
Package ‘nlmixr2’
February 1, 2024

Title Nonlinear Mixed Effects Models in Population PK/PD

Version 2.1.1

Description Fit and compare nonlinear mixed-effects models in differential
equations with flexible dosing information commonly seen in pharmacokinetics
and pharmacodynamics (Almquist, Leander, and Jirstrand 2015
<doi:10.1007/s10928-015-9409-1>). Differential equation solving is
by compiled C code provided in the 'rxode2' package
(Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

Imports nlmixr2est (>= 2.2.0), nlmixr2extra, rxode2 (>= 2.1.1), lotri,
nlmixr2plot, magrittr, crayon, cli

Depends nlmixr2data

Suggests rmarkdown, knitr, devtools, ggplot2, testthat, n1qn1,
rxode2parse, withr

BugReports https://github.com/nlmixr2/nlmixr2/issues/

URL https://nlmixr2.org/, https://github.com/nlmixr2/nlmixr2/

NeedsCompilation no

Author Matthew Fidler [aut, cre] (<https://orcid.org/0000-0001-8538-6691>),
Yuan Xiong [ctb],
Rik Schoemaker [ctb] (<https://orcid.org/0000-0002-7538-3005>),
Justin Wilkins [ctb] (<https://orcid.org/0000-0002-7099-9396>),
Wenping Wang [ctb],
Mirjam Trame [ctb],
Huijuan Xu [ctb],
John Harrold [ctb],
Bill Denney [ctb] (<https://orcid.org/0000-0002-5759-428X>),
Theodoros Papathanasiou [ctb],
Teun Post [ctb],
Richard Hooijmaijers [ctb]

Maintainer Matthew Fidler <matthew.fidler@gmail.com>

1

https://doi.org/10.1007/s10928-015-9409-1
https://doi.org/10.1002/psp4.12052
https://github.com/nlmixr2/nlmixr2/issues/
https://nlmixr2.org/
https://github.com/nlmixr2/nlmixr2/
https://orcid.org/0000-0001-8538-6691
https://orcid.org/0000-0002-7538-3005
https://orcid.org/0000-0002-7099-9396
https://orcid.org/0000-0002-5759-428X

2 addCwres

Repository CRAN

Date/Publication 2024-02-01 19:20:02 UTC

R topics documented:
addCwres . 2
addNpde . 4
addTable . 5
bootplot . 7
bootstrapFit . 7
covarSearchAuto . 9
foceiControl . 11
nlmeControl . 24
nlmixr2 . 29
nlmixr2CheckInstall . 40
preconditionFit . 40
saemControl . 41
setOfv . 45
tableControl . 46
traceplot . 48
vpcCens . 49
vpcCensTad . 50
vpcPlot . 51
vpcPlotTad . 54
vpcSim . 55

Index 58

addCwres Add CWRES

Description

This returns a new fit object with CWRES attached

Usage

addCwres(fit, focei = TRUE, updateObject = TRUE, envir = parent.frame(1))

Arguments

fit nlmixr2 fit without WRES/CWRES
focei Boolean indicating if the focei objective function is added. If not the foce ob-

jective function is added.
updateObject Boolean indicating if the original fit object should be updated. By default this is

true.
envir Environment that should be checked for object to update. By default this is the

global environment.

addCwres 3

Value

fit with CWRES

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

f <- try(nlmixr2(one.cmt, theo_sd, "saem"))

print(f)

even though you may have forgotten to add the cwres, you can add it to the data.frame:

if (!inherits(f, "try-error")) {
f <- try(addCwres(f))
print(f)

}

Note this also adds the FOCEi objective function

4 addNpde

addNpde NPDE calculation for nlmixr2

Description

NPDE calculation for nlmixr2

Usage

addNpde(
object,
updateObject = TRUE,
table = tableControl(),
...,
envir = parent.frame(1)

)

Arguments

object nlmixr2 fit object

updateObject Boolean indicating if original object should be updated. By default this is TRUE.

table ‘tableControl()‘ list of options

... Additional arguments passed to nlmixr2est::addNpde().

envir Environment that should be checked for object to update. By default this is the
global environment.

Value

New nlmixr2 fit object

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({

You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models

addTable 5

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

f <- nlmixr2(one.cmt, theo_sd, "saem")

even though you may have forgotten to add the NPDE, you can add it to the data.frame:

f <- addNpde(f)

addTable Add table information to nlmixr2 fit object without tables

Description

Add table information to nlmixr2 fit object without tables

Usage

addTable(
object,
updateObject = FALSE,
data = object$dataSav,
thetaEtaParameters = object$foceiThetaEtaParameters,
table = tableControl(),
keep = NULL,
drop = NULL,
envir = parent.frame(1)

)

Arguments

object nlmixr2 family of objects

updateObject Update the object (default FALSE)

data Saved data from
thetaEtaParameters

Internal theta/eta parameters

6 addTable

table a ‘tableControl()‘ list of options

keep Character Vector of items to keep

drop Character Vector of items to drop or NULL

envir Environment to search for updating

Value

Fit with table information attached

Author(s)

Matthew Fidler

Examples

one.cmt <- function() {
ini({

You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

run without tables step
f <- nlmixr2(one.cmt, theo_sd, "saem", control=list(calcTables=FALSE))

print(f)

Now add the tables

f <- addTable(f)

print(f)

bootplot 7

bootplot Produce delta objective function for boostrap

Description

Produce delta objective function for boostrap

Usage

bootplot(x, ...)

Arguments

x fit object

... Additional arguments passed to nlmixr2extra::bootplot().

Value

Fit traceplot or nothing.

Author(s)

Vipul Mann, Matthew L. Fidler

References

R Niebecker, MO Karlsson. (2013) Are datasets for NLME models large enough for a bootstrap to
provide reliable parameter uncertainty distributions? PAGE 2013. https://www.page-meeting.
org/?abstract=2899

bootstrapFit Bootstrap nlmixr2 fit

Description

Bootstrap input dataset and rerun the model to get confidence bounds and aggregated parameters

https://www.page-meeting.org/?abstract=2899
https://www.page-meeting.org/?abstract=2899

8 bootstrapFit

Usage

bootstrapFit(
fit,
nboot = 200,
nSampIndiv,
stratVar,
stdErrType = c("perc", "se"),
ci = 0.95,
pvalues = NULL,
restart = FALSE,
plotHist = FALSE,
fitName = as.character(substitute(fit))

)

Arguments

fit the nlmixr2 fit object

nboot an integer giving the number of bootstrapped models to be fit; default value is
200

nSampIndiv an integer specifying the number of samples in each bootstrapped sample; de-
fault is the number of unique subjects in the original dataset

stratVar Variable in the original dataset to stratify on; This is useful to distinguish be-
tween sparse and full sampling and other features you may wish to keep distinct
in your bootstrap

stdErrType This gives the standard error type for the updated standard errors; The current
possibilities are: "perc" which gives the standard errors by percentiles (default)
or "se" which gives the standard errors by the traditional formula.

ci Confidence interval level to calculate. Default is 0.95 for a 95 percent confidence
interval

pvalues a vector of pvalues indicating the probability of each subject to get selected;
default value is NULL implying that probability of each subject is the same

restart A boolean to try to restart an interrupted or incomplete boostrap. By default this
is FALSE

plotHist A boolean indicating if a histogram plot to assess how well the bootstrap is
doing. By default this is turned off (FALSE)

fitName is the fit name that is used for the name of the boostrap files. By default it is the
fit provided though it could be something else.

Value

Nothing, called for the side effects; The original fit is updated with the bootstrap confidence bands

Author(s)

Vipul Mann, Matthew Fidler

covarSearchAuto 9

Examples

Not run:
one.cmt <- function() {

ini({
tka <- 0.45; label("Ka")
tcl <- 1; label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <- nlmixr2(one.cmt, nlmixr2data::theo_sd, est = "saem", control = list(print = 0))

withr::with_tempdir({ # Run example in temp dir

bootstrapFit(fit, nboot = 5, restart = TRUE) # overwrites any of the existing data or model files
bootstrapFit(fit, nboot = 7) # resumes fitting using the stored data and model files

Note this resumes because the total number of bootstrap samples is not 10

bootstrapFit(fit, nboot=10)

Note the boostrap standard error and variance/covariance matrix is retained.
If you wish to switch back you can change the covariance matrix by

nlmixr2est::setCov(fit, "linFim")

And change it back again

nlmixr2est::setCov(fit, "boot10")

This change will affect any simulations with uncertainty in their parameters

You may also do a chi-square diagnostic plot check for the bootstrap with
bootplot(fit)
})

End(Not run)

covarSearchAuto Stepwise Covariate Model-selection (SCM) method

10 covarSearchAuto

Description

Stepwise Covariate Model-selection (SCM) method

Usage

covarSearchAuto(
fit,
varsVec,
covarsVec,
pVal = list(fwd = 0.05, bck = 0.01),
catvarsVec = NULL,
searchType = c("scm", "forward", "backward"),
restart = FALSE

)

Arguments

fit an nlmixr2 ’fit’ object

varsVec a list of candidate variables to which the covariates could be added

covarsVec a list of candidate covariates that need to be tested

pVal a named list with names ’fwd’ and ’bck’ for specifying the p-values for the
forward and backward searches, respectively

catvarsVec character vector of categorical covariates that need to be added

searchType one of ’scm’, ’forward’ and ’backward’ to specify the covariate search method;
default is ’scm’

restart a boolean that controls if the search should be restarted; default is FALSE

Value

A list summarizing the covariate selection steps and output; This list has the "summaryTable" for
the overall summary of the covariate selection as well as "resFwd" for the forward selection method
and "resBck" for the backward selection method.

Author(s)

Vipul Mann, Matthew Fidler, Vishal Sarsani

Examples

Not run:
one.cmt <- function() {

ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1

foceiControl 11

add.sd <- 0.7
})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <- nlmixr2(one.cmt, nlmixr2data::theo_sd, est = "saem", control = list(print = 0))
rxode2::.rxWithWd(tempdir(), {# with temporary directory

auto1 <- covarSearchAuto(fit, varsVec = c("ka", "cl"),
covarsVec = c("WT"))

})

Note that this didn't include sex, add it to dataset and restart model

d <- nlmixr2data::theo_sd
d$SEX <-0
d$SEX[d$ID<=6] <-1

fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0))

This would restart if for some reason the search crashed:

rxode2::.rxWithWd(tempdir(), {# with temporary directory

auto2 <- covarSearchAuto(fit, varsVec = c("ka", "cl"), covarsVec = c("WT"),
catvarsVec= c("SEX"), restart = TRUE)

auto3 <- covarSearchAuto(fit, varsVec = c("ka", "cl"), covarsVec = c("WT"),
catvarsVec= c("SEX"), restart = TRUE,
searchType = "forward")

})

End(Not run)

foceiControl Control Options for FOCEi

Description

Control Options for FOCEi

12 foceiControl

Usage

foceiControl(
sigdig = 3,
...,
epsilon = NULL,
maxInnerIterations = 1000,
maxOuterIterations = 5000,
n1qn1nsim = NULL,
print = 1L,
printNcol = floor((getOption("width") - 23)/12),
scaleTo = 1,
scaleObjective = 0,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleC0 = 1e+05,
derivEps = rep(20 * sqrt(.Machine$double.eps), 2),
derivMethod = c("switch", "forward", "central"),
derivSwitchTol = NULL,
covDerivMethod = c("central", "forward"),
covMethod = c("r,s", "r", "s", ""),
hessEps = (.Machine$double.eps)^(1/3),
hessEpsLlik = (.Machine$double.eps)^(1/3),
optimHessType = c("central", "forward"),
optimHessCovType = c("central", "forward"),
eventType = c("central", "forward"),
centralDerivEps = rep(20 * sqrt(.Machine$double.eps), 2),
lbfgsLmm = 7L,
lbfgsPgtol = 0,
lbfgsFactr = NULL,
eigen = TRUE,
addPosthoc = TRUE,
diagXform = c("sqrt", "log", "identity"),
sumProd = FALSE,
optExpression = TRUE,
ci = 0.95,
useColor = crayon::has_color(),
boundTol = NULL,
calcTables = TRUE,
noAbort = TRUE,
interaction = TRUE,
cholSEtol = (.Machine$double.eps)^(1/3),
cholAccept = 0.001,
resetEtaP = 0.15,
resetThetaP = 0.05,
resetThetaFinalP = 0.15,

foceiControl 13

diagOmegaBoundUpper = 5,
diagOmegaBoundLower = 100,
cholSEOpt = FALSE,
cholSECov = FALSE,
fo = FALSE,
covTryHarder = FALSE,
outerOpt = c("nlminb", "bobyqa", "lbfgsb3c", "L-BFGS-B", "mma", "lbfgsbLG", "slsqp",

"Rvmmin"),
innerOpt = c("n1qn1", "BFGS"),
rhobeg = 0.2,
rhoend = NULL,
npt = NULL,
rel.tol = NULL,
x.tol = NULL,
eval.max = 4000,
iter.max = 2000,
abstol = NULL,
reltol = NULL,
resetHessianAndEta = FALSE,
stateTrim = Inf,
shi21maxOuter = 0L,
shi21maxInner = 20L,
shi21maxInnerCov = 20L,
shi21maxFD = 20L,
gillK = 10L,
gillStep = 4,
gillFtol = 0,
gillRtol = sqrt(.Machine$double.eps),
gillKcov = 10L,
gillKcovLlik = 10L,
gillStepCovLlik = 4.5,
gillStepCov = 2,
gillFtolCov = 0,
gillFtolCovLlik = 0,
rmatNorm = TRUE,
rmatNormLlik = TRUE,
smatNorm = TRUE,
smatNormLlik = TRUE,
covGillF = TRUE,
optGillF = TRUE,
covSmall = 1e-05,
adjLik = TRUE,
gradTrim = Inf,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
gradCalcCentralSmall = 1e-04,
gradCalcCentralLarge = 10000,
etaNudge = qnorm(1 - 0.05/2)/sqrt(3),

14 foceiControl

etaNudge2 = qnorm(1 - 0.05/2) * sqrt(3/5),
nRetries = 3,
seed = 42,
resetThetaCheckPer = 0.1,
etaMat = NULL,
repeatGillMax = 1,
stickyRecalcN = 4,
gradProgressOfvTime = 10,
addProp = c("combined2", "combined1"),
badSolveObjfAdj = 100,
compress = TRUE,
rxControl = NULL,
sigdigTable = NULL,
fallbackFD = FALSE,
smatPer = 0.6

)

Arguments

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

... Additional arguments passed to nlmixr2est::foceiControl().

epsilon Precision of estimate for n1qn1 optimization.
maxInnerIterations

Number of iterations for n1qn1 optimization.
maxOuterIterations

Maximum number of L-BFGS-B optimization for outer problem.

n1qn1nsim Number of function evaluations for n1qn1 optimization.

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

printNcol Number of columns to printout before wrapping parameter estimates/gradient

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

scaleObjective Scale the initial objective function to this value. By default this is 0 (meaning
do not scale)

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

foceiControl 15

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

16 foceiControl

• std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

foceiControl 17

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleC0 Number to adjust the scaling factor by if the initial gradient is zero.

18 foceiControl

derivEps Forward difference tolerances, which is a vector of relative difference and abso-
lute difference. The central/forward difference step size h is calculated as:
h = abs(x)*derivEps[1] + derivEps[2]

derivMethod indicates the method for calculating derivatives of the outer problem. Cur-
rently supports "switch", "central" and "forward" difference methods. Switch
starts with forward differences. This will switch to central differences when
abs(delta(OFV)) <= derivSwitchTol and switch back to forward differences when
abs(delta(OFV)) > derivSwitchTol.

derivSwitchTol The tolerance to switch forward to central differences.

covDerivMethod indicates the method for calculating the derivatives while calculating the covari-
ance components (Hessian and S).

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

hessEps is a double value representing the epsilon for the Hessian calculation. This is
used for the R matrix calculation.

hessEpsLlik is a double value representing the epsilon for the Hessian calculation when do-
ing focei generalized log-likelihood estimation. This is used for the R matrix
calculation.

optimHessType The hessian type for when calculating the individual hessian by numeric dif-
ferences (in generalized log-likelihood estimation). The options are "central",
and "forward". The central differences is what R’s ‘optimHess()‘ uses and is
the default for this method. (Though the "forward" is faster and still reasonable
for most cases). The Shi21 cannot be changed for the Gill83 algorithm with the
optimHess in a generalized likelihood problem.

optimHessCovType

The hessian type for when calculating the individual hessian by numeric differ-
ences (in generalized log-likelihood estimation). The options are "central", and
"forward". The central differences is what R’s ‘optimHess()‘ uses. While this
takes longer in optimization, it is more accurate, so for calculating the covari-
ance and final likelihood, the central differences are used. This also uses the
modified Shi21 method

eventType Event gradient type for dosing events; Can be "central" or "forward"
centralDerivEps

Central difference tolerances. This is a numeric vector of relative difference and
absolute difference. The central/forward difference step size h is calculated as:
h = abs(x)*derivEps[1] + derivEps[2]

lbfgsLmm An integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 7.

foceiControl 19

lbfgsPgtol is a double precision variable.
On entry pgtol >= 0 is specified by the user. The iteration will stop when:
max(\| proj g_i \| i = 1, ..., n) <= lbfgsPgtol

where pg_i is the ith component of the projected gradient.
On exit pgtol is unchanged. This defaults to zero, when the check is suppressed.

lbfgsFactr Controls the convergence of the "L-BFGS-B" method. Convergence occurs
when the reduction in the objective is within this factor of the machine toler-
ance. Default is 1e10, which gives a tolerance of about 2e-6, approximately
4 sigdigs. You can check your exact tolerance by multiplying this value by
.Machine$double.eps

eigen A boolean indicating if eigenvectors are calculated to include a condition num-
ber calculation.

addPosthoc Boolean indicating if posthoc parameters are added to the table output.

diagXform This is the transformation used on the diagonal of the chol(solve(omega)).
This matrix and values are the parameters estimated in FOCEi. The possibilities
are:

• sqrt Estimates the sqrt of the diagonal elements of chol(solve(omega)).
This is the default method.

• log Estimates the log of the diagonal elements of chol(solve(omega))
• identity Estimates the diagonal elements without any transformations

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

useColor Boolean indicating if focei can use ASCII color codes

boundTol Tolerance for boundary issues.

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

noAbort Boolean to indicate if you should abort the FOCEi evaluation if it runs into
troubles. (default TRUE)

interaction Boolean indicate FOCEi should be used (TRUE) instead of FOCE (FALSE)

cholSEtol tolerance for Generalized Cholesky Decomposition. Defaults to suggested (.Ma-
chine$double.eps)^(1/3)

cholAccept Tolerance to accept a Generalized Cholesky Decomposition for a R or S matrix.

resetEtaP represents the p-value for reseting the individual ETA to 0 during optimization
(instead of the saved value). The two test statistics used in the z-test are either
chol(omega^-1) %*% eta or eta/sd(allEtas). A p-value of 0 indicates the ETAs
never reset. A p-value of 1 indicates the ETAs always reset.

20 foceiControl

resetThetaP represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization. A
p-value of 0 indicates the THETAs never reset. A p-value of 1 indicates the
THETAs always reset and is not allowed. The theta reset is checked at the begin-
ning and when nearing a local minima. The percent change in objective function
where a theta reset check is initiated is controlled in resetThetaCheckPer.

resetThetaFinalP

represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization one
final time.

diagOmegaBoundUpper

This represents the upper bound of the diagonal omega matrix. The upper bound
is given by diag(omega)*diagOmegaBoundUpper. If diagOmegaBoundUpper is
1, there is no upper bound on Omega.

diagOmegaBoundLower

This represents the lower bound of the diagonal omega matrix. The lower bound
is given by diag(omega)/diagOmegaBoundUpper. If diagOmegaBoundLower is
1, there is no lower bound on Omega.

cholSEOpt Boolean indicating if the generalized Cholesky should be used while optimizing.

cholSECov Boolean indicating if the generalized Cholesky should be used while calculating
the Covariance Matrix.

fo is a boolean indicating if this is a FO approximation routine.

covTryHarder If the R matrix is non-positive definite and cannot be corrected to be non-positive
definite try estimating the Hessian on the unscaled parameter space.

outerOpt optimization method for the outer problem

innerOpt optimization method for the inner problem (not implemented yet.)

rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default
this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted. (bobyqa)

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
10^(-sigdig-1) will be used. (bobyqa)

npt The number of points used to approximate the objective function via a quadratic
approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1. (bobyqa)

rel.tol Relative tolerance before nlminb stops (nlmimb).

x.tol X tolerance for nlmixr2 optimizer

eval.max Number of maximum evaluations of the objective function (nlmimb)

iter.max Maximum number of iterations allowed (nlmimb)

abstol Absolute tolerance for nlmixr2 optimizer (BFGS)

foceiControl 21

reltol tolerance for nlmixr2 (BFGS)
resetHessianAndEta

is a boolean representing if the individual Hessian is reset when ETAs are reset
using the option resetEtaP.

stateTrim Trim state amounts/concentrations to this value.

shi21maxOuter The maximum number of steps for the optimization of the forward-difference
step size. When not zero, use this instead of Gill differences.

shi21maxInner The maximum number of steps for the optimization of the individual Hessian
matrices in the generalized likelihood problem. When 0, un-optimized finite
differences are used.

shi21maxInnerCov

The maximum number of steps for the optimization of the individual Hessian
matrices in the generalized likelihood problem for the covariance step. When 0,
un-optimized finite differences are used.

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

gillK The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

gillStep When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

gillFtol The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

gillRtol The relative tolerance used for Gill 1983 determination of optimal step size.

gillKcov The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method) during the covariance
step. If 0, no optimal step size is determined. Otherwise this is the optimal step
size determined.

gillKcovLlik The total number of possible steps to determine the optimal forward/central
difference step per parameter when using the generalized focei log-likelihood
method (by the Gill 1986 method). If 0, no optimal step size is determined.
Otherwise this is the optimal step size is determined

gillStepCovLlik

Same as above but during generalized focei log-likelihood

gillStepCov When looking for the optimal forward difference step size, this is This is the step
size to increase the initial estimate by. So each iteration during the covariance
step is equal to the new step size = (prior step size)*gillStepCov

gillFtolCov The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates during the covariance step.

gillFtolCovLlik

Same as above but applied during generalized log-likelihood estimation.

rmatNorm A parameter to normalize gradient step size by the parameter value during the
calculation of the R matrix

22 foceiControl

rmatNormLlik A parameter to normalize gradient step size by the parameter value during the
calculation of the R matrix if you are using generalized log-likelihood Hessian
matrix.

smatNorm A parameter to normalize gradient step size by the parameter value during the
calculation of the S matrix

smatNormLlik A parameter to normalize gradient step size by the parameter value during the
calculation of the S matrix if you are using the generalized log-likelihood.

covGillF Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central difference gradient calculation.

optGillF Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central differences for optimization.

covSmall The covSmall is the small number to compare covariance numbers before reject-
ing an estimate of the covariance as the final estimate (when comparing sand-
wich vs R/S matrix estimates of the covariance). This number controls how
small the variance is before the covariance matrix is rejected.

adjLik In nlmixr2, the objective function matches NONMEM’s objective function, which
removes a 2*pi constant from the likelihood calculation. If this is TRUE, the
likelihood function is adjusted by this 2*pi factor. When adjusted this number
more closely matches the likelihood approximations of nlme, and SAS approx-
imations. Regardless of if this is turned on or off the objective function matches
NONMEM’s objective function.

gradTrim The parameter to adjust the gradient to if the |gradient| is very large.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

gradCalcCentralSmall

A small number that represents the value where |grad| < gradCalcCentralSmall
where forward differences switch to central differences.

gradCalcCentralLarge

A large number that represents the value where |grad| > gradCalcCentralLarge
where forward differences switch to central differences.

etaNudge By default initial ETA estimates start at zero; Sometimes this doesn’t optimize
appropriately. If this value is non-zero, when the n1qn1 optimization didn’t
perform appropriately, reset the Hessian, and nudge the ETA up by this value; If
the ETA still doesn’t move, nudge the ETA down by this value. By default this
value is qnorm(1-0.05/2)*1/sqrt(3), the first of the Gauss Quadrature numbers
times by the 0.95% normal region. If this is not successful try the second eta
nudge number (below). If +-etaNudge2 is not successful, then assign to zero
and do not optimize any longer

etaNudge2 This is the second eta nudge. By default it is qnorm(1-0.05/2)*sqrt(3/5), which
is the n=3 quadrature point (excluding zero) times by the 0.95% normal region

nRetries If FOCEi doesn’t fit with the current parameter estimates, randomly sample new
parameter estimates and restart the problem. This is similar to ’PsN’ resampling.

foceiControl 23

seed an object specifying if and how the random number generator should be initial-
ized

resetThetaCheckPer

represents objective function % percentage below which resetThetaP is checked.

etaMat Eta matrix for initial estimates or final estimates of the ETAs.

repeatGillMax If the tolerances were reduced when calculating the initial Gill differences, the
Gill difference is repeated up to a maximum number of times defined by this
parameter.

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

gradProgressOfvTime

This is the time for a single objective function evaluation (in seconds) to start
progress bars on gradient evaluations

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

badSolveObjfAdj

The objective function adjustment when the ODE system cannot be solved. It is
based on each individual bad solve.

compress Should the object have compressed items

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

fallbackFD Fallback to the finite differences if the sensitivity equations do not solve.

smatPer A percentage representing the number of failed parameter gradients for each
individual (which are replaced with the overall gradient for the parameter) out of
the total number of gradients parameters (ie ‘ntheta*nsub‘) before the S matrix
is considered to be a bad matrix.

24 nlmeControl

Details

Note this uses the R’s L-BFGS-B in optim for the outer problem and the BFGS n1qn1 with that
allows restoring the prior individual Hessian (for faster optimization speed).

However the inner problem is not scaled. Since most eta estimates start near zero, scaling for these
parameters do not make sense.

This process of scaling can fix some ill conditioning for the unscaled problem. The covariance step
is performed on the unscaled problem, so the condition number of that matrix may not be reflective
of the scaled problem’s condition-number.

Value

The control object that changes the options for the FOCEi family of estimation methods

Author(s)

Matthew L. Fidler

References

Gill, P.E., Murray, W., Saunders, M.A., & Wright, M.H. (1983). Computing Forward-Difference
Intervals for Numerical Optimization. Siam Journal on Scientific and Statistical Computing, 4,
310-321.

Shi, H.M., Xie, Y., Xuan, M.Q., & Nocedal, J. (2021). Adaptive Finite-Difference Interval Estima-
tion for Noisy Derivative-Free Optimization.

See Also

optim

n1qn1

rxSolve

Other Estimation control: nlmixr2NlmeControl(), saemControl()

nlmeControl Control Values for nlme Fit with extra options for nlmixr

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the ‘control’ argument to the ‘nlme’ function.

nlmeControl 25

Usage

nlmeControl(
maxIter = 100,
pnlsMaxIter = 100,
msMaxIter = 100,
minScale = 0.001,
tolerance = 1e-05,
niterEM = 25,
pnlsTol = 0.001,
msTol = 1e-06,
returnObject = FALSE,
msVerbose = FALSE,
msWarnNoConv = TRUE,
gradHess = TRUE,
apVar = TRUE,
.relStep = .Machine$double.eps^(1/3),
minAbsParApVar = 0.05,
opt = c("nlminb", "nlm"),
natural = TRUE,
sigma = NULL,
optExpression = TRUE,
sumProd = FALSE,
rxControl = NULL,
method = c("ML", "REML"),
random = NULL,
fixed = NULL,
weights = NULL,
verbose = TRUE,
returnNlme = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
muRefCovAlg = TRUE,
...

)

Arguments

maxIter maximum number of iterations for the nlme optimization algorithm. Default is
50.

pnlsMaxIter maximum number of iterations for the PNLS optimization step inside the nlme
optimization. Default is 7.

msMaxIter maximum number of iterations for nlminb (iter.max) or the nlm (iterlim,
from the 10-th step) optimization step inside the nlme optimization. Default is

26 nlmeControl

50 (which may be too small for e.g. for overparametrized cases).

minScale minimum factor by which to shrink the default step size in an attempt to decrease
the sum of squares in the PNLS step. Default 0.001.

tolerance tolerance for the convergence criterion in the nlme algorithm. Default is 1e-6.

niterEM number of iterations for the EM algorithm used to refine the initial estimates of
the random effects variance-covariance coefficients. Default is 25.

pnlsTol tolerance for the convergence criterion in PNLS step. Default is 1e-3.

msTol tolerance for the convergence criterion in nlm, passed as the gradtol argument
to the function (see documentation on nlm). Default is 1e-7.

returnObject a logical value indicating whether the fitted object should be returned when the
maximum number of iterations is reached without convergence of the algorithm.
Default is FALSE.

msVerbose a logical value passed as the trace to nlminb(.., control= list(trace = *,
..)) or as argument print.level to nlm(). Default is FALSE.

msWarnNoConv logical indicating if a warning should be signalled whenever the minimization
(by opt) in the LME step does not converge; defaults to TRUE.

gradHess a logical value indicating whether numerical gradient vectors and Hessian ma-
trices of the log-likelihood function should be used in the nlm optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no "varying" parameters and the
pdMat classes used in the random effects structure are pdSymm (general positive-
definite), pdDiag (diagonal), pdIdent (multiple of the identity), or pdCompSymm
(compound symmetry). Default is TRUE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3).

minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance
calculation. The default is 0.05.

opt the optimizer to be used, either "nlminb" (the default) or "nlm".

natural a logical value indicating whether the pdNatural parametrization should be
used for general positive-definite matrices (pdSymm) in reStruct, when the ap-
proximate covariance matrix of the estimators is calculated. Default is TRUE.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "ML".

nlmeControl 27

random optionally, any of the following: (i) a two-sided formula of the form r1+...+rn~x1+...+xm
| g1/.../gQ, with r1,...,rn naming parameters included on the right hand
side of model, x1+...+xm specifying the random-effects model for these pa-
rameters and g1/.../gQ the grouping structure (Q may be equal to 1, in which
case no / is required). The random effects formula will be repeated for all
levels of grouping, in the case of multiple levels of grouping; (ii) a two-sided
formula of the form r1+...+rn~x1+..+xm, a list of two-sided formulas of the
form r1~x1+...+xm, with possibly different random-effects models for differ-
ent parameters, a pdMat object with a two-sided formula, or list of two-sided
formulas (i.e. a non-NULL value for formula(random)), or a list of pdMat ob-
jects with two-sided formulas, or lists of two-sided formulas. In this case, the
grouping structure formula will be given in groups, or derived from the data
used to fit the nonlinear mixed-effects model, which should inherit from class
groupedData,; (iii) a named list of formulas, lists of formulas, or pdMat ob-
jects as in (ii), with the grouping factors as names. The order of nesting will be
assumed the same as the order of the order of the elements in the list; (iv) an
reStruct object. See the documentation on pdClasses for a description of the
available pdMat classes. Defaults to fixed, resulting in all fixed effects having
also random effects.

fixed a two-sided linear formula of the form f1+...+fn~x1+...+xm, or a list of two-
sided formulas of the form f1~x1+...+xm, with possibly different models for
different parameters. The f1,...,fn are the names of parameters included on
the right hand side of model and the x1+...+xm expressions define linear models
for these parameters (when the left hand side of the formula contains several
parameters, they all are assumed to follow the same linear model, described by
the right hand side expression). A 1 on the right hand side of the formula(s)
indicates a single fixed effects for the corresponding parameter(s).

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

returnNlme Returns the nlme object instead of the nlmixr object (by default FALSE). If
any of the nlme specific options of ‘random‘, ‘fixed‘, ‘sens‘, the nlme object is
returned

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:

28 nlmeControl

- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

muRefCovAlg This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:
1. Creating a internal data-variable ‘nlmixrMuDerCov#‘ for each algebraic mu-
referenced expression
2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta‘
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion
5. Remove ‘nlmixrMuDerCov#‘ from nlmix2 output
In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE‘.

... Additional arguments passed to nlmixr2est::nlmeControl().

Value

a nlmixr-nlme list

See Also

Other Estimation control: foceiControl(), saemControl()

Examples

nlmeControl()
nlmixr2NlmeControl()

nlmixr2 29

nlmixr2 nlmixr2 fits population PK and PKPD non-linear mixed effects mod-
els.

Description

nlmixr2 is an R package for fitting population pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic
(PKPD) models.

Usage

nlmixr2(
object,
data,
est = NULL,
control = list(),
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

Arguments

object Fitted object or function specifying the model.

data nlmixr data

est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can
be added for other tools

control The estimation control object. These are expected to be different for each type
of estimation method

table The output table control object (like ‘tableControl()‘)

... Additional arguments passed to nlmixr2est::nlmixr2().

save Boolean to save a nlmixr2 object in a rds file in the working directory. If NULL,
uses option "nlmixr2.save"

envir Environment where the nlmixr object/function is evaluated before running the
estimation routine.

Details

The nlmixr2 generalized function allows common access to the nlmixr2 estimation routines.

The nlmixr object has the following fields:

Field Description
conditionNumber Condition number, that is the highest divided by the lowest eigenvalue in the population covariance matrix
cor Correlation matrix

30 nlmixr2

phiR correlation matrix of each individual’s eta (if present)
objDF Data frame containing objective function information (AIC, BIC, etc.)
time Duration of different parts of the analysis (e.g. setup, optimization, calculation of covariance, etc.)
theta Estimates for eta for each individual
etaObf Estimates for eta for each individual, This also includes the objective function for each individual
fixef Estimates of fixed effects
foceiControl Estimation options if focei was used
ui Final estimates for the model
dataMergeFull Full data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
censInfo Gives the censorng information abot the fit (the type of censoring that was seend and handled in the dataset)
dataLloq Gives the lloq from the dataset (average) when cesoring has occured; Requires the fit to have a table step
dataUloq Gives the uloq from the dataset (average) when censoring has occured; requires the fit to have a table step
eta IIV values for each indiviudal
dataMergeInner Inner data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
rxControl Integration options used to control rxode2
dataMergeLeft Left data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
omega Matrix containing the estimates of the multivarte normal covariance matrix for between subject varaibilities (omega)
covMethod Method used to calculate covariance of the fixed effects
modelName Name of the R object containing the model
origData Original dataset
phiRSE Relative standard error of each individuals eta
dataMergeRight Right data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
ipredModel rxode2 estimation model for fit (internal will likely be removed from visibility
phiSE Standard error of each individuals eta
parFixed Table of parameter estimates (rounded and pretty looking)
parFixedDF Table of parameter estimates as a data frame
omegaR The correlation matirx of omega with standard deviations for the diagonal pieces
iniUi The initial model used to start the estimation
finalUi The model with the estimates replaced as values
scaleInfo The scaling factors used for nlmixr2 estimation in focei; The can be changed by foceiControl(scaleC=. . .) if you think these are unreasonable. It also tells the Gill83 outcome of trying to find the best step size (High gradient error, bad gradient etc)
table These are the table options that were used when generating the table output (were CWRES included, etc
shrink This is a table of shrinkages for all the individual ETAs as well as the variance shrinkage as well as summary statistics for the ETAs and Residual Error
env This is the environment where all the information for the fit is stored outside of the data-frame. It is an R environment hence $env
seed This is the initial seed used for saem
simInfo This returns a list of all the fit information used for a traditional rxode2 simulation, which you can tweak yourself if you wish
runInfo This returns a list of all the warnings or fit information
parHistStacked Value of objective function and parameters at each iteration (tall format)
parHist Value of objective function and parameters at each iteration (wide format)
cov Variance-covariance matrix

Value

Either a nlmixr2 model or a nlmixr2 fit object

nlmixr modeling mini-language

Rationale

nlmixr2 31

nlmixr estimation routines each have their own way of specifying models. Often the models are
specified in ways that are most intuitive for one estimation routine, but do not make sense for
another estimation routine. Sometimes, legacy estimation routines like nlme have their own syntax
that is outside of the control of the nlmixr package.

The unique syntax of each routine makes the routines themselves easier to maintain and expand,
and allows interfacing with existing packages that are outside of nlmixr (like nlme). However, a
model definition language that is common between estimation methods, and an output object that
is uniform, will make it easier to switch between estimation routines and will facilitate interfacing
output with external packages like Xpose.

The nlmixr mini-modeling language, attempts to address this issue by incorporating a common
language. This language is inspired by both R and NONMEM, since these languages are familiar
to many pharmacometricians.

Initial Estimates and boundaries for population parameters

nlmixr models are contained in a R function with two blocks: ini and model. This R function can
be named anything, but is not meant to be called directly from R. In fact if you try you will likely
get an error such as Error: could not find function "ini".

The ini model block is meant to hold the initial estimates for the model, and the boundaries of
the parameters for estimation routines that support boundaries (note nlmixr’s saem and nlme do not
currently support parameter boundaries).

To explain how these initial estimates are specified we will start with an annotated example:

f <- function(){ ## Note the arguments to the function are currently
ignored by nlmixr

ini({
Initial conditions for population parameters (sometimes
called theta parameters) are defined by either `<-` or '='
lCl <- 1.6 #log Cl (L/hr)
Note that simple expressions that evaluate to a number are
OK for defining initial conditions (like in R)
lVc = log(90) #log V (L)
Also a comment on a parameter is captured as a parameter label
lKa <- 1 #log Ka (1/hr)
Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.err <- c(0, 0.2, 1)

})
The model block will be discussed later
model({})

}

As shown in the above examples:

• Simple parameter values are specified as a R-compatible assignment

• Boundaries my be specified by c(lower, est, upper).

• Like NONMEM, c(lower,est) is equivalent to c(lower,est,Inf)

32 nlmixr2

• Also like NONMEM, c(est) does not specify a lower bound, and is equivalent to specifying
the parameter without R’s ‘c‘ function.

• The initial estimates are specified on the variance scale, and in analogy with NONMEM, the
square roots of the diagonal elements correspond to coefficients of variation when used in the
exponential IIV implementation

These parameters can be named almost any R compatible name. Please note that:

• Residual error estimates should be coded as population estimates (i.e. using an ’=’ or ’<-’
statement, not a ’~’).

• Naming variables that start with "_" are not supported. Note that R does not allow variable
starting with "_" to be assigned without quoting them.

• Naming variables that start with "rx_" or "nlmixr_" is not supported since rxode2 and nlmixr2
use these prefixes internally for certain estimation routines and calculating residuals.

• Variable names are case sensitive, just like they are in R. "CL" is not the same as "Cl".

Initial Estimates for between subject error distribution (NONMEM’s $OMEGA)
In mixture models, multivariate normal individual deviations from the population parameters are
estimated (in NONMEM these are called eta parameters). Additionally the variance/covariance
matrix of these deviations is also estimated (in NONMEM this is the OMEGA matrix). These also
have initial estimates. In nlmixr these are specified by the ‘~‘ operator that is typically used in R
for "modeled by", and was chosen to distinguish these estimates from the population and residual
error parameters.

Continuing the prior example, we can annotate the estimates for the between subject error distribu-
tion

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc = log(90) #log V (L)
lKa <- 1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
Initial estimate for ka IIV variance
Labels work for single parameters
eta.ka ~ 0.1 # BSV Ka

For correlated parameters, you specify the names of each
correlated parameter separated by a addition operator `+`
and the left handed side specifies the lower triangular
matrix initial of the covariance matrix.
eta.cl + eta.vc ~ c(0.1,

0.005, 0.1)
Note that labels do not currently work for correlated
parameters. Also do not put comments inside the lower
triangular matrix as this will currently break the model.

})
The model block will be discussed later
model({})

}

nlmixr2 33

As shown in the above examples:

• Simple variances are specified by the variable name and the estimate separated by ‘~‘.

• Correlated parameters are specified by the sum of the variable labels and then the lower trian-
gular matrix of the covariance is specified on the left handed side of the equation. This is also
separated by ‘~‘.

Currently the model syntax does not allow comments inside the lower triangular matrix.

Model Syntax for ODE based models (NONMEM’s $PK, $PRED, $DES and $ERROR)
Once the initialization block has been defined, you can define a model in terms of the defined
variables in the ini block. You can also mix in RxODE blocks into the model.

The current method of defining a nlmixr model is to specify the parameters, and then possibly the
RxODE lines:

Continuing describing the syntax with an annotated example:

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)

})
}

A few points to note:

• Parameters are often defined before the differential equations.

• The differential equations, parameters and error terms are in a single block, instead of multiple
sections.

34 nlmixr2

• State names, calculated variables cannot start with either "rx_" or "nlmixr_" since these are
used internally in some estimation routines.

• Errors are specified using the ‘~‘. Currently you can use either add(parameter) for additive
error, prop(parameter) for proportional error or add(parameter1) + prop(parameter2) for
additive plus proportional error. You can also specify norm(parameter) for the additive error,
since it follows a normal distribution.

• Some routines, like saem require parameters in terms of Pop.Parameter + Individual.Deviation.Parameter
+ Covariate*Covariate.Parameter. The order of these parameters do not matter. This is
similar to NONMEM’s mu-referencing, though not quite so restrictive.

• The type of parameter in the model is determined by the initial block; Covariates used in the
model are missing in the ini block. These variables need to be present in the modeling dataset
for the model to run.

Model Syntax for solved PK systems

Solved PK systems are also currently supported by nlmixr with the ‘linCmt()‘ pseudo-function. An
annotated example of a solved system is below:

##’

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
Instead of specifying the ODEs, you can use
the linCmt() function to use the solved system.
##
This function determines the type of PK solved system
to use by the parameters that are defined. In this case
it knows that this is a one-compartment model with first-order
absorption.
linCmt() ~ prop(prop.err)

})
}

A few things to keep in mind:

• While RxODE allows mixing of solved systems and ODEs, this has not been implemented in
nlmixr yet.

nlmixr2 35

• The solved systems implemented are the one, two and three compartment models with or
without first-order absorption. Each of the models support a lag time with a tlag parameter.

• In general the linear compartment model figures out the model by the parameter names. nlmixr
currently knows about numbered volumes, Vc/Vp, Clearances in terms of both Cl and Q/CLD.
Additionally nlmixr knows about elimination micro-constants (ie K12). Mixing of these pa-
rameters for these models is currently not supported.

Checking model syntax
After specifying the model syntax you can check that nlmixr is interpreting it correctly by using the
nlmixr function on it.

Using the above function we can get:

> nlmixr(f)
1-compartment model with first-order absorption in terms of Cl
Initialization:
##
Fixed Effects ($theta):

lCl lVc lKA
1.60000 4.49981 0.10000

Omega ($omega):
[,1] [,2] [,3]

[1,] 0.1 0.0 0.0
[2,] 0.0 0.1 0.0
[3,] 0.0 0.0 0.1

Model:
##
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
Instead of specifying the ODEs, you can use
the linCmt() function to use the solved system.
##
This function determines the type of PK solved system
to use by the parameters that are defined. In this case
it knows that this is a one-compartment model with first-order
absorption.
linCmt() ~ prop(prop.err)

In general this gives you information about the model (what type of solved system/RxODE), initial
estimates as well as the code for the model block.

Using the model syntax for estimating a model
Once the model function has been created, you can use it and a dataset to estimate the parameters
for a model given a dataset.

This dataset has to have RxODE compatible events IDs. Both Monolix and NONMEM use a a very
similar standard to what nlmixr can support.

36 nlmixr2

Once the data has been converted to the appropriate format, you can use the nlmixr function to run
the appropriate code.

The method to estimate the model is:

fit <- nlmixr(model.function, dataset, est="est", control=estControl(options))

Currently nlme and saem are implemented. For example, to run the above model with saem, we
could have the following:

> f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)

})
}
> fit.s <- nlmixr(f,d,est="saem",control=saemControl(n.burn=50,n.em=100,print=50));
Compiling RxODE differential equations...done.
c:/Rtools/mingw_64/bin/g++ -I"c:/R/R-34~1.1/include" -DNDEBUG -I"d:/Compiler/gcc-4.9.3/local330/include" -Ic:/nlmixr/inst/include -Ic:/R/R-34~1.1/library/STANHE~1/include -Ic:/R/R-34~1.1/library/Rcpp/include -Ic:/R/R-34~1.1/library/RCPPAR~1/include -Ic:/R/R-34~1.1/library/RCPPEI~1/include -Ic:/R/R-34~1.1/library/BH/include -O2 -Wall -mtune=core2 -c saem3090757b4bd1x64.cpp -o saem3090757b4bd1x64.o
In file included from c:/R/R-34~1.1/library/RCPPAR~1/include/armadillo:52:0,

from c:/R/R-34~1.1/library/RCPPAR~1/include/RcppArmadilloForward.h:46,
from c:/R/R-34~1.1/library/RCPPAR~1/include/RcppArmadillo.h:31,
from saem3090757b4bd1x64.cpp:1:

c:/R/R-34~1.1/library/RCPPAR~1/include/armadillo_bits/compiler_setup.hpp:474:96: note: #pragma message: WARNING: use of OpenMP disabled; this compiler doesn't support OpenMP 3.0+
#pragma message ("WARNING: use of OpenMP disabled; this compiler doesn't support OpenMP 3.0+")

^
c:/Rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o saem3090757b4bd1x64.dll tmp.def saem3090757b4bd1x64.o c:/nlmixr/R/rx_855815def56a50f0e7a80e48811d947c_x64.dll -Lc:/R/R-34~1.1/bin/x64 -lRblas -Lc:/R/R-34~1.1/bin/x64 -lRlapack -lgfortran -lm -lquadmath -Ld:/Compiler/gcc-4.9.3/local330/lib/x64 -Ld:/Compiler/gcc-4.9.3/local330/lib -Lc:/R/R-34~1.1/bin/x64 -lR
done.

nlmixr2 37

1: 1.8174 4.6328 0.0553 0.0950 0.0950 0.0950 0.6357
50: 1.3900 4.2039 0.0001 0.0679 0.0784 0.1082 0.1992
100: 1.3894 4.2054 0.0107 0.0686 0.0777 0.1111 0.1981
150: 1.3885 4.2041 0.0089 0.0683 0.0778 0.1117 0.1980
Using sympy via SnakeCharmR
Calculate ETA-based prediction and error derivatives:
Calculate Jacobian...................done.
Calculate sensitivities.......
done.
Calculate d(f)/d(eta)
...
done
...
done
The model-based sensitivities have been calculated
Calculating Table Variables...
done

The options for saem are controlled by saemControl. You may wish to make sure the minimization
is complete in the case of saem. You can do that with traceplot which shows the iteration history
with the divided by burn-in and EM phases. In this case, the burn in seems reasonable; you may
wish to increase the number of iterations in the EM phase of the estimation. Overall it is probably
a semi-reasonable solution.

nlmixr output objects
In addition to unifying the modeling language sent to each of the estimation routines, the outputs
currently have a unified structure.

You can see the fit object by typing the object name:

> fit.s
-- nlmixr SAEM fit (ODE); OBJF calculated from FOCEi approximation -------------

OBJF AIC BIC Log-likelihood Condition Number
62337.09 62351.09 62399.01 -31168.55 82.6086

-- Time (sec; fit.s$time): ---
saem setup Likelihood Calculation covariance table

elapsed 430.25 31.64 1.19 0 3.44

-- Parameters (fit.s$par.fixed): ---
Parameter Estimate SE

lCl log Cl (L/hr) 1.39 0.0240 1.73 4.01 (3.83, 4.20) 26.6
lVc log Vc (L) 4.20 0.0256 0.608 67.0 (63.7, 70.4) 28.5
lKA log Ka (1/hr) 0.00924 0.0323 349. 1.01 (0.947, 1.08) 34.3
prop.err prop.err 0.198 19.8

Shrink(SD)
lCl 0.248
lVc 1.09
lKA 4.19
prop.err 1.81

38 nlmixr2

No correlations in between subject variability (BSV) matrix
Full BSV covariance (fit.s$omega) or correlation (fit.s$omega.R; diagonals=SDs)
Distribution stats (mean/skewness/kurtosis/p-value) available in fit.s$shrink

-- Fit Data (object fit.s is a modified data.frame): ---------------------------
A tibble: 6,947 x 22
ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES

* <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0.25 205. 198. 6.60 0.0741 189. 16.2 0.434 198. 6.78
2 1 0.5 311. 349. -38.7 -0.261 330. -19.0 -0.291 349. -38.3
3 1 0.75 389. 464. -74.5 -0.398 434. -45.2 -0.526 463. -73.9
... with 6,944 more rows, and 11 more variables: CWRES <dbl>, eta.Cl <dbl>,
eta.Vc <dbl>, eta.KA <dbl>, depot <dbl>, centr <dbl>, Cl <dbl>, Vc <dbl>,
KA <dbl>, kel <dbl>, cp <dbl>

This example shows what is typical printout of a nlmixr fit object. The elements of the fit are:

• The type of fit (nlme, saem, etc)

• Metrics of goodness of fit (AIC, BIC, and logLik).

– To align the comparison between methods, the FOCEi likelihood objective is calculated
regardless of the method used and used for goodness of fit metrics.

– This FOCEi likelihood has been compared to NONMEM’s objective function and gives
the same values (based on the data in Wang 2007)

– Also note that saem does not calculate an objective function, and the FOCEi is used as
the only objective function for the fit.

– Even though the objective functions are calculated in the same manner, caution should be
used when comparing fits from various estimation routines.

• The next item is the timing of each of the steps of the fit.

– These can be also accessed by (fit.s$time).
– As a mnemonic, the access for this item is shown in the printout. This is true for almost

all of the other items in the printout.

• After the timing of the fit, the parameter estimates are displayed (can be accessed by fit.s$par.fixed)

– While the items are rounded for R printing, each estimate without rounding is still ac-
cessible by the ‘$‘ syntax. For example, the ‘$Untransformed‘ gives the untransformed
parameter values.

– The Untransformed parameter takes log-space parameters and back-transforms them to
normal parameters. Not the CIs are listed on the back-transformed parameter space.

– Proportional Errors are converted to

• Omega block (accessed by fit.s$omega)

• The table of fit data. Please note:

– A nlmixr fit object is actually a data frame. Saving it as a Rdata object and then loading it
without nlmixr will just show the data by itself. Don’t worry; the fit information has not
vanished, you can bring it back by simply loading nlmixr, and then accessing the data.

– Special access to fit information (like the $omega) needs nlmixr to extract the information.

nlmixr2 39

– If you use the $ to access information, the order of precedence is:

* Fit data from the overall data.frame

* Information about the parsed nlmixr model (via $uif)

* Parameter history if available (via $par.hist and $par.hist.stacked)

* Fixed effects table (via $par.fixed)

* Individual differences from the typical population parameters (via $eta)

* Fit information from the list of information generated during the post-hoc residual
calculation.

* Fit information from the environment where the post-hoc residual were calculated

* Fit information about how the data and options interacted with the specified model
(such as estimation options or if the solved system is for an infusion or an IV bolus).

– While the printout may displays the data as a data.table object or tbl object, the data
is NOT any of these objects, but rather a derived data frame.

– Since the object is a data.frame, you can treat it like one.

In addition to the above properties of the fit object, there are a few additional that may be helpful
for the modeler:

• $theta gives the fixed effects parameter estimates (in NONMEM the thetas). This can also
be accessed in fixed.effects function. Note that the residual variability is treated as a fixed
effect parameter and is included in this list.

• $eta gives the random effects parameter estimates, or in NONMEM the etas. This can also
be accessed in using the random.effects function.

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
prop.sd <- 0.01

})
model({

ka <- exp(tka + eta.ka)

40 preconditionFit

cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd) + prop(prop.sd)

})
}

fitF <- nlmixr(one.cmt, theo_sd, "focei")

fitS <- nlmixr(one.cmt, theo_sd, "saem")

nlmixr2CheckInstall Check your nlmixr2 installation for potential issues

Description

Check your nlmixr2 installation for potential issues

Usage

nlmixr2CheckInstall()

Examples

nlmixr2CheckInstall()

preconditionFit Linearly re-parameterize the model to be less sensitive to rounding
errors

Description

Linearly re-parameterize the model to be less sensitive to rounding errors

Usage

preconditionFit(fit, estType = c("full", "posthoc", "none"), ntry = 10L)

Arguments

fit A nlmixr2 fit to be preconditioned

estType Once the fit has been linearly reparameterized, should a "full" estimation, "posthoc"
estimation or simply a estimation of the covariance matrix "none" before the fit
is updated

ntry number of tries before giving up on a pre-conditioned covariance estimate

saemControl 41

Value

A nlmixr2 fit object that was preconditioned to stabilize the variance/covariance calculation

References

Aoki Y, Nordgren R, Hooker AC. Preconditioning of Nonlinear Mixed Effects Models for Stabilisa-
tion of Variance-Covariance Matrix Computations. AAPS J. 2016;18(2):505-518. doi:10.1208/s12248-
016-9866-5

saemControl Control Options for SAEM

Description

Control Options for SAEM

Usage

saemControl(
seed = 99,
nBurn = 200,
nEm = 300,
nmc = 3,
nu = c(2, 2, 2),
print = 1,
trace = 0,
covMethod = c("linFim", "fim", "r,s", "r", "s", ""),
calcTables = TRUE,
logLik = FALSE,
nnodesGq = 3,
nsdGq = 1.6,
optExpression = TRUE,
adjObf = TRUE,
sumProd = FALSE,
addProp = c("combined2", "combined1"),
tol = 1e-06,
itmax = 30,
type = c("nelder-mead", "newuoa"),
powRange = 10,
lambdaRange = 3,
odeRecalcFactor = 10^(0.5),
maxOdeRecalc = 5L,
perSa = 0.75,
perNoCor = 0.75,
perFixOmega = 0.1,
perFixResid = 0.1,
compress = TRUE,

42 saemControl

rxControl = NULL,
sigdig = NULL,
sigdigTable = NULL,
ci = 0.95,
muRefCov = TRUE,
muRefCovAlg = TRUE,
...

)

Arguments

seed Random Seed for SAEM step. (Needs to be set for reproducibility.) By default
this is 99.

nBurn Number of iterations in the first phase, ie the MCMC/Stochastic Approximation
steps. This is equivalent to Monolix’s K_0 or K_b.

nEm Number of iterations in the Expectation-Maximization (EM) Step. This is equiv-
alent to Monolix’s K_1.

nmc Number of Markov Chains. By default this is 3. When you increase the number
of chains the numerical integration by MC method will be more accurate at the
cost of more computation. In Monolix this is equivalent to L.

nu This is a vector of 3 integers. They represent the numbers of transitions of the
three different kernels used in the Hasting-Metropolis algorithm. The default
value is c(2,2,2), representing 40 for each transition initially (each value is
multiplied by 20).
The first value represents the initial number of multi-variate Gibbs samples are
taken from a normal distribution.
The second value represents the number of uni-variate, or multi- dimensional
random walk Gibbs samples are taken.
The third value represents the number of bootstrap/reshuffling or uni-dimensional
random samples are taken.

print The number it iterations that are completed before anything is printed to the
console. By default, this is 1.

trace An integer indicating if you want to trace(1) the SAEM algorithm process. Use-
ful for debugging, but not for typical fitting.

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of each individual’s gradient
cross-product (evaluated at the individual empirical Bayes estimates).
"linFim" Use the Linearized Fisher Information Matrix to calculate the covari-
ance.
"fim" Use the SAEM-calculated Fisher Information Matrix to calculate the co-
variance.
"r,s" Uses the sandwich matrix to calculate the covariance, that is: R−1×S ×
R−1

"r" Uses the Hessian matrix to calculate the covariance as 2×R−1

"s" Uses the crossproduct matrix to calculate the covariance as 4× S−1

"" Does not calculate the covariance step.

saemControl 43

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

logLik boolean indicating that log-likelihood should be calculate by Gaussian quadra-
ture.

nnodesGq number of nodes to use for the Gaussian quadrature when computing the likeli-
hood with this method (defaults to 1, equivalent to the Laplacian likelihood)

nsdGq span (in SD) over which to integrate when computing the likelihood by Gaussian
quadrature. Defaults to 3 (eg 3 times the SD)

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

tol This is the tolerance for the regression models used for complex residual errors
(ie add+prop etc)

itmax This is the maximum number of iterations for the regression models used for
complex residual errors. The number of iterations is itmax*number of parame-
ters

type indicates the type of optimization for the residuals; Can be one of c("nelder-
mead", "newuoa")

powRange This indicates the range that powers can take for residual errors; By default this
is 10 indicating the range is c(-10, 10)

lambdaRange This indicates the range that Box-Cox and Yeo-Johnson parameters are con-
strained to be; The default is 3 indicating the range c(-3,3)

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

44 saemControl

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

perSa This is the percent of the time the ‘nBurn‘ iterations in phase runs runs a simu-
lated annealing.

perNoCor This is the percentage of the MCMC phase of the SAEM algorithm where the
variance/covariance matrix has no correlations. By default this is 0.75 or 75
Monte-carlo iteration.

perFixOmega This is the percentage of the ‘nBurn‘ phase where the omega values are unfixed
to allow better exploration of the likelihood surface. After this time, the omegas
are fixed during optimization.

perFixResid This is the percentage of the ‘nBurn‘ phase where the residual components are
unfixed to allow better exploration of the likelihood surface.

compress Should the object have compressed items

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

sigdig Specifies the "significant digits" that the ode solving requests. When specified
this controls the relative and absolute tolerances of the ODE solvers. By de-
fault the tolerance is 0.5*10^(-sigdig-2) for regular ODEs. For the sensitiv-
ity equations the default is 0.5*10\^(-sigdig-1.5) (sensitivity changes only
applicable for liblsoda). This also controls the atol/rtol of the steady state
solutions. The ssAtol/ssRtol is 0.5*10\^(-sigdig) and for the sensitivities
0.5*10\^(-sigdig+0.625). By default this is unspecified (NULL) and uses the
standard atol/rtol.

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

muRefCov This controls if mu-referenced covariates in ‘saem‘ are handled differently than
non mu-referenced covariates. When ‘TRUE‘, mu-referenced covariates have
special handling. When ‘FALSE‘ mu-referenced covariates are treated the same
as any other input parameter.

muRefCovAlg This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:
1. Creating a internal data-variable ‘nlmixrMuDerCov#‘ for each algebraic mu-
referenced expression
2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta‘
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion
5. Remove ‘nlmixrMuDerCov#‘ from nlmix2 output
In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE‘.

... Additional arguments passed to nlmixr2est::saemControl().

setOfv 45

Value

List of options to be used in nlmixr2 fit for SAEM.

Author(s)

Wenping Wang & Matthew L. Fidler

See Also

Other Estimation control: foceiControl(), nlmixr2NlmeControl()

setOfv Set/get Objective function type for a nlmixr2 object

Description

Set/get Objective function type for a nlmixr2 object

Usage

setOfv(x, type)

Arguments

x nlmixr2 fit object

type Type of objective function to use for AIC, BIC, and $objective

Value

Nothing

Author(s)

Matthew L. Fidler

46 tableControl

tableControl Output table/data.frame options

Description

Output table/data.frame options

Usage

tableControl(
npde = NULL,
cwres = NULL,
nsim = 300,
ties = TRUE,
censMethod = c("truncated-normal", "cdf", "ipred", "pred", "epred", "omit"),
seed = 1009,
cholSEtol = (.Machine$double.eps)^(1/3),
state = TRUE,
lhs = TRUE,
eta = TRUE,
covariates = TRUE,
addDosing = FALSE,
subsetNonmem = TRUE,
cores = NULL,
keep = NULL,
drop = NULL

)

Arguments

npde When TRUE, request npde regardless of the algorithm used.

cwres When TRUE, request CWRES and FOCEi likelihood regardless of the algorithm
used.

nsim represents the number of simulations. For rxode2, if you supply single subject
event tables (created with [eventTable()])

ties When ‘TRUE‘ jitter prediction-discrepancy points to discourage ties in cdf.

censMethod Handle censoring method:
- ‘"truncated-normal"‘ Simulates from a truncated normal distribution under the
assumption of the model and censoring.
- ‘"cdf"‘ Use the cdf-method for censoring with npde and use this for any other
residuals (‘cwres‘ etc)
- ‘"omit"‘ omit the residuals for censoring

seed an object specifying if and how the random number generator should be initial-
ized

cholSEtol The tolerance for the ‘rxode2::choleSE‘ function

tableControl 47

state is a Boolean indicating if ‘state‘ values will be included (default ‘TRUE‘)

lhs is a Boolean indicating if remaining ‘lhs‘ values will be included (default ‘TRUE‘)

eta is a Boolean indicating if ‘eta‘ values will be included (default ‘TRUE‘)

covariates is a Boolean indicating if covariates will be included (default ‘TRUE‘)

addDosing Boolean indicating if the solve should add rxode2 EVID and related columns.
This will also include dosing information and estimates at the doses. Be de-
fault, rxode2 only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic rxode2 EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE rxode2 will also include extra event types (EVID) for
ending infusion and modeled times:

• EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)

• EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

• EVID=-10 When the specified rate infusions are turned off (matches rate>0)

• EVID=-20 When the specified dur infusions are turned off (matches dur>0)

• EVID=101,102,103,... Modeled time where 101 is the first model time,
102 is the second etc.

subsetNonmem subset to NONMEM compatible EVIDs only. By default TRUE.

cores Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

keep is the keep sent to the table

drop is the dropped variables sent to the table

Details

If you ever want to add CWRES/FOCEi objective function you can use the addCwres

If you ever want to add NPDE/EPRED columns you can use the addNpde

Value

A list of table options for nlmixr2

Author(s)

Matthew L. Fidler

48 traceplot

traceplot Produce trace-plot for fit if applicable

Description

Produce trace-plot for fit if applicable

Usage

traceplot(x, ...)

Arguments

x fit object

... Additional arguments passed to nlmixr2plot::traceplot().

Value

Fit traceplot or nothing.

Author(s)

Rik Schoemaker, Wenping Wang & Matthew L. Fidler

Examples

library(nlmixr2est)
The basic model consiss of an ini block that has initial estimates
one.compartment <- function() {

ini({
tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl
tv <- 3.45 # Log V
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
and a model block with the error sppecification and model specification
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)

vpcCens 49

})
}

The fit is performed by the function nlmixr/nlmix2 specifying the model, data and estimate
fit <- nlmixr2(one.compartment, theo_sd, est="saem", saemControl(print=0))

This shows the traceplot of the fit (useful for saem)
traceplot(fit)

vpcCens VPC based on ui model

Description

VPC based on ui model

Usage

vpcCens(..., cens = TRUE, idv = "time")

Arguments

... Additional arguments passed to nlmixr2plot::vpcCens().

cens is a boolean to show if this is a censoring plot or not. When cens=TRUE this
is actually a censoring vpc plot (with vpcCens() and vpcCensTad()). When
cens=FALSE this is traditional VPC plot (vpcPlot() and vpcPlotTad()).

idv Name of independent variable. For vpcPlot() and vpcCens() the default is
"time" for vpcPlotTad() and vpcCensTad() this is "tad"

Value

Simulated dataset (invisibly)

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3

50 vpcCensTad

eta.v ~ 0.1
add.sd <- 0.7; label("Additive residual error")

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <-
nlmixr2est::nlmixr(

one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)

)

vpcPlot(fit)

vpcCensTad VPC based on ui model

Description

VPC based on ui model

Usage

vpcCensTad(..., cens = TRUE, idv = "tad")

Arguments

... Additional arguments passed to nlmixr2plot::vpcCensTad().

cens is a boolean to show if this is a censoring plot or not. When cens=TRUE this
is actually a censoring vpc plot (with vpcCens() and vpcCensTad()). When
cens=FALSE this is traditional VPC plot (vpcPlot() and vpcPlotTad()).

idv Name of independent variable. For vpcPlot() and vpcCens() the default is
"time" for vpcPlotTad() and vpcCensTad() this is "tad"

Value

Simulated dataset (invisibly)

Author(s)

Matthew L. Fidler

vpcPlot 51

Examples

one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7; label("Additive residual error")

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <-
nlmixr2est::nlmixr(

one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)

)

vpcPlot(fit)

vpcPlot VPC based on ui model

Description

VPC based on ui model

Usage

vpcPlot(
fit,
data = NULL,
n = 300,
bins = "jenks",
n_bins = "auto",
bin_mid = "mean",
show = NULL,
stratify = NULL,

52 vpcPlot

pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.05, 0.95),
ci = c(0.05, 0.95),
uloq = fit$dataUloq,
lloq = fit$dataLloq,
log_y = FALSE,
log_y_min = 0.001,
xlab = NULL,
ylab = NULL,
title = NULL,
smooth = TRUE,
vpc_theme = NULL,
facet = "wrap",
scales = "fixed",
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE,
...,
seed = 1009,
idv = "time",
cens = FALSE

)

Arguments

fit nlmixr2 fit object

data this is the data to use to augment the VPC fit. By default is the fitted data, (can
be retrieved by getData), but it can be changed by specifying this argument.

n Number of VPC simulations

bins either "density", "time", or "data", "none", or one of the approaches available in
classInterval() such as "jenks" (default) or "pretty", or a numeric vector specify-
ing the bin separators.

n_bins when using the "auto" binning method, what number of bins to aim for

bin_mid either "mean" for the mean of all timepoints (default) or "middle" to use the
average of the bin boundaries.

show what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median,
sim_median_ci)

stratify character vector of stratification variables. Only 1 or 2 stratification variables
can be supplied.

pred_corr perform prediction-correction?
pred_corr_lower_bnd

lower bound for the prediction-correction

pi simulated prediction interval to plot. Default is c(0.05, 0.95),

ci confidence interval to plot. Default is (0.05, 0.95)

vpcPlot 53

uloq Number or NULL indicating upper limit of quantification. Default is NULL.

lloq Number or NULL indicating lower limit of quantification. Default is NULL.

log_y Boolean indicting whether y-axis should be shown as logarithmic. Default is
FALSE.

log_y_min minimal value when using log_y argument. Default is 1e-3.

xlab label for x axis

ylab label for y axis

title title

smooth "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes.
Default is TRUE.

vpc_theme theme to be used in VPC. Expects list of class vpc_theme created with function
vpc_theme()

facet either "wrap", "columns", or "rows"

scales either "fixed" (default), "free_y", "free_x" or "free"

labeller ggplot2 labeller function to be passed to underlying ggplot object

vpcdb Boolean whether to return the underlying vpcdb rather than the plot

verbose show debugging information (TRUE or FALSE)

... Additional arguments passed to nlmixr2plot::vpcPlot().

seed an object specifying if and how the random number generator should be initial-
ized

idv Name of independent variable. For vpcPlot() and vpcCens() the default is
"time" for vpcPlotTad() and vpcCensTad() this is "tad"

cens is a boolean to show if this is a censoring plot or not. When cens=TRUE this
is actually a censoring vpc plot (with vpcCens() and vpcCensTad()). When
cens=FALSE this is traditional VPC plot (vpcPlot() and vpcPlotTad()).

Value

Simulated dataset (invisibly)

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({

tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1

54 vpcPlotTad

add.sd <- 0.7; label("Additive residual error")
})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <-
nlmixr2est::nlmixr(

one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)

)

vpcPlot(fit)

vpcPlotTad VPC based on ui model

Description

VPC based on ui model

Usage

vpcPlotTad(..., idv = "tad")

Arguments

... Additional arguments passed to nlmixr2plot::vpcPlotTad().

idv Name of independent variable. For vpcPlot() and vpcCens() the default is
"time" for vpcPlotTad() and vpcCensTad() this is "tad"

Value

Simulated dataset (invisibly)

Author(s)

Matthew L. Fidler

vpcSim 55

Examples

one.cmt <- function() {
ini({
tka <- 0.45; label("Ka")
tcl <- log(c(0, 2.7, 100)); label("Cl")
tv <- 3.45; label("V")
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7; label("Additive residual error")

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <-
nlmixr2est::nlmixr(

one.cmt,
data = nlmixr2data::theo_sd,
est = "saem",
control = list(print = 0)

)

vpcPlot(fit)

vpcSim VPC simulation

Description

VPC simulation

Usage

vpcSim(
object,
...,
keep = NULL,
n = 300,
pred = FALSE,
seed = 1009,
nretry = 50,
minN = 10,

56 vpcSim

normRelated = TRUE
)

Arguments

object This is the nlmixr2 fit object

... Additional arguments passed to nlmixr2est::vpcSim().

keep Column names to keep in the output simulated dataset

n Number of simulations

pred Should predictions be added to the simulation

seed Seed to set for the VPC simulation

nretry Number of times to retry the simulation if there is NA values in the simulation

minN With retries, the minimum number of studies to restimulate (by default 10)

normRelated should the VPC style simulation be for normal related variables only

Value

data frame of the VPC simulation

Author(s)

Matthew L. Fidler

Examples

if (rxode2parse::.linCmtSens()) {

one.cmt <- function() {
ini({

You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})

vpcSim 57

}

fit <- nlmixr(one.cmt, theo_sd, est="focei")

head(vpcSim(fit, pred=TRUE))

}

Index

addCwres, 2, 47
addNpde, 4, 47
addTable, 5
AIC, 38

BIC, 38
bootplot, 7
bootstrapFit, 7

covarSearchAuto, 9

fixed.effects, 39
foceiControl, 11, 28, 45

getData, 52

logLik, 38

n1qn1, 24
nlm, 25, 26
nlme, 31, 38
nlmeControl, 24
nlminb, 25, 26
nlmixr2, 29, 45
nlmixr2CheckInstall, 40
nlmixr2est::addNpde(), 4
nlmixr2est::foceiControl(), 14
nlmixr2est::nlmeControl(), 28
nlmixr2est::nlmixr2(), 29
nlmixr2est::saemControl(), 44
nlmixr2est::vpcSim(), 56
nlmixr2extra::bootplot(), 7
nlmixr2NlmeControl, 24, 45
nlmixr2plot::traceplot(), 48
nlmixr2plot::vpcCens(), 49
nlmixr2plot::vpcCensTad(), 50
nlmixr2plot::vpcPlot(), 53
nlmixr2plot::vpcPlotTad(), 54

optim, 24

pdClasses, 27
preconditionFit, 40

random.effects, 39
rxode2, 32
rxSolve, 24

saemControl, 24, 28, 37, 41
setOfv, 45
setRxThreads(), 47

tableControl, 46
traceplot, 48

varClasses, 27
vpcCens, 49
vpcCensTad, 50
vpcPlot, 51
vpcPlotTad, 54
vpcSim, 55

warning, 26

58

	addCwres
	addNpde
	addTable
	bootplot
	bootstrapFit
	covarSearchAuto
	foceiControl
	nlmeControl
	nlmixr2
	nlmixr2CheckInstall
	preconditionFit
	saemControl
	setOfv
	tableControl
	traceplot
	vpcCens
	vpcCensTad
	vpcPlot
	vpcPlotTad
	vpcSim
	Index

