more rendering options
(including rendering of literal svg) and better quality than built-in svg/pdf rendering delegates from
imagemagick itself.

X11 is required for image_display() which is only works on some platforms. A more portable
method is image_browse() which opens the image in a browser. RStudio has an embedded viewer
that does this automatically which is quite nice.

Image objects are automatically released by the garbage collector when they are no longer reach-
able. Because the GC only runs once in a while, you can also call image_destroy() explicitly to
release the memory immediately. This is usually only needed if you create a lot of images in a short
period of time, and you might run out of memory.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation, transform(),
video

Examples

Download image from the web
frink <- image_read("https://jeroen.github.io/images/frink.png")
worldcup_frink <- image_fill(frink, "orange", "+100+200", 20)
image_write(worldcup_frink, "output.png")

extract raw bitmap array
bitmap <- frink[[1]]

replace pixels with #FF69B4 ('hot pink') and convert back to image
bitmap[,50:100, 50:100] <- as.raw(c(0xff, 0x69, 0xb4, 0xff))
image_read(bitmap)

Plot to graphics device via legacy raster format
raster <- as.raster(frink)
par(ask=FALSE)
plot(raster)

Read bitmap arrays from other image packages
download.file("https://jeroen.github.io/images/example.webp", "example.webp", mode = 'wb')
if(require(webp)) image_read(webp::read_webp("example.webp"))
unlink(c("example.webp", "output.png"))
if(require(rsvg)){
tiger <- image_read_svg("http://jeroen.github.io/images/tiger.svg")
svgtxt <- '<?xml version="1.0" encoding="UTF-8"?>

22 effects

<svg width="400" height="400" viewBox="0 0 400 400" fill="none">
<circle fill="steelblue" cx="200" cy="200" r="100" />
<circle fill="yellow" cx="200" cy="200" r="90" />

</svg>'
circles <- image_read_svg(svgtxt)
}
if(require(pdftools))
image_read_pdf(file.path(R.home('doc'), 'NEWS.pdf'), pages = 1, density = 100)
create a solid canvas
image_blank(600, 400, "green")
image_blank(600, 400, pseudo_image = "radial-gradient:purple-yellow")
image_blank(200, 200, pseudo_image = "gradient:#3498db-#db3a34",

defines = c('gradient:direction' = 'east'))

effects Image Effects

Description

High level effects applied to an entire image. These are mostly just for fun.

Usage

image_despeckle(image, times = 1L)

image_reducenoise(image, radius = 1L)

image_noise(image, noisetype = "gaussian")

image_blur(image, radius = 1, sigma = 0.5)

image_motion_blur(image, radius = 1, sigma = 0.5, angle = 0)

image_charcoal(image, radius = 1, sigma = 0.5)

image_oilpaint(image, radius = 1)

image_emboss(image, radius = 1, sigma = 0.5)

image_implode(image, factor = 0.5)

image_negate(image)

Arguments

image magick image object returned by image_read() or image_graph()

times number of times to repeat the despeckle operation

radius radius, in pixels, for various transformations

fx 23

noisetype string with a noisetype value from noise_types.
sigma the standard deviation of the Laplacian, in pixels.
angle angle, in degrees, for various transformations
factor image implode factor (special effect)

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, fx, geometry, morphology, ocr, options(), painting, segmentation, transform(),
video

Examples

logo <- image_read("logo:")
image_despeckle(logo)
image_reducenoise(logo)
image_noise(logo)
image_blur(logo, 10, 10)
image_motion_blur(logo, 10, 10, 45)
image_charcoal(logo)
image_oilpaint(logo, radius = 3)
image_emboss(logo)
image_implode(logo)
image_negate(logo)

fx Image FX

Description

Apply a custom an fx expression to the image.

Usage

image_fx(image, expression = "p", channel = NULL)

image_fx_sequence(image, expression = "p")

Arguments

image magick image object returned by image_read() or image_graph()
expression string with an fx expression
channel a value of channel_types() specifying which channel(s) to set

Details

There are two different interfaces. The image_fx function simply applies the same fx to each frame
in the input image. The image_fx_sequence function on the other hand treats the entire input vector
as a sequence, allowing you to apply an expression with multiple input images. See examples.

https://www.imagemagick.org/Magick++/Enumerations.html#NoiseType
https://www.imagemagick.org/script/fx.php
https://www.imagemagick.org/script/fx.php

24 geometry

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

Examples

Show image_fx() expression
img <- image_convert(logo, colorspace = "Gray")
gradient_x <- image_convolve(img, kernel = "Prewitt")
gradient_y <- image_convolve(img, kernel = "Prewitt:90")
gradient <- c(image_fx(gradient_x, expression = "p^2"),

image_fx(gradient_y, expression = "p^2"))
gradient <- image_flatten(gradient, operator = "Plus")
#gradient <- image_fx(gradient, expression = "sqrt(p)")
gradient

image_fx(img, expression = "pow(p, 0.5)")
image_fx(img, expression = "rand()")

Use multiple source images

input <- c(logo, image_flop(logo))
image_fx_sequence(input, "(u+v)/2")

geometry Geometry Helpers

Description

ImageMagick uses a handy geometry syntax to specify coordinates and shapes for use in image
transformations. You can either specify these manually as strings or use the helper functions below.

Usage

geometry_point(x, y)

geometry_area(width = NULL, height = NULL, x_off = 0, y_off = 0)

geometry_size_pixels(width = NULL, height = NULL, preserve_aspect = TRUE)

geometry_size_percent(width = 100, height = NULL)

geometry 25

Arguments

x left offset in pixels
y top offset in pixels
width in pixels
height in pixels
x_off offset in pixels on x axis
y_off offset in pixels on y axis
preserve_aspect

if FALSE, resize to width and height exactly, loosing original aspect ratio. Only
one of percent and preserve_aspect may be TRUE.

Details

See ImageMagick Manual for details about the syntax specification. Examples of geometry strings:

• "500x300" – Resize image keeping aspect ratio, such that width does not exceed 500 and the
height does not exceed 300.

• "500x300!" – Resize image to 500 by 300, ignoring aspect ratio
• "500x" – Resize width to 500 keep aspect ratio
• "x300" – Resize height to 300 keep aspect ratio
• "50%x20%" – Resize width to 50 percent and height to 20 percent of original
• "500x300+10+20" – Crop image to 500 by 300 at position 10,20

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, morphology, ocr, options(), painting, segmentation, transform(),
video

Examples

Specify a point
logo <- image_read("logo:")
image_annotate(logo, "Some text", location = geometry_point(100, 200), size = 24)

Specify image area
image_crop(logo, geometry_area(300, 300), repage = FALSE)
image_crop(logo, geometry_area(300, 300, 100, 100), repage = FALSE)

Specify image size
image_resize(logo, geometry_size_pixels(300))
image_resize(logo, geometry_size_pixels(height = 300))
image_resize(logo, geometry_size_pixels(300, 300, preserve_aspect = FALSE))

resize relative to current size
image_resize(logo, geometry_size_percent(50))
image_resize(logo, geometry_size_percent(50, 20))

http://www.imagemagick.org/Magick++/Geometry.html

26 image_ggplot

image_ggplot Image to ggplot

Description

Create a ggplot with axes set to pixel coordinates and plot the raster image on it using ggplot2::annotation_raster.
See examples for how to plot an image onto an existing ggplot.

Usage

image_ggplot(image, interpolate = FALSE)

Arguments

image magick image object returned by image_read() or image_graph()

interpolate passed to ggplot2::annotation_raster

Examples

Plot with base R
plot(logo)

Plot image with ggplot2
library(ggplot2)
myplot <- image_ggplot(logo)
myplot + ggtitle("Test plot")

Show that coordinates are reversed:
myplot + theme_classic()

Or add to plot as annotation
image <- image_fill(logo, 'none')
raster <- as.raster(image)
myplot <- qplot(mpg, wt, data = mtcars)
myplot + annotation_raster(raster, 25, 35, 3, 5)

Or overplot image using grid
library(grid)
qplot(speed, dist, data = cars, geom = c("point", "smooth"))
grid.raster(image)

morphology 27

morphology Morphology

Description

Apply a morphology method. This is a very flexible function which can be used to apply any
morphology method with custom parameters. See imagemagick website for examples.

Usage

image_morphology(
image,
method = "convolve",
kernel = "Gaussian",
iterations = 1,
opts = list()

)

image_convolve(
image,
kernel = "Gaussian",
iterations = 1,
scaling = NULL,
bias = NULL

)

Arguments

image magick image object returned by image_read() or image_graph()

method a string with a valid method from morphology_types()

kernel either a square matrix or a string. The string can either be a parameterized ker-
neltype such as: "DoG:0,0,2" or "Diamond" or it can contain a custom matrix
(see examples)

iterations number of iterations

opts a named list or character vector with custom attributes

scaling string with kernel scaling. The special flag "!" automatically scales to full dy-
namic range, for example: "50%!"

bias output bias string, for example "50%"

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, ocr, options(), painting, segmentation, transform(),
video

https://legacy.imagemagick.org/Usage/morphology/

28 ocr

Examples

#example from IM website:
if(magick_config()$version > "6.8.8"){
pixel <- image_blank(1, 1, 'white') |> image_border('black', '5x5')

See the effect of Dilate method
pixel |> image_scale('800%')
pixel |> image_morphology('Dilate', "Diamond") |> image_scale('800%')

These produce the same output:
pixel |> image_morphology('Dilate', "Diamond", iter = 3) |> image_scale('800%')
pixel |> image_morphology('Dilate', "Diamond:3") |> image_scale('800%')

Plus example
pixel |> image_morphology('Dilate', "Plus", iterations = 2) |> image_scale('800%')

Rose examples
rose |> image_morphology('ErodeI', 'Octagon', iter = 3)
rose |> image_morphology('DilateI', 'Octagon', iter = 3)
rose |> image_morphology('OpenI', 'Octagon', iter = 3)
rose |> image_morphology('CloseI', 'Octagon', iter = 3)

Edge detection
man <- demo_image('man.gif')
man |> image_morphology('EdgeIn', 'Octagon')
man |> image_morphology('EdgeOut', 'Octagon')
man |> image_morphology('Edge', 'Octagon')

Octagonal Convex Hull
man |>

image_morphology('Close', 'Diamond') |>
image_morphology('Thicken', 'ConvexHull', iterations = 1)

Thinning down to a Skeleton
man |> image_morphology('Thinning', 'Skeleton', iterations = 1)

Specify custom kernel matrix usingn a string:
img <- demo_image("test_mag.gif")
i <- image_convolve(img, kernel = '4x5:

0 -1 0 0
-1 +1 -1 0
-1 +1 -1 0
-1 +1 +1 -1
0 -1 -1 0 ', bias = "50%")

}

ocr Image Text OCR

ocr 29

Description

Extract text from an image using the tesseract package.

Usage

image_ocr(image, language = "eng", HOCR = FALSE, ...)

image_ocr_data(image, language = "eng", ...)

Arguments

image magick image object returned by image_read() or image_graph()

language passed to tesseract. To install additional languages see instructions in tesser-
act_download().

HOCR if TRUE return results as HOCR xml instead of plain text

... additional parameters passed to tesseract

Details

To use this function you need to tesseract first:

install.packages("tesseract")

Best results are obtained if you set the correct language in tesseract. To install additional languages
see instructions in tesseract_download().

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, options(), painting, segmentation,
transform(), video

Examples

if(require("tesseract")){
img <- image_read("http://jeroen.github.io/images/testocr.png")
image_ocr(img)
image_ocr_data(img)
}

30 options

options Magick Options

Description

List option types and values supported in your version of ImageMagick. For descriptions see Im-
ageMagick Enumerations.

Usage

magick_options()

magick_fonts()

option_types()

filter_types()

metric_types()

dispose_types()

compose_types()

colorspace_types()

channel_types()

image_types()

kernel_types()

noise_types()

gravity_types()

orientation_types()

morphology_types()

style_types()

decoration_types()

compress_types()

distort_types()

https://www.imagemagick.org/Magick++/Enumerations.html
https://www.imagemagick.org/Magick++/Enumerations.html

painting 31

dump_option_info(option = "font")

Arguments

option one of the option_types

Details

The dump_option_info function is equivalent to calling convert -list [option] on the command
line. It does not return anything, it only makes ImageMagick print stuff to the console, use only for
debugging.

References

ImageMagick Manual: Enumerations

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, painting, segmentation, transform(),
video

painting Image Painting

Description

The image_fill() function performs flood-fill by painting starting point and all neighboring pixels
of approximately the same color. Annotate prints some text on the image.

Usage

image_fill(image, color, point = "+1+1", fuzz = 0, refcolor = NULL)

image_annotate(
image,
text,
gravity = "northwest",
location = "+0+0",
degrees = 0,
size = 10,
font = "",
style = "normal",
weight = 400,
kerning = 0,
decoration = NULL,
color = NULL,

https://www.imagemagick.org/Magick++/Enumerations.html

32 painting

strokecolor = NULL,
strokewidth = NULL,
boxcolor = NULL

)

Arguments

image magick image object returned by image_read() or image_graph()
color a valid color string such as "navyblue" or "#000080". Use "none" for trans-

parency.
point a geometry_point string indicating the starting point of the flood-fill
fuzz relative color distance (value between 0 and 100) to be considered similar in the

filling algorithm
refcolor if set, fuzz color distance will be measured against this color, not the color of the

starting point. Any color (within fuzz color distance of the given refcolor),
connected to starting point will be replaced with the color. If the pixel at the
starting point does not itself match the given refcolor (according to fuzz) then
no action will be taken.

text character vector of length equal to ’image’ or length 1
gravity string with gravity value from gravity_types.
location geometry string with location relative to gravity

degrees rotates text around center point
size font-size in pixels
font string with font family such as "sans", "mono", "serif", "Times", "Helvetica",

"Trebuchet", "Georgia", "Palatino" or "Comic Sans". See magick_fonts()
for what is available.

style value of style_types for example "italic"

weight thickness of the font, 400 is normal and 700 is bold, see magick_fonts().
kerning increases or decreases whitespace between letters
decoration value of decoration_types for example "underline"

strokecolor a color string adds a stroke (border around the text)
strokewidth set the strokewidth of the border around the text
boxcolor a color string for background color that annotation text is rendered on.

Details

Note that more sophisticated drawing mechanisms are available via the graphics device using im-
age_draw.

Setting a font, weight, style only works if your imagemagick is compiled with fontconfig support.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, options(), segmentation, transform(),
video

https://www.imagemagick.org/Magick++/Color.html
https://www.imagemagick.org/Magick++/Enumerations.html#GravityType
https://www.imagemagick.org/Magick++/Color.html
https://www.imagemagick.org/Magick++/Color.html

segmentation 33

Examples

logo <- image_read("logo:")
logo <- image_background(logo, 'white')
image_fill(logo, "pink", point = "+450+400")
image_fill(logo, "pink", point = "+450+400", fuzz = 25)
Add some text to an image
image_annotate(logo, "This is a test")
image_annotate(logo, "CONFIDENTIAL", size = 50, color = "red", boxcolor = "pink",
degrees = 30, location = "+100+100")

Setting fonts requires fontconfig support (and that you have the font)
image_annotate(logo, "The quick brown fox", font = "monospace", size = 50)

segmentation Image Segmentation

Description

Basic image segmentation like connected components labelling, blob extraction and fuzzy c-means

Usage

image_connect(image, connectivity = 4)

image_split(image, keep_color = TRUE)

image_fuzzycmeans(image, min_pixels = 1, smoothing = 1.5)

Arguments

image magick image object returned by image_read() or image_graph()
connectivity number neighbor colors which are considered part of a unique object
keep_color if TRUE the output images retain the color of the input pixel. If FALSE all

matching pixels are set black to retain only the image mask.
min_pixels the minimum number of pixels contained in a hexahedra before it can be con-

sidered valid (expressed as a percentage)
smoothing the smoothing threshold which eliminates noise in the second derivative of the

histogram (higher values gives smoother second derivative)

Details

• image_connect Connect adjacent pixels with the same pixel intensities to do blob extraction
• image_split Splits the image according to pixel intensities
• image_fuzzycmeans Fuzzy c-means segmentation of the histogram of color components

image_connect performs blob extraction by scanning the image, pixel-by-pixel from top-left to
bottom-right where regions of adjacent pixels which share the same set of intensity values get
combined.

34 thresholding

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, options(), painting, transform(),
video

Examples

Split an image by color
img <- image_quantize(logo, 4)
layers <- image_split(img)
layers

This returns the original image
image_flatten(layers)

From the IM website
objects <- image_convert(demo_image("objects.gif"), colorspace = "Gray")
objects

Split image in blobs of connected pixel levels
if(magick_config()$version > "6.9.0"){
objects |>

image_connect(connectivity = 4) |>
image_split()

Fuzzy c-means
image_fuzzycmeans(logo)

logo |>
image_convert(colorspace = "HCL") |>
image_fuzzycmeans(smoothing = 5)

}

thresholding Image thresholding

Description

Thresholding an image can be used for simple and straightforward image segmentation. The func-
tion image_threshold() allows to do black and white thresholding whereas image_lat() per-
forms local adaptive thresholding.

Usage

image_threshold(
image,
type = c("black", "white"),

thresholding 35

threshold = "50%",
channel = NULL

)

image_level(
image,
black_point = 0,
white_point = 100,
mid_point = 1,
channel = NULL

)

image_lat(image, geometry = "10x10+5%")

Arguments

image magick image object returned by image_read() or image_graph()

type type of thresholding, either one of lat, black or white (see details below)

threshold pixel intensity threshold percentage for black or white thresholding

channel a value of channel_types() specifying which channel(s) to set

black_point value between 0 and 100, the darkest color in the image

white_point value between 0 and 100, the lightest color in the image

mid_point value between 0 and 10 used for gamma correction

geometry pixel window plus offset for LAT algorithm

Details

• image_threshold(type = "black"): Forces all pixels below the threshold into black while
leaving all pixels at or above the threshold unchanged

• image_threshold(type = "white"): Forces all pixels above the threshold into white while
leaving all pixels at or below the threshold unchanged

• image_lat(): Local Adaptive Thresholding. Looks in a box (width x height) around the pixel
neighborhood if the pixel value is bigger than the average minus an offset.

Examples

test <- image_convert(logo, colorspace = "Gray")
image_threshold(test, type = "black", threshold = "50%")
image_threshold(test, type = "white", threshold = "50%")

Turn image into BW
test |>

image_threshold(type = "white", threshold = "50%") |>
image_threshold(type = "black", threshold = "50%")

adaptive thresholding
image_lat(test, geometry = '10x10+5%')

36 transform

transform Image Transform

Description

Basic transformations like rotate, resize, crop and flip. The geometry syntax is used to specify sizes
and areas.

Usage

image_trim(image, fuzz = 0)

image_chop(image, geometry)

image_rotate(image, degrees)

image_resize(image, geometry = NULL, filter = NULL)

image_scale(image, geometry = NULL)

image_sample(image, geometry = NULL)

image_crop(image, geometry = NULL, gravity = NULL, repage = TRUE)

image_extent(image, geometry, gravity = "center", color = "none")

image_flip(image)

image_flop(image)

image_deskew(image, threshold = 40)

image_deskew_angle(image, threshold = 40)

image_page(image, pagesize = NULL, density = NULL)

image_repage(image)

image_orient(image, orientation = NULL)

image_shear(image, geometry = "10x10", color = "none")

image_distort(image, distortion = "perspective", coordinates, bestfit = FALSE)

Arguments

image magick image object returned by image_read() or image_graph()

transform 37

fuzz relative color distance (value between 0 and 100) to be considered similar in the
filling algorithm

geometry a geometry string specifying area (for cropping) or size (for resizing).

degrees value between 0 and 360 for how many degrees to rotate

filter string with filter type from: filter_types

gravity string with gravity value from gravity_types.

repage resize the canvas to the cropped area

color a valid color string such as "navyblue" or "#000080". Use "none" for trans-
parency.

threshold straightens an image. A threshold of 40 works for most images.

pagesize geometry string with preferred size and location of an image canvas

density geometry string with vertical and horizontal resolution in pixels of the image.
Specifies an image density when decoding a Postscript or PDF.

orientation string to set image orientation one of the orientation_types. If NULL it applies
auto-orientation which tries to infer the correct orientation from the Exif data.

distortion string to set image orientation one of the distort_types.

coordinates numeric vector (typically of length 12) with distortion coordinates

bestfit if set to TRUE the size of the output image can be different from input

Details

For details see Magick++ STL documentation. Short descriptions:

• image_trim removes edges that are the background color from the image.

• image_chop removes vertical or horizontal subregion of image.

• image_crop cuts out a subregion of original image

• image_rotate rotates and increases size of canvas to fit rotated image.

• image_deskew auto rotate to correct skewed images

• image_resize resizes using custom filterType

• image_scale and image_sample resize using simple ratio and pixel sampling algorithm.

• image_flip and image_flop invert image vertically and horizontally

The most powerful resize function is image_resize which allows for setting a custom resize filter.
Output of image_scale is similar to image_resize(img, filter = "point").

For resize operations it holds that if no geometry is specified, all frames are rescaled to match the
top frame.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
video

https://www.imagemagick.org/Magick++/Enumerations.html#FilterTypes
https://www.imagemagick.org/Magick++/Enumerations.html#GravityType
https://www.imagemagick.org/Magick++/Color.html
https://www.imagemagick.org/Magick++/STL.html
https://www.imagemagick.org/Magick++/Enumerations.html#FilterTypes

38 video

Examples

logo <- image_read("logo:")
logo <- image_scale(logo, "400")
image_trim(logo)
image_chop(logo, "100x20")
image_rotate(logo, 45)
Small image
rose <- image_convert(image_read("rose:"), "png")

Resize to 400 width or height:
image_resize(rose, "400x")
image_resize(rose, "x400")

Resize keeping ratio
image_resize(rose, "400x400")

Resize, force size losing ratio
image_resize(rose, "400x400!")

Different filters
image_resize(rose, "400x", filter = "Triangle")
image_resize(rose, "400x", filter = "Point")
simple pixel resize
image_scale(rose, "400x")
image_sample(rose, "400x")
image_crop(logo, "400x400+200+200")
image_extent(rose, '200x200', color = 'pink')
image_flip(logo)
image_flop(logo)
skewed <- image_rotate(logo, 5)
deskewed <- image_deskew(skewed)
attr(deskewed, 'angle')
if(magick_config()$version > "6.8.6")

image_orient(logo)
image_shear(logo, "10x10")
building <- demo_image('building.jpg')
image_distort(building, 'perspective', c(7,40,4,30,4,124,4,123,85,122,100,123,85,2,100,30))

video Write Video

Description

High quality video / gif exporter based on external packages gifski and av.

Usage

image_write_video(image, path = NULL, framerate = 10, ...)

image_write_gif(image, path = NULL, delay = 1/10, ...)

wizard 39

Arguments

image magick image object returned by image_read() or image_graph()

path filename of the output gif or video. This is also the return value.

framerate frames per second, passed to av_encode_video

... additional parameters passed to av_encode_video and gifski.

delay duration of each frame in seconds (inverse of framerate)

Details

This requires an image with multiple frames. The GIF exporter accomplishes the same thing as
image_animate but much faster and with better quality.

See Also

Other image: _index_, analysis, animation, attributes(), color, composite, defines, device,
edges, editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform()

wizard Example Images

Description

Example images included with ImageMagick:

Usage

logo

Format

An object of class magick-image of length 1.

Details

• logo: ImageMagick Logo, 640x480

• wizard: ImageMagick Wizard, 480x640

• rose : Picture of a rose, 70x46

• granite : Granite texture pattern, 128x128

40 _index_

index Magick Image Processing

Description

The magick package for graphics and image processing in R. Important resources:

• R introduction vignette: getting started

• Magick++ API and Magick++ STL detailed descriptions of methods and parameters

Details

Documentation is split into the following pages:

• analysis - metrics and calculations: compare, fft

• animation - manipulate or combine multiple frames: animate, morph, mosaic, montage,
average, append, apply

• attributes - image properties: comment, info

• color - contrast, brightness, colors: modulate, quantize, map, transparent, background,
colorize, contrast, normalize, enhance, equalize, median

• composite - advanced joining: composite, border, frame

• device - creating graphics and drawing on images

• editing - basic image IO: read, write, convert, join, display, brose

• effects - fun effects: despecle, reducenoise, noise, blur, charcoal, edge, oilpaint,
emboss, implode, negate

• geometry - specify points, areas and sizes using geometry syntax

• ocr - extract text from image using tesseract package

• options - list option types and values supported in your version of ImageMagick

• painting - flood fill and annotating text

• transform - shape operations: trim, chop, rotate, resize, scale, sample crop, flip, flop,
deskew, page

See Also

Other image: analysis, animation, attributes(), color, composite, defines, device, edges,
editing, effects(), fx, geometry, morphology, ocr, options(), painting, segmentation,
transform(), video

https://docs.ropensci.org/magick/articles/intro.html
https://www.imagemagick.org/Magick++/Image++.html
https://www.imagemagick.org/Magick++/STL.html

Index

∗ datasets
wizard, 39

∗ image
index, 40
analysis, 2
animation, 4
attributes, 7
color, 9
composite, 12
defines, 14
device, 15
edges, 17
editing, 18
effects, 22
fx, 23
geometry, 24
morphology, 27
ocr, 28
options, 30
painting, 31
segmentation, 33
transform, 36
video, 38

[, 21
[[, 21
index, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23–25,

27, 29, 31, 32, 34, 37, 39, 40

addTaskCallback, 7
analysis, 2, 5, 7, 11, 13, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 37, 39, 40
animation, 3, 4, 7, 11, 13, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 37, 39, 40
as.list(), 21
as.raster(), 21
as_EBImage, 6
attributes, 3, 5, 7, 11, 13, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 37, 39, 40
autoviewer, 7
autoviewer_disable (autoviewer), 7

autoviewer_enable (autoviewer), 7
av, 38
av_encode_video, 39

browseURL, 20

c(), 21
channel_types, 10
channel_types (options), 30
channel_types(), 23, 35
coder_info, 8
color, 3, 5, 7, 9, 13, 14, 16, 18, 21, 23–25, 27,

29, 31, 32, 34, 37, 39, 40
colorspace_types, 10, 20
colorspace_types (options), 30
compose_types (options), 30
compose_types(), 5, 13
composite, 3, 5, 7, 11, 12, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 37, 39, 40
compress_types, 20
compress_types (options), 30

decoration_types, 32
decoration_types (options), 30
defines, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23–25,

27, 29, 31, 32, 34, 37, 39, 40
demo_image (editing), 18
dev.capture, 16
device, 3, 5, 7, 11, 13, 14, 15, 18, 21, 23–25,

27, 29, 31, 32, 34, 37, 39, 40
dispose_types (options), 30
dispose_types(), 5
distort_types, 37
distort_types (options), 30
dump_option_info, 31
dump_option_info (options), 30

edges, 3, 5, 7, 11, 13, 14, 16, 17, 21, 23–25,
27, 29, 31, 32, 34, 37, 39, 40

editing, 3, 5, 7, 11, 13, 14, 16, 18, 18, 23–25,
27, 29, 31, 32, 34, 37, 39, 40

41

42 INDEX

effects, 3, 5, 7, 11, 13, 14, 16, 18, 21, 22, 24,
25, 27, 29, 31, 32, 34, 37, 39, 40

filter_types, 37
filter_types (options), 30
fx, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23, 23, 25,

27, 29, 31, 32, 34, 37, 39, 40

geom_raster, 20
geometry, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23,

24, 24, 27, 29, 31, 32, 34, 36, 37, 39,
40

geometry_area (geometry), 24
geometry_point, 13
geometry_point (geometry), 24
geometry_size_percent (geometry), 24
geometry_size_pixels (geometry), 24
ggplot2::annotation_raster, 26
gifski, 38, 39
granite (wizard), 39
gravity_type, 13
gravity_types, 13, 32, 37
gravity_types (options), 30

image_animate, 5, 39
image_animate (animation), 4
image_annotate (painting), 31
image_append, 5
image_append (animation), 4
image_apply, 5
image_apply (animation), 4
image_attributes (editing), 18
image_average, 5
image_average (animation), 4
image_background, 11
image_background (color), 9
image_blank (editing), 18
image_blur (effects), 22
image_border, 13
image_border (composite), 12
image_browse (editing), 18
image_canny (edges), 17
image_canny(), 17
image_capture (device), 15
image_channel, 11
image_channel (color), 9
image_charcoal (effects), 22
image_chop, 37
image_chop (transform), 36

image_coalesce (animation), 4
image_coalesce(), 19
image_colorize, 11
image_colorize (color), 9
image_combine (color), 9
image_comment (attributes), 7
image_compare, 3
image_compare (analysis), 2
image_compare_dist (analysis), 2
image_composite (composite), 12
image_connect, 33
image_connect (segmentation), 33
image_contrast, 11
image_contrast (color), 9
image_convert (editing), 18
image_convert(), 11
image_convolve (morphology), 27
image_crop, 37
image_crop (transform), 36
image_data (editing), 18
image_data(), 21
image_deskew, 20, 37
image_deskew (transform), 36
image_deskew_angle (transform), 36
image_despeckle (effects), 22
image_destroy (editing), 18
image_device (device), 15
image_display (editing), 18
image_distort (transform), 36
image_draw, 32
image_draw (device), 15
image_edge (edges), 17
image_emboss (effects), 22
image_enhance, 11
image_enhance (color), 9
image_equalize, 11
image_equalize (color), 9
image_extent (transform), 36
image_fft, 3
image_fft (analysis), 2
image_fill (painting), 31
image_fill(), 31
image_flatten, 5
image_flatten (animation), 4
image_flip, 37
image_flip (transform), 36
image_flop, 37
image_flop (transform), 36

INDEX 43

image_frame, 13
image_frame (composite), 12
image_fuzzycmeans, 33
image_fuzzycmeans (segmentation), 33
image_fx, 23
image_fx (fx), 23
image_fx_sequence, 23
image_fx_sequence (fx), 23
image_get_artifact (editing), 18
image_ggplot, 26
image_graph (device), 15
image_graph(), 3, 4, 7, 10, 12, 14, 17, 20, 22,

23, 26, 27, 29, 32, 33, 35, 36, 39
image_hough_draw (edges), 17
image_hough_txt (edges), 17
image_implode (effects), 22
image_info (attributes), 7
image_info(), 7
image_join (editing), 18
image_lat (thresholding), 34
image_lat(), 34
image_level (thresholding), 34
image_map, 11
image_map (color), 9
image_median, 11
image_median (color), 9
image_modulate, 10
image_modulate (color), 9
image_montage, 5
image_montage (animation), 4
image_morph, 5
image_morph (animation), 4
image_morphology (morphology), 27
image_mosaic, 5
image_mosaic (animation), 4
image_motion_blur (effects), 22
image_negate (effects), 22
image_noise (effects), 22
image_normalize, 11
image_normalize (color), 9
image_ocr (ocr), 28
image_ocr_data (ocr), 28
image_oilpaint (effects), 22
image_ordered_dither, 11
image_ordered_dither (color), 9
image_orient (transform), 36
image_page (transform), 36
image_quantize, 11

image_quantize (color), 9
image_raster (editing), 18
image_read, 14
image_read (editing), 18
image_read(), 3, 4, 7, 10, 12, 14, 17, 18, 20,

22, 23, 26, 27, 29, 32, 33, 35, 36, 39
image_read_pdf (editing), 18
image_read_svg (editing), 18
image_read_video (editing), 18
image_reducenoise (effects), 22
image_repage (transform), 36
image_resize, 37
image_resize (transform), 36
image_rotate, 37
image_rotate (transform), 36
image_sample, 37
image_sample (transform), 36
image_scale, 37
image_scale (transform), 36
image_separate (color), 9
image_set_defines, 14
image_set_defines (defines), 14
image_shade (composite), 12
image_shadow (composite), 12
image_shadow_mask (composite), 12
image_shear (transform), 36
image_split, 33
image_split (segmentation), 33
image_strip (editing), 18
image_threshold (thresholding), 34
image_threshold(), 34
image_transparent, 11
image_transparent (color), 9
image_trim, 37
image_trim (transform), 36
image_types, 20
image_types (options), 30
image_write, 14
image_write (editing), 18
image_write_gif (video), 38
image_write_video (video), 38
imagemagick (_index_), 40

kernel_types (options), 30
kerneltype, 27

lapply, 5
length(), 21
logo (wizard), 39

44 INDEX

magick (_index_), 40
magick-package (_index_), 40
magick_config (coder_info), 8
magick_fonts (options), 30
magick_fonts(), 32
magick_options (options), 30
magick_set_seed (coder_info), 8
metric_types (options), 30
metric_types(), 3
morphology, 3, 5, 7, 11, 13, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 37, 39, 40
morphology_types (options), 30
morphology_types(), 27

noise_types, 23
noise_types (options), 30

ocr, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23–25, 27,
28, 31, 32, 34, 37, 39, 40

option_types, 31
option_types (options), 30
options, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23–25,

27, 29, 30, 32, 34, 37, 39, 40
orientation_types, 37
orientation_types (options), 30

painting, 3, 5, 7, 11, 13, 14, 16, 18, 21,
23–25, 27, 29, 31, 31, 34, 37, 39, 40

password, 20
pdftools, 21
plot.window, 15
print(), 21

rev(), 21
rose (wizard), 39
rsvg, 21

segmentation, 3, 5, 7, 11, 13, 14, 16, 18, 21,
23–25, 27, 29, 31, 32, 33, 37, 39, 40

style_types, 32
style_types (options), 30

tesseract, 29, 40
tesseract_download(), 29
thresholding, 34
transform, 3, 5, 7, 11, 13, 14, 16, 18, 21,

23–25, 27, 29, 31, 32, 34, 36, 39, 40

vapply, 5

video, 3, 5, 7, 11, 13, 14, 16, 18, 21, 23–25,
27, 29, 31, 32, 34, 37, 38, 40

wizard, 39

	analysis
	animation
	as_EBImage
	attributes
	autoviewer
	coder_info
	color
	composite
	defines
	device
	edges
	editing
	effects
	fx
	geometry
	image_ggplot
	morphology
	ocr
	options
	painting
	segmentation
	thresholding
	transform
	video
	wizard
	index
	Index

