Package 'seqHMM'

May 17, 2025

Title Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series

Version 2.0.0

Description Designed for estimating variants of hidden (latent) Markov models (HMMs), mixture HMMs, and non-homogeneous HMMs (NHMMs) for social sequence data and other categorical time series. Special cases include feedback-augmented NHMMs, Markov models without latent layer, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models as well as initial, transition and emission probabilities in NHMMs. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and HMMs. For NHMMs, methods for computing average causal effects and marginal state and emission probabilities are available. Models are estimated using maximum likelihood via the EM algorithm or direct numerical maximization with analytical gradients. Documentation is available via several vignettes, and Helske and Helske (2019, <doi:10.18637/jss.v088.i03>). For methodology behind the NHMMs, see Helske (2025, <doi:10.48550/arXiv.2503.16014>).

LazyData true

LinkingTo nloptr, Rcpp (>= 0.12.0), RcppArmadillo

Depends R (>= 4.1.0)

Imports checkmate, cli, data.table, future.apply, ggplot2, ggseqplot, graphics, grDevices, grid, gridBase, igraph, lhs, Matrix, methods, nloptr, numDeriv, patchwork, progressr, Rcpp (>= 0.12.0), RcppHungarian, rlang, stats, TraMineR (>= 2.2-7), utils

Suggests covr, knitr, MASS, nnet, testthat (>= 3.0.0),

License GPL (>= 2)

Encoding UTF-8

BugReports https://github.com/helske/seqHMM/issues

VignetteBuilder knitr

2 Contents

RoxygenNote 7.3.2
Config/testthat/edition 3
SystemRequirements GNU make
Biarch true
NeedsCompilation yes
Author Jouni Helske [aut, cre] (ORCID: https://orcid.org/0000-0001-7130-793X), Satu Helske [aut] (ORCID: https://orcid.org/0000-0003-0532-0153)
Maintainer Jouni Helske <jouni.helske@iki.fi></jouni.helske@iki.fi>
Repository CRAN
Date/Publication 2025-05-17 00:10:02 UTC

Contents

seqHMM-package	3
biofam3c	4
bootstrap_coefs	6
build_hmm	7
build_lcm	11
build_mhmm	15
build_mm	21
build_mmm	23
cluster_names	26
cluster_names<	27
coef.nhmm	27
colorpalette	28
data_to_stslist	29
estimate_mnhmm	29
estimate_nhmm	32
fanhmm_leaves	35
fit_model	36
forward_backward	48
get_cluster_probs	49
get_emission_probs	49
get_initial_probs	50
get_marginals	51
get_transition_probs	52
gridplot	52
hidden_paths	54
hmm_biofam	55
hmm_mvad	57
leaves	58
logLik.hmm	59
logLik.nhmm	60
mc_to_sc	61

seqHMM-package 3

c_to_sc_data		
nmm_biofam		64
nmm_mvad		67
ost_probable_cluster		69
ssplot		70
bs.hmm		73
ot.hmm		74
ot.mhmm		79
ot.ssp		83
ot_colors		84
sterior_cluster_probabilities		85
sterior_probs		85
edict.nhmm		86
int.hmm		87
rurn_msg		88
parate_mhmm		88
qHMM-deprecated		89
nulate_hmm		89
•		
nulate_mnhmm		93
nulate_nhmm		95
rt_sequences		96
·		97
te names		105
•		
·		
		111
	hhmm_mvad host_probable_cluster host_hmm hot.hmm hot.hmm hot.hmm hot.ssp hot_colors hosterior_cluster_probabilities hosterior_probs redict.nhmm rint.hmm hotturn_msg heparate_mhmm heqHMM-deprecated mulate_hmm mulate_initial_probs mulate_mhmm mulate_mhmm mulate_mhmm mulate_nhmm mulat	hhmm_biofam hhmm_mvad hhmm_mvad host_probable_cluster hossplot hobs.hmm hot.hmm hot.mhmm hot.ssp hot_colors hosterior_cluster_probabilities hosterior_probs ho

Description

seqHMM-package

The seqHMM package is designed for fitting hidden (or latent) Markov models (HMMs) and mixture hidden Markov models (MHMMs) for social sequence data and other categorical time series. The package supports models for one or multiple subjects with one or multiple interdependent sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for easy plotting of multichannel sequences and hidden Markov models. Common restricted versions of (M)HMMs are also supported, namely Markov models, mixture Markov models, and latent class models.

The seqHMM package

4 biofam3c

Details

Maximum likelihood estimation via the EM algorithm and direct numerical maximization with analytical gradients is supported. All main algorithms are written in C++. Parallel computation is implemented via OpenMP for pre-2.0.0 functions, while estimation of non-homogenous models support parallelization via future package by parallelization of multistart optimizations and bootstrap sampling.

Author(s)

Maintainer: Jouni Helske < jouni.helske@iki.fi> (ORCID)

Authors:

• Satu Helske (ORCID)

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

Useful links:

• Report bugs at https://github.com/helske/seqHMM/issues

biofam3c

Three-channel biofam data

Description

Biofam data from the TraMineR package converted into three channels.

Format

A list including three sequence data sets for 2000 individuals with 16 state variables, and a separate data frame with 1 id variable, 8 covariates, and 2 weight variables.

Details

This data is constructed from the TraMineR::biofam() data in the TraMineR package. Here the original state sequences are converted into three separate data sets: children, married, and left. These include the corresponding life states from age 15 to 30: childless or (having) children; single, married, or divorced; and (living) with parents or left home.

Note that the divorced state does not give information on parenthood or residence, so a guess is made based on preceding states.

The fourth data frame covariates is a collection of additional variables from the original data:

biofam3c 5

```
idhous
            id
sex
            sex
birthyr
            birth year
nat_1_02
            first nationality
plingu02
            language of questionnaire
            religion
p02r01
            religious participation
p02r04
            father's social status
cspfaj
            mother's social status
cspmoj
wp00tbgp weights inflating to the Swiss population
wp00tbgs
            weights respecting sample size
```

The data is loaded by calling data(biofam3c). It was built using following code:

```
data("biofam" , package = "TraMineR")
biofam3c <- with(biofam, {</pre>
## Building one channel per type of event left, children or married
bf <- as.matrix(biofam[, 10:25])</pre>
children <- bf == 4 | bf == 5 | bf == 6
married <- bf == 2 | bf == 3 | bf == 6
left <- bf == 1 | bf == 3 | bf == 5 | bf == 6 | bf == 7
children[children == TRUE] <- "children"</pre>
children[children == FALSE] <- "childless"</pre>
# Divorced parents
div \leftarrow bf[(rowSums(bf == 7) > 0 \& rowSums(bf == 5) > 0) |
             (rowSums(bf == 7) > 0 & rowSums(bf == 6) > 0),]
children[rownames(bf) %in% rownames(div) & bf == 7] <- "children"</pre>
married[married == TRUE] <- "married"</pre>
married[married == FALSE] <- "single"</pre>
married[bf == 7] <- "divorced"</pre>
left[left == TRUE] <- "left home"</pre>
left[left == FALSE] <- "with parents"</pre>
# Divorced living with parents (before divorce)
wp \leftarrow bf[(rowSums(bf == 7) > 0 \& rowSums(bf == 2) > 0 \&
          rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
          rowSums(bf == 6) == 0)
         (rowSums(bf == 7) > 0 & rowSums(bf == 4) > 0 &
          rowSums(bf == 3) == 0 & rowSums(bf == 5) == 0 &
           rowSums(bf == 6) == 0), ]
left[rownames(bf) %in% rownames(wp) & bf == 7] <- "with parents"</pre>
list("children" = children, "married" = married, "left" = left,
  "covariates" = biofam[, c(1:9, 26:27)])
})
```

6 bootstrap_coefs

Source

TraMineR::biofam() data constructed from the Swiss Household Panel https://forscenter.ch/projects/swiss-household-panel/

References

Müller, N. S., M. Studer, G. Ritschard (2007). Classification de parcours de vie à l'aide de l'optimal matching. In *XIVe Rencontre de l a Société francophone de classification (SFC 2007), Paris, 5 - 7 septembre 2007*, pp. 157–160.

bootstrap_coefs

Bootstrap Sampling of NHMM Coefficients

Description

It is possible to parallelize the bootstrap runs using the future package, e.g., by calling future::plan(multisession, workers = 2) before bootstrap_coefs(). See future::plan() for details.

Usage

```
bootstrap_coefs(model, ...)

## S3 method for class 'nhmm'
bootstrap_coefs(
   model,
   nsim,
   type = c("nonparametric", "parametric"),
   append = FALSE,
   ...
)

## S3 method for class 'mnhmm'
bootstrap_coefs(
   model,
   nsim,
   type = c("nonparametric", "parametric"),
   append = FALSE,
   ...
)
```

Arguments

```
model An nhmm or mnhmm object.
... Additional arguments to estimate_nhmm() or estimate_mnhmm().
nsim number of bootstrap samples.
```

type Either "nonparametric" (default) or "parametric", to define whether non-

parametric or parametric bootstrap should be used. The former samples sequences with replacement, whereas the latter simulates new datasets based on

the model.

append If TRUE, in case the model already contains bootstrap samples, new samples are

appended to model\$boot. If FALSE (default), old samples are discarded.

method Estimation method used in bootstrapping. Defaults to "EM-DNM".

Details

bootstrap_coefs() is compatible with progressr package, so you can use progressr::with_progress(bootstrap_coe to track the progress of bootstrapping.

Value

The original model with additional element model\$boot.

build_hmm

Build a Hidden Markov Model

Description

Function build_hmm constructs a hidden Markov model object of class hmm.

Usage

```
build_hmm(
  observations,
  n_states,
  transition_probs,
  emission_probs,
  initial_probs,
  state_names = NULL,
  channel_names = NULL,
  ...
)
```

Arguments

observations An stslist object (see TraMineR::seqdef()) containing the sequences, or a

list of such objects (one for each channel).

n_states A scalar giving the number of hidden states. Not used if starting values for model

parameters are given with initial_probs, transition_probs, or emission_probs.

transition_probs

A matrix of transition probabilities.

emission_probs A matrix of emission probabilities or a list of such objects (one for each chan-

nel). Emission probabilities should follow the ordering of the alphabet of obser-

vations (alphabet(observations), returned as symbol_names).

initial_probs A vector of initial state probabilities.

state_names A list of optional labels for the hidden states. If NULL, the state names are taken

from the row names of the transition matrix. If this is also NULL, numbered states

are used.

channel_names A vector of optional names for the channels.

... Additional arguments to simulate_transition_probs().

Details

The returned model contains some attributes such as nobs and df, which define the number of observations in the model and the number of estimable model parameters, used in computing BIC. When computing nobs for a multichannel model with C channels, each observed value in a single channel amounts to 1/C observation, i.e. a fully observed time point for a single sequence amounts to one observation. For the degrees of freedom df, zero probabilities of the initial model are defined as structural zeroes.

Value

Object of class hmm with the following elements:

• observations
State sequence object or a list of such objects containing the data.

transition_probs

A matrix of transition probabilities.

• emission_probs

A matrix or a list of matrices of emission probabilities.

• initial_probs

A vector of initial probabilities.

• state_names

Names for hidden states.

• symbol_names

Names for observed states.

• channel_names

Names for channels of sequence data.

• length_of_sequences

(Maximum) length of sequences.

• sequence_lengths

A vector of sequence lengths.

• n_sequences

Number of sequences.

• n_symbols

Number of observed states (in each channel).

- n_states Number of hidden states.
- n_channels
 Number of channels.

See Also

fit_model() for estimating model parameters; and plot.hmm() for plotting hmm objects.

Examples

```
# Single-channel data
data("mvad", package = "TraMineR")
mvad_alphabet <- c(</pre>
  "employment", "FE", "HE", "joblessness", "school",
  "training"
)
mvad_labels <- c(</pre>
  "employment", "further education", "higher education",
  "joblessness", "school", "training"
)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- seqdef(mvad, 15:86,</pre>
  alphabet = mvad_alphabet, states = mvad_scodes,
  labels = mvad_labels, xtstep = 6
# Initializing an HMM with 4 hidden states, random starting values
init_hmm_mvad1 <- build_hmm(observations = mvad_seq, n_states = 4)</pre>
# Starting values for the emission matrix
emiss <- matrix(NA, nrow = 4, ncol = 6)
emiss[1, ] \leftarrow seqstatf(mvad_seq[, 1:12])[, 2] + 1
emiss[2, ] \leftarrow seqstatf(mvad_seq[, 13:24])[, 2] + 1
emiss[3, ] \leftarrow seqstatf(mvad_seq[, 25:48])[, 2] + 1
emiss[4, ] \leftarrow seqstatf(mvad_seq[, 49:70])[, 2] + 1
emiss <- emiss / rowSums(emiss)</pre>
# Starting values for the transition matrix
tr <- matrix(</pre>
  c(
    0.80, 0.10, 0.05, 0.05,
    0.05, 0.80, 0.10, 0.05,
    0.05, 0.05, 0.80, 0.10,
    0.05, 0.05, 0.10, 0.80
  nrow = 4, ncol = 4, byrow = TRUE
)
```

```
# Starting values for initial state probabilities
init <-c(0.3, 0.3, 0.2, 0.2)
# HMM with own starting values
init_hmm_mvad2 <- build_hmm(</pre>
  observations = mvad_seq, transition_probs = tr,
  emission_probs = emiss, initial_probs = init
# Multichannel data
# Three-state three-channel hidden Markov model
# See ?hmm_biofam for a five-state version
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
child_seq <- seqdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
)
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("lightblue", "red3")
# You could also define the colors using cpal function from TraMineR
# cpal(marr_seq) <- c("violetred2", "darkgoldenrod2", "darkmagenta")</pre>
# cpal(child_seq) <- c("darkseagreen1", "coral3")</pre>
# cpal(left_seq) <- c("lightblue", "red3")</pre>
# Left-to-right HMM with 3 hidden states and random starting values
set.seed(1010)
init_hmm_bf1 <- build_hmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  n_states = 3, left_right = TRUE, diag_c = 2
)
# Starting values for emission matrices
emiss_marr <- matrix(NA, nrow = 3, ncol = 3)</pre>
emiss_marr[1, ] <- seqstatf(marr_seq[, 1:5])[, 2] + 1</pre>
```

```
emiss_marr[2, ] <- seqstatf(marr_seq[, 6:10])[, 2] + 1</pre>
emiss_marr[3, ] <- seqstatf(marr_seq[, 11:16])[, 2] + 1</pre>
emiss_marr <- emiss_marr / rowSums(emiss_marr)</pre>
emiss_child <- matrix(NA, nrow = 3, ncol = 2)</pre>
emiss\_child[1, ] \leftarrow seqstatf(child\_seq[, 1:5])[, 2] + 1
emiss_child[2, ] <- seqstatf(child_seq[, 6:10])[, 2] + 1
emiss_child[3, ] \leftarrow seqstatf(child_seq[, 11:16])[, 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)</pre>
emiss_left <- matrix(NA, nrow = 3, ncol = 2)</pre>
emiss_left[1, ] \leftarrow seqstatf(left_seq[, 1:5])[, 2] + 1
emiss_left[2, ] \leftarrow seqstatf(left_seq[, 6:10])[, 2] + 1
emiss_left[3, ] \leftarrow seqstatf(left_seq[, 11:16])[, 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)</pre>
# Starting values for transition matrix
trans <- matrix(</pre>
  c(
    0.9, 0.07, 0.03,
    0, 0.9, 0.1,
    0, 0, 1
  ),
  nrow = 3, ncol = 3, byrow = TRUE
)
# Starting values for initial state probabilities
inits <-c(0.9, 0.09, 0.01)
# HMM with own starting values
init_hmm_bf2 <- build_hmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child, emiss_left),
  initial_probs = inits
)
```

build_lcm

Build a Latent Class Model

Description

Function build_1cm is a shortcut for constructing a latent class model as a restricted case of an mhmm object.

Usage

```
build_lcm(
  observations,
```

```
n_clusters,
emission_probs,
formula = NULL,
data = NULL,
coefficients = NULL,
cluster_names = NULL,
channel_names = NULL)
```

Arguments

observations An stslist object (see TraMineR::seqdef()) containing the sequences, or a

list of such objects (one for each channel).

n_clusters A scalar giving the number of clusters/submodels (not used if starting values for

model parameters are given with emission_probs).

emission_probs A matrix containing emission probabilities for each class by rows, or in case

of multichannel data a list of such matrices. Note that the matrices must have dimensions k x s where k is the number of latent classes and s is the number of unique symbols (observed states) in the data. Emission probabilities should follow the ordering of the alphabet of observations (alphabet (observations),

returned as symbol_names).

formula Optional formula of class formula() for the mixture probabilities. Left side

omitted.

data A data frame containing the variables used in the formula. Ignored if no formula

is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates

for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is

set to zero.

cluster_names A vector of optional names for the classes/clusters.

channel_names A vector of optional names for the channels.

Value

Object of class mhmm with the following elements:

observations

State sequence object or a list of such containing the data.

• transition_probs

A matrix of transition probabilities.

• emission_probs

A matrix or a list of matrices of emission probabilities.

• initial_probs

A vector of initial probabilities.

coefficients

A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).

X

Covariate values for each subject.

- cluster_names Names for clusters.
- state_names
 Names for hidden states.
- symbol_names Names for observed states.
- channel_names

 Names for channels of sequence data
- length_of_sequences (Maximum) length of sequences.
- sequence_lengths A vector of sequence lengths.
- n_sequences Number of sequences.
- n_symbols
 Number of observed states (in each channel).
- n_states Number of hidden states.
- n_channels Number of channels.
- n_covariates Number of covariates.
- n_clusters Number of clusters.

See Also

fit_model() for estimating model parameters; summary.mhmm() for a summary of a mixture
model; separate_mhmm() for organizing an mhmm object into a list of separate hmm objects; and
plot.mhmm() for plotting mixture models.

Examples

```
# Simulate observations from two classes
set.seed(123)
obs <- seqdef(rbind(
   matrix(sample(letters[1:3], 500, TRUE, prob = c(0.1, 0.6, 0.3)), 50, 10),
   matrix(sample(letters[1:3], 200, TRUE, prob = c(0.4, 0.4, 0.2)), 20, 10)
))
# Initialize the model
set.seed(9087)
model <- build_lcm(obs, n_clusters = 2)</pre>
```

```
# Estimate model parameters
fit <- fit_model(model)</pre>
# How many of the observations were correctly classified:
sum(summary(fit$model)$most_probable_cluster == rep(c("Class 2", "Class 1"),
 times = c(500, 200))
## Not run:
# LCM for longitudinal data
# Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c(</pre>
  "employment", "FE", "HE", "joblessness", "school",
  "training"
)
mvad_labels <- c(</pre>
  "employment", "further education", "higher education",
  "joblessness", "school", "training"
)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- seqdef(mvad, 15:86,</pre>
 alphabet = mvad_alphabet, states = mvad_scodes,
 labels = mvad_labels, xtstep = 6
)
# Initialize the LCM with random starting values
set.seed(7654)
init_lcm_mvad1 <- build_lcm(</pre>
 observations = mvad_seq,
 n_clusters = 2, formula = ~male, data = mvad
)
# Own starting values for emission probabilities
emiss <- rbind(rep(1 / 6, 6), rep(1 / 6, 6))
# LCM with own starting values
init_lcm_mvad2 <- build_lcm(</pre>
 observations = mvad_seq,
 emission_probs = emiss, formula = ~male, data = mvad
)
# Estimate model parameters (EM algorithm with random restarts)
lcm_mvad <- fit_model(init_lcm_mvad1,</pre>
 control_em = list(restart = list(times = 5))
)$model
# Plot the LCM
plot(lcm_mvad, interactive = FALSE, ncol = 2)
```

```
# Binomial regression (comparison to glm)
require("MASS")
data("birthwt")
model <- build_lcm(</pre>
  observations = seqdef(birthwt$low), emission_probs = diag(2),
  formula = ~ age + lwt + smoke + ht, data = birthwt
fit <- fit_model(model)</pre>
summary(fit$model)
summary(glm(low ~ age + lwt + smoke + ht, binomial, data = birthwt))
# Multinomial regression (comparison to multinom)
require("nnet")
set.seed(123)
n <- 100
X \leftarrow cbind(1, x1 = runif(n, 0, 1), x2 = runif(n, 0, 1))
coefs <- cbind(0, c(-2, 5, -2), c(0, -2, 2))
pr <- exp(X %*% coefs) + stats::rnorm(n * 3)</pre>
pr <- pr / rowSums(pr)</pre>
y <- apply(pr, 1, which.max)
table(y)
model <- build_lcm(</pre>
  observations = seqdef(y), emission_probs = diag(3),
  formula = \sim x1 + x2, data = data.frame(X[, -1])
fit <- fit_model(model)</pre>
summary(fit$model)
summary(multinom(y \sim x1 + x2, data = data.frame(X[, -1])))
## End(Not run)
```

build_mhmm

Build a Mixture Hidden Markov Model

Description

Function build_mhmm constructs a mixture hidden Markov model object of class mhmm.

Usage

```
build_mhmm(
  observations,
  n_states,
  transition_probs,
```

```
emission_probs,
initial_probs,
formula = NULL,
data = NULL,
coefficients = NULL,
cluster_names = NULL,
state_names = NULL,
channel_names = NULL,
...
)
```

Arguments

observations An stslist object (see TraMineR::seqdef()) containing the sequences, or a

list of such objects (one for each channel).

n_states A numerical vector giving the number of hidden states in each submodel (not

used if starting values for model parameters are given with initial_probs,

transition_probs, or emission_probs).

transition_probs

A list of matrices of transition probabilities for the submodel of each cluster.

emission_probs A list which contains matrices of emission probabilities or a list of such ob-

jects (one for each channel) for the submodel of each cluster. Note that the matrices must have dimensions mxs where m is the number of hidden states and s is the number of unique symbols (observed states) in the data. Emission probabilities should follow the ordering of the alphabet of observations

(alphabet(observations), returned as symbol_names).

initial_probs A list which contains vectors of initial state probabilities for the submodel of

each cluster.

formula Optional formula of class formula() for the mixture probabilities. Left side

omitted.

data A data frame containing the variables used in the formula. Ignored if no formula

is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates

for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is

set to zero.

cluster_names A vector of optional names for the clusters.

state_names A list of optional labels for the hidden states. If NULL, the state names are taken

as row names of transition matrices. If this is also NULL, numbered states are

used.

channel_names A vector of optional names for the channels.

... Additional arguments to simulate_transition_probs.

Details

The returned model contains some attributes such as nobs and df, which define the number of observations in the model and the number of estimable model parameters, used in computing BIC. When computing nobs for a multichannel model with C channels, each observed value in a single channel amounts to 1/C observation, i.e. a fully observed time point for a single sequence amounts to one observation. For the degrees of freedom df, zero probabilities of the initial model are defined as structural zeroes.

Value

Object of class mhmm with following elements:

• observations

State sequence object or a list of such containing the data.

• transition_probs

A matrix of transition probabilities.

• emission_probs

A matrix or a list of matrices of emission probabilities.

• initial_probs

A vector of initial probabilities.

• coefficients

A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).

X

Covariate values for each subject.

• cluster_names

Names for clusters.

• state_names

Names for hidden states.

• symbol_names

Names for observed states.

• channel_names

Names for channels of sequence data

• length_of_sequences

(Maximum) length of sequences.

• sequence_lengths

A vector of sequence lengths.

• n_sequences

Number of sequences.

• n_symbols

Number of observed states (in each channel).

• n_states

Number of hidden states.

• n_channels

Number of channels.

- n_covariates
 Number of covariates.
- n_clusters Number of clusters.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

fit_model() for fitting mixture Hidden Markov models; summary.mhmm() for a summary of a MHMM; separate_mhmm() for reorganizing a MHMM into a list of separate hidden Markov models; and plot.mhmm() for plotting mhmm objects.

Examples

```
data("biofam3c")
## Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("#AB82FF", "#E6AB02", "#E7298A")
)
child_seq <- segdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("#66C2A5", "#FC8D62")
)
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("#A6CEE3", "#E31A1C")
)
## MHMM with random starting values, no covariates
set.seed(468)
init_mhmm_bf1 <- build_mhmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  n_{states} = c(4, 4, 6),
  channel_names = c("Marriage", "Parenthood", "Residence")
)
## Starting values for emission probabilities
# Cluster 1
B1_marr <- matrix(
  c(
    0.8, 0.1, 0.1, # High probability for single
```

```
0.8, 0.1, 0.1,
   0.3, 0.6, 0.1, # High probability for married
   0.3, 0.3, 0.4
  ), # High probability for divorced
  nrow = 4, ncol = 3, byrow = TRUE
)
B1_child <- matrix(
 c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.9, 0.1,
   0.9, 0.1
 ),
 nrow = 4, ncol = 2, byrow = TRUE
B1_left <- matrix(
 c(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9, # High probability for having left home
   0.1, 0.9,
   0.1, 0.9
 nrow = 4, ncol = 2, byrow = TRUE
# Cluster 2
B2_marr <- matrix(
  c(
   0.8, 0.1, 0.1, # High probability for single
   0.8, 0.1, 0.1,
   0.1, 0.8, 0.1, # High probability for married
   0.7, 0.2, 0.1
  ),
 nrow = 4, ncol = 3, byrow = TRUE
)
B2_child <- matrix(</pre>
  c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.9, 0.1,
   0.1, 0.9
 ),
 nrow = 4, ncol = 2, byrow = TRUE
B2_left <- matrix(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9,
```

```
0.1, 0.9,
   0.1, 0.9
 nrow = 4, ncol = 2, byrow = TRUE
)
# Cluster 3
B3_marr <- matrix(
   0.8, 0.1, 0.1, # High probability for single
   0.8, 0.1, 0.1,
   0.8, 0.1, 0.1,
   0.1, 0.8, 0.1, # High probability for married
   0.3, 0.4, 0.3,
   0.1, 0.1, 0.8
  ), # High probability for divorced
 nrow = 6, ncol = 3, byrow = TRUE
)
B3_child <- matrix(
  c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.5, 0.5,
   0.5, 0.5,
   0.5, 0.5,
   0.1, 0.9
 nrow = 6, ncol = 2, byrow = TRUE
B3_left <- matrix(
  c(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9,
   0.5, 0.5,
   0.5, 0.5,
   0.1, 0.9,
   0.1, 0.9
  ),
 nrow = 6, ncol = 2, byrow = TRUE
# Starting values for transition matrices
A1 <- matrix(
  c(
   0.80, 0.16, 0.03, 0.01,
   0, 0.90, 0.07, 0.03,
   0, 0, 0.90, 0.10,
   0, 0, 0, 1
  nrow = 4, ncol = 4, byrow = TRUE
```

```
)
A2 <- matrix(
 c(
   0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
   0, 0.70, 0.10, 0.10, 0.05, 0.05,
   0, 0, 0.85, 0.01, 0.10, 0.04,
   0, 0, 0, 0.90, 0.05, 0.05,
   0, 0, 0, 0, 0.90, 0.10,
   0, 0, 0, 0, 0, 1
 ),
 nrow = 6, ncol = 6, byrow = TRUE
)
# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)
# Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(</pre>
 biofam3c$covariates$cohort,
 labels = c("1909-1935", "1936-1945", "1946-1957")
)
## MHMM with own starting values and covariates
init_mhmm_bf2 <- build_mhmm(</pre>
 observations = list(marr_seq, child_seq, left_seq),
 initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
 transition_probs = list(A1, A1, A2),
 emission_probs = list(
   list(B1_marr, B1_child, B1_left),
   list(B2_marr, B2_child, B2_left),
   list(B3_marr, B3_child, B3_left)
 ),
 formula = ~ sex + cohort, data = biofam3c$covariates,
 cluster_names = c("Cluster 1", "Cluster 2", "Cluster 3"),
 channel_names = c("Marriage", "Parenthood", "Residence"),
 state_names = list(
   paste("State", 1:4), paste("State", 1:4),
   paste("State", 1:6)
)
```

build_mm

Build a Markov Model

Description

Function build_mm() builds and automatically estimates a Markov model. It is also a shortcut for constructing a Markov model as a restricted case of an hmm object.

Usage

build_mm(observations)

Arguments

observations An stslist object (see TraMineR::seqdef()) containing the sequences.

Details

Unlike the other build functions in seqHMM, the build_mm() function automatically estimates the model parameters. In case of no missing values, initial and transition probabilities are directly estimated from the observed initial state probabilities and transition counts. In case of missing values, the EM algorithm is run once.

Note that it is possible that the data contains a symbol from which there are no transitions anywhere (even to itself), which would lead to a row in transition matrix full of zeros. In this case the build_mm() (as well as the EM algorithm) assumes that the state is absorbing in a way that probability of staying in this state is 1.

Value

Object of class hmm with following elements:

- observations
 State sequence object or a list of such containing the data.
- transition_probs
 A matrix of transition probabilities.
- emission_probs
 A matrix or a list of matrices of emission probabilities.
- initial_probs
 A vector of initial probabilities.
- state_names
 Names for hidden states.
- symbol_names Names for observed states.
- channel_names

 Names for channels of sequence data
- length_of_sequences (Maximum) length of sequences.
- sequence_lengths A vector of sequence lengths.
- n_sequences Number of sequences.
- n_symbols
 Number of observed states (in each channel).
- n_states
 Number of hidden states.

• n_channels Number of channels.

See Also

```
plot.hmm() for plotting the model.
```

Examples

```
# Construct sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <-</pre>
  c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c(</pre>
  "employment", "further education", "higher education",
  "joblessness", "school", "training"
)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- seqdef(mvad, 15:86,</pre>
  alphabet = mvad_alphabet,
  states = mvad_scodes, labels = mvad_labels, xtstep = 6,
  cpal = colorpalette[[6]]
)
# Estimate the Markov model
mm_mvad <- build_mm(observations = mvad_seq)</pre>
```

build_mmm

Build a Mixture Markov Model

Description

Function build_mmm() is a shortcut for constructing a mixture Markov model as a restricted case of an mhmm object.

Usage

```
build_mmm(
  observations,
  n_clusters,
  transition_probs,
  initial_probs,
  formula = NULL,
  data = NULL,
  coefficients = NULL,
  cluster_names = NULL,
  ...
)
```

Arguments

observations An stslist object (see TraMineR::seqdef()) containing the sequences.

n_clusters A scalar giving the number of clusters/submodels (not used if starting values for

model parameters are given with initial_probs and transition_probs).

transition_probs

A list of matrices of transition probabilities for submodels of each cluster.

initial_probs A list which contains vectors of initial state probabilities for submodels of each

cluster.

formula Optional formula of class formula() for the mixture probabilities. Left side

omitted.

data A data frame containing the variables used in the formula. Ignored if no formula

is provided.

coefficients An optional kxl matrix of regression coefficients for time-constant covariates

for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is

set to zero.

cluster_names A vector of optional names for the clusters.

... Additional arguments to simulate_transition_probs.

Value

Object of class mhmm with following elements:

observations

State sequence object or a list of such containing the data.

• transition_probs

A matrix of transition probabilities.

• emission_probs

A matrix or a list of matrices of emission probabilities.

• initial_probs

A vector of initial probabilities.

• coefficients

A matrix of parameter coefficients for covariates (covariates in rows, clusters in columns).

X

Covariate values for each subject.

• cluster_names

Names for clusters.

• state_names

Names for hidden states.

• symbol_names

Names for observed states.

• channel_names

Names for channels of sequence data

- length_of_sequences (Maximum) length of sequences.
- sequence_lengths
 A vector of sequence lengths.
- n_sequences Number of sequences.
- n_symbols
 Number of observed states (in each channel).
- n_states Number of hidden states.
- n_channels
 Number of channels.
- n_covariates Number of covariates.
- n_clusters Number of clusters.

See Also

fit_model() for estimating model parameters; summary.mhmm() for a summary of a mixture
model; separate_mhmm() for organizing an mhmm object into a list of separate hmm objects; and
plot.mhmm() for plotting mixture models.

Examples

```
# Define sequence data
data("mvad", package = "TraMineR")
mvad_alphabet <- c(</pre>
  "employment", "FE", "HE", "joblessness", "school",
  "training"
)
mvad_labels <- c(</pre>
  "employment", "further education", "higher education",
  "joblessness", "school", "training"
)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- seqdef(mvad, 15:86,</pre>
  alphabet = mvad_alphabet, states = mvad_scodes,
  labels = mvad_labels, xtstep = 6
)
# Initialize the MMM
set.seed(123)
mmm_mvad <- build_mmm(</pre>
  observations = mvad_seq,
 n_{clusters} = 2,
  formula = ~male, data = mvad
)
```

26 cluster_names

```
## Not run:
# Estimate model parameters
mmm_mvad <- fit_model(mmm_mvad)$model</pre>
# Plot model (both clusters in the same plot)
require(igraph)
plot(mmm_mvad,
  interactive = FALSE,
  # Modify legend position and properties
  with.legend = "right", legend.prop = 0.3, cex.legend = 1.2,
  # Define vertex layout
  layout = layout_as_star,
  # Modify edge properties
  edge.label = NA, edge.arrow.size = 0.8, edge.curved = 0.2,
  # Modify vertex label positions (initial probabilities)
  vertex.label.pos = c("left", "right", "right", "left", "left", "right")
)
# Summary of the MMM
summary(mmm_mvad)
## End(Not run)
```

cluster_names

Get Cluster Names from Mixture HMMs

Description

Get Cluster Names from Mixture HMMs

Usage

```
cluster_names(object)
```

Arguments

object

An object of class mhmm or mnhmm.

Value

A character vector containing the cluster names.

cluster_names<-

cluster	namac<-
CIUSTEL	Hallies>=

Set Cluster Names for Mixture Models

Description

Set Cluster Names for Mixture Models

Usage

```
cluster_names(object) <- value</pre>
```

Arguments

object An object of class mhmm or mnhmm.

value A character vector containing the new cluster names.

Value

The modified object with updated cluster names.

coef.nhmm

Get the Estimated Regression Coefficients of Non-Homogeneous Hidden Markov Models

Description

Get the Estimated Regression Coefficients of Non-Homogeneous Hidden Markov Models

Usage

```
## S3 method for class 'nhmm'
coef(object, probs = NULL, ...)
## S3 method for class 'mnhmm'
coef(object, probs = NULL, ...)
```

Arguments

object An object of class nhmm or mnhmm.

probs Vector defining the quantiles of interest. When NULL (default), no quantiles are

computed. The quantiles are based on bootstrap samples of coefficients, stored

in object\$boot.

... Ignored.

28 colorpalette

Value

A list of data tables with the estimated coefficients for initial, transition, emission (separate data.table for each response), and cluster probabilities (in case of mixture model).

colorpalette

Color palettes

Description

A list containing ready defined color palettes with distinct colors using iWantHue. By default, seqHMM uses these palettes when assigning colors.

Format

A list with 200 color palettes.

Source

```
iWantHue web page https://medialab.github.io/iwanthue/
```

See Also

plot_colors() for visualization of color palettes. Implementations of iWantHue for R:

- https://github.com/hoesler/rwantshue
- https://github.com/johnbaums/hues

Examples

```
data("colorpalette")
# Color palette with 9 colors
colorpalette[[9]]
# Color palette with 24 colors
colorpalette[[24]]
```

data_to_stslist 29

data_to_stslist	Transform TraMineR's state sequence object to data.table and vice versa

Description

Transform TraMineR's state sequence object to data.table and vice versa

Usage

```
data_to_stslist(x, id, time, responses, seqdef_args = NULL, ...)
stslist_to_data(x, id, time, responses, ...)
```

Arguments

X	For data_to_stslist, a data.frame type of object in long format, or a model object of class nhmm or mnhmm. For stslist_to_data, an object of class stslist or list of such objects.
id	A character string specifying the id variable. Ignored if x is NHMM.
time	A character string specifying the time variable. Ignored if x is NHMM.
responses	A character vector specifying the name(s) of the response variable(s). Ignored if x is NHMM.
seqdef_args	A list of additional arguments to TraMineR::seqdef() in case of data_to_stslist. In case of length(responses) > 1, a list of lists. Ignored in stslist_to_data.
	Ignored

estimate_mnhmm	
----------------	--

Description

Function estimate_mnhmm estimates a mixture version of non-homogeneous hidden Markov model (MNHMM) where initial, transition, emission, and mixture probabilities can depend on covariates. See estimate_nhmm() for further details.

Usage

```
estimate_mnhmm(
  n_states,
  n_clusters,
  emission_formula,
  initial_formula = ~1,
  transition_formula = ~1,
```

30 estimate_mnhmm

```
cluster_formula = ~1,
  data,
  time,
  id,
  lambda = 0,
  prior_obs = "fixed",
  state_names = NULL,
  cluster_names = NULL,
  inits = "random",
  init_sd = 2,
  restarts = 0L,
  method = "EM-DNM",
  bound = Inf,
  control_restart = list(),
  control_mstep = list(),
)
```

Arguments

 n_{states} An integer > 1 defining the number of hidden states.

n_clusters A positive integer defining the number of clusters (mixtures).

emission_formula

of class formula() for the state emission probabilities, or a list of such formulas in case of multiple response variables. The left-hand side of formulas define the responses. For multiple responses having same formula, you can use a form $c(y1, y2) \sim x$, where y1 and y2 are the response variables.

initial_formula

of class formula() for the initial state probabilities. Left-hand side of the formula should be empty.

transition_formula

of class formula() for the state transition probabilities. Left-hand side of the formula should be empty.

cluster_formula

of class formula() for the mixture probabilities.

data A data frame containing the variables used in the model formulas.

time Name of the time index variable in data.

id Name of the id variable in data identifying different sequences.

lambda Penalization factor lambda for penalized log-likelihood, where the penalization

is $0.5 * lambda * sum(eta^2)$. Note that with method = "L-BFGS" both objective function (log-likelihood) and the penalization term is scaled with number of non-missing observations. Default is 0, but small values such as 1e-4 can help to ensure numerical stability of L-BFGS by avoiding extreme probabilities. See

also argument bound for hard constraints.

prior_obs Either "fixed" or a list of vectors given the prior distributions for the responses

at time "zero". See details.

estimate_mnhmm 31

state_names A vector of optional labels for the hidden states. If this is NULL (the default),

numbered states are used.

cluster_names A vector of optional labels for the clusters. If this is NULL (the default), num-

bered clusters are used.

inits If inits = "random" (default), random initial values are used. Otherwise inits

should be list of initial values. If coefficients are given using list components eta_pi, eta_A, eta_B, and eta_omega, these are used as is, alternatively initial values can be given in terms of the initial state, transition, emission, and mixture probabilities using list components initial_probs, emission_probs, transition_probs, and cluster_probs. These can also be mixed, i.e. you

can give only initial_probs and eta_A.

init_sd Standard deviation of the normal distribution used to generate random initial

values. Default is 2. If you want to fix the initial values of the regression coeffi-

cients to zero, use $init_sd = 0$.

restarts Number of times to run optimization using random starting values (in addition

to the final run). Default is 0.

method Optimization method used. Option "EM" uses EM algorithm with L-BFGS in

the M-step. Option "DNM" uses direct maximization of the log-likelihood, by default using L-BFGS. Option "EM-DNM" (the default) runs first a maximum of 10 iterations of EM and then switches to L-BFGS (but other algorithms of NLopt

can be used).

bound Positive value defining the hard lower and upper bounds for the working param-

eters η , which are used to avoid extreme probabilities and corresponding numeri-

cal issues especially in the M-step of EM algorithm. Default is Inf, i.e., no bounds. Note that he l

= 0'.

control_restart

Controls for restart steps, see details.

control_mstep Controls for M-step of EM algorithm, see details.

... Additional arguments to nloptr::nloptr() and EM algorithm. See details.

Value

Object of class mnhmm.

See Also

```
estimate_nhmm() for further details.
```

Examples

```
data("mvad", package = "TraMineR")

d <- reshape(mvad, direction = "long", varying = list(15:86),
    v.names = "activity")

## Not run:
set.seed(1)</pre>
```

32 estimate_nhmm

```
fit <- estimate_mnhmm(n_states = 3, n_clusters = 2,
  data = d, time = "time", id = "id",
  cluster_formula = ~ male + catholic + gcse5eq + Grammar +
    funemp + fmpr + livboth + Belfast +
  N.Eastern + Southern + S.Eastern + Western,
  emission_formula = activity ~ male + catholic + gcse5eq,
  initial_formula = ~ 1,
  transition_formula = ~ male + gcse5eq
  )

## End(Not run)</pre>
```

estimate_nhmm

Estimate a Non-homogeneous Hidden Markov Model

Description

Function estimate_nhmm estimates a non-homogeneous hidden Markov model (NHMM) where initial, transition, and emission probabilities can depend on covariates. Transition and emission probabilities can also depend on past responses, in which case the model is called feedback-augmented NHMM (FAN-HMM) (Helske, 2025).

Usage

```
estimate_nhmm(
  n_states,
  emission_formula,
  initial_formula = ~1,
  transition_formula = ~1,
  data,
  time,
  id,
  lambda = 0,
  prior_obs = "fixed",
  state_names = NULL,
  inits = "random",
  init_sd = 2,
  restarts = 0L,
 method = "EM-DNM",
 bound = Inf,
  control_restart = list(),
  control_mstep = list(),
)
```

estimate_nhmm 33

Arguments

n_states An integer > 1 defining the number of hidden states.

emission_formula

of class formula() for the state emission probabilities, or a list of such formulas in case of multiple response variables. The left-hand side of formulas define the responses. For multiple responses having same formula, you can use a form $c(y1, y2) \sim x$, where y1 and y2 are the response variables.

initial_formula

of class formula() for the initial state probabilities. Left-hand side of the formula should be empty.

transition_formula

of class formula() for the state transition probabilities. Left-hand side of the

formula should be empty.

data A data frame containing the variables used in the model formulas.

time Name of the time index variable in data.

id Name of the id variable in data identifying different sequences.

lambda Penalization factor lambda for penalized log-likelihood, where the penalization

is $0.5 * lambda * sum(eta^2)$. Note that with method = "L-BFGS" both objective function (log-likelihood) and the penalization term is scaled with number of non-missing observations. Default is 0, but small values such as 1e-4 can help to ensure numerical stability of L-BFGS by avoiding extreme probabilities. See

also argument bound for hard constraints.

prior_obs Either "fixed" or a list of vectors given the prior distributions for the responses

at time "zero". See details.

state_names A vector of optional labels for the hidden states. If this is NULL (the default),

numbered states are used.

inits If inits = "random" (default), random initial values are used. Otherwise inits

should be list of initial values. If coefficients are given using list components eta_pi, eta_A, eta_B, these are used as is, alternatively initial values can be given in terms of the initial state, transition, and emission probabilities using list components initial_probs, emission_probs, and transition_probs. These can also be mixed, i.e. you can give only initial_probs and eta_A.

init_sd Standard deviation of the normal distribution used to generate random initial

values. Default is 2. If you want to fix the initial values of the regression coeffi-

cients to zero, use $init_sd = 0$.

restarts Number of times to run optimization using random starting values (in addition

to the final run). Default is 0.

method Optimization method used. Option "EM" uses EM algorithm with L-BFGS in

the M-step. Option "DNM" uses direct maximization of the log-likelihood, by default using L-BFGS. Option "EM-DNM" (the default) runs first a maximum of 10 iterations of EM and then switches to L-BFGS (but other algorithms of NLopt

can be used).

bound Positive value defining the hard lower and upper bounds for the working param-

eters η , which are used to avoid extreme probabilities and corresponding numeri-

cal issues especially in the M-step of EM algorithm. Default is Inf´, i.e., no bounds. Note that he because of

= 0'.

34 estimate_nhmm

```
control_restart

Controls for restart steps, see details.

control_mstep

Controls for M-step of EM algorithm, see details.

Additional arguments to nloptr::nloptr() and EM algorithm. See details.
```

Details

In case of FAN-HMM with autoregressive dependency on the observational level, (i.e. response y_t depend on y_{t-1}), the emission probabilities at the first time point need special attention. By default, the model is initialized with fixed values for the first time point (prior_obs = "fixed"), meaning that if the input data consists of time points $t=1,2,\ldots$, then the model is defined from t=2 onwards and the data on t=1 is used only for defining the emission probabilities at t=2. Note that in this case also the initial state probabilities correspond to t=2.

Alternatively, you can define prior_obs as a list of vectors, where the number of vectors is equal to the number of responses, and each vector gives the prior distribution for the response at t=0. For example, if you have response variables y and x, where y has 3 categories and x 2 categories, you can define prior_obs = list(y = c(0.5, 0.3, 0.2), x = c(0.7, 0.3)). These distributions are then used to marginalize out y_0 and x_0 in the relevant emission probabilities.

By default, the model parameters are estimated using EM-DNM algorithm which first runs some iterations (100 by default) of EM algorithm, and then switches to L-BFGS. Other options include any numerical optimization algorithm of nloptr::nloptr(), or plain EM algorithm where the M-step uses L-BFGS (provided by the NLopt library).

With multiple runs of optimization (by using the restarts argument), it is possible to parallelize these runs using the future package, e.g., by calling future::plan(multisession, workers = 2) before estimate_nhmm(). See future::plan() for details. This is compatible with progressr package, so you can use progressr::with_progress() to track the progress of these multiple runs.

During the estimation, the log-likelihood is scaled by the number of non-missing observations (nobs(model)), and the the covariate data is standardardized before optimization.

By default, the convergence is claimed when the relative change of the objective function is less than 1e-12, the absolute change is less than 1e-8 or the relative or absolute change of the working parameters eta is less than 1e-6. These can be changed by passing arguments ftol_rel, ftol_abs, xtol_rel, and xtol_abs via These, as well as, maxeval (maximum number of iterations, 1e4 by default), and print_level (default is 0, no console output, larger values are more verbose), are used by the chosen main optimization method. The number of initial EM iterations in EM-DNM can be set using argument maxeval_em_dnm (default is 100), and algorithm for direct numerical optimization can be defined using argument algorithm (see nloptr::nloptr() for possible options).

For controlling these stopping criteria for the multistart phase, argument control_restart takes a list such as list(ftol_rel = 0.01, print_level = 1). Default are as in the case of main optimization (which is always run once after the restarts, using best solution from restarts as initial value) Additionally, same options can be defined separately for the M-step of EM algorithm via list control_mstep. For control_mstep, the default values are ftol_rel = 1e-10, and maxeval = 1000, and otherwise identical to previous defaults above.

Value

Object of class nhmm or fanhmm.

fanhmm_leaves 35

References

Helske, J (2025). Feedback-augmented Non-homogeneous Hidden Markov Models for Longitudinal Causal Inference. arXiv preprint. doi:10.48550/arXiv.2503.16014.

Johnson, SG. The NLopt nonlinear-optimization package, http://github.com/stevengj/nlopt.

Examples

```
data("mvad", package = "TraMineR")

d <- reshape(mvad, direction = "long", varying = list(15:86),
    v.names = "activity")

## Not run:
set.seed(1)
fit <- estimate_nhmm(n_states = 3,
    data = d, time = "time", id = "id",
    emission_formula = activity ~ gcse5eq, initial_formula = ~ 1,
    transition_formula = ~ male + gcse5eq,
    method = "DNM", maxeval = 2 # very small number of iterations for CRAN
)

## End(Not run)</pre>
```

fanhmm_leaves

A feedback-augmented non-homogeneuous hidden Markov Model for leaves data

Description

A FAN-HMM fitted for theleaes data.

Format

A model of class fanhmm with three hidden states

Details

The model is loaded by calling data(fanhmm_leaves). The code used to estimate the model is available on Github in data-raw folder.

Examples

```
data("fanhmm_leaves")
fanhmm_leaves
get_marginals(fanhmm_leaves)
```

36 fit_model

fit_model

Estimate Parameters of (Mixture) Hidden Markov Models and Their Restricted Variants

Description

Function fit_model estimates the parameters of mixture hidden Markov models and its restricted variants using maximimum likelihood. Initial values for estimation are taken from the corresponding components of the model with preservation of original zero probabilities.

Usage

```
fit_model(
 model,
  em_step = TRUE,
 global_step = FALSE,
 local_step = FALSE,
  control_em = list(),
  control_global = list(),
  control_local = list(),
  1b,
  ub,
  threads = 1,
  log_space = TRUE,
  constraints = NULL,
  fixed_inits = NULL,
  fixed_emissions = NULL,
  fixed_transitions = NULL,
)
```

Arguments

model	An object of class hmm or mhmm.
em_step	Logical. Whether or not to use the EM algorithm at the start of the parameter estimation. The default is TRUE.
global_step	Logical. Whether or not to use global optimization via nloptr::nloptr() (possibly after the EM step). The default is FALSE.
local_step	Logical. Whether or not to use local optimization via nloptr::nloptr() (possibly after the EM and/or global steps). The default is FALSE.
control_em	Optional list of control parameters for the EM algorithm. Possible arguments are

maxeval

The maximum number of iterations, the default is 1000. Note that iteration counter starts with -1 so with maxeval = 1 you get already two iterations. This is for backward compatibility reasons.

• print_level

The level of printing. Possible values are 0 (prints nothing), 1 (prints information at the start and the end of the algorithm), 2 (prints at every iteration), and for mixture models 3 (print also during optimization of coefficients).

• reltol

Relative tolerance for convergence defined as $(logLik_new-logLik_old)/(abs(logLik_old)+0.1)$. The default is 1e-10.

• restart

A list containing options for possible EM restarts with the following components:

- times

Number of restarts of the EM algorithm using random initial values. The default is 0, i.e. no restarts.

- transition

Logical. Should the original transition probabilities be varied? The default is TRUE.

- emission

Logical. Should the original emission probabilities be varied? The default is TRUE.

sd

Standard deviation for stats::rnorm() used in randomization. The default is 0.25.

- maxeval

Maximum number of iterations, the default is control_em\$maxeval

- print level

Level of printing in restarted EM steps. The default is control_em\$print_level.

- reltol

Relative tolerance for convergence at restarted EM steps. The default is control_em\$reltol. If the relative change of the final model of the restart phase is larger than the tolerance for the original EM phase, the final model is re-estimated with the original reltol and maxeval at the end of the EM step.

- n_optimum

Save the log-likelihood values of the n_optimum best models (from all estimated models including the the first EM run.). The default is min(times + 1, 25).

- use_original

If TRUE, use the initial values of the input model as starting points for the permutations. Otherwise permute the results of the first EM run.

control_global Optional list of additional arguments for nloptr::nloptr() argument opts.

The default values are

• algorithm

"NLOPT_GD_MLSL_LDS"

• local_opts

list(algorithm = "NLOPT_LD_LBFGS", ftol_rel = 1e-6, xtol_rel = 1e-4)

maxeval

10000 (maximum number of iterations in global optimization algorithm.)

• maxtime

60 (maximum time for global optimization. Set to 0 for unlimited time.)

control_local

Optional list of additional arguments for nloptr::nloptr() argument opts. The default values are

- algorithm
 - "NLOPT_LD_LBFGS"
- ftol_rel 1e-10
- xtol_rel 1e-8
- maxeval

10000 (maximum number of iterations)

1b, ub

Lower and upper bounds for parameters in Softmax parameterization. The default interval is c(pmin(-25, 2*initialvalues), pmax(25, 2*initialvalues)), except for gamma coefficients, where the scale of covariates is taken into account. Note that it might still be a good idea to scale covariates around unit scale. Bounds are used only in the global optimization step.

threads

Number of threads to use in parallel computing. The default is 1.

log_space

Make computations using log-space instead of scaling for greater numerical stability at a cost of decreased computational performance. The default is TRUE.

constraints

Integer vector defining equality constraints for emission distributions. Not supported for EM algorithm. See details.

fixed_inits

Can be used to fix some of the probabilities to their initial values. Should have same structure as model\$initial_probs, where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.

fixed_emissions

Can be used to fix some of the probabilities to their initial values. Should have same structure as model\$emission_probs, where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.

fixed_transitions

Can be used to fix some of the probabilities to their initial values. Should have same structure as model\$transition_probs, where each element is either TRUE (fixed) or FALSE (to be estimated). Note that zero probabilities are always fixed to 0. Not supported for EM algorithm. See details.

... Additional arguments to nloptr::nloptr().

Details

The fitting function provides three estimation steps: 1) EM algorithm, 2) global optimization, and 3) local optimization. The user can call for one method or any combination of these steps, but should note that they are preformed in the above-mentioned order. The results from a former step are used as starting values in a latter, except for some of global optimization algorithms (such as MLSL and StoGO) which only use initial values for setting up the boundaries for the optimization.

It is possible to rerun the EM algorithm automatically using random starting values based on the first run of EM. Number of restarts is defined by the restart argument in control_em. As the EM algorithm is relatively fast, this method might be preferred option compared to the proper global optimization strategy of step 2.

The default global optimization method (triggered via global_step = TRUE) is the multilevel single-linkage method (MLSL) with the LDS modification (NLOPT_GD_MLSL_LDS as algorithmin control_global), with L-BFGS as the local optimizer. The MLSL method draws random starting points and performs a local optimization from each. The LDS modification uses low-discrepancy sequences instead of pseudo-random numbers as starting points and should improve the convergence rate. In order to reduce the computation time spent on non-global optima, the convergence tolerance of the local optimizer is set relatively large. At step 3, a local optimization (L-BFGS by default) is run with a lower tolerance to find the optimum with high precision.

There are some theoretical guarantees that the MLSL method used as the default optimizer in step 2 shoud find all local optima in a finite number of local optimizations. Of course, it might not always succeed in a reasonable time. The EM algorithm can help in finding good boundaries for the search, especially with good starting values, but in some cases it can mislead. A good strategy is to try a couple of different fitting options with different combinations of the methods: e.g. all steps, only global and local steps, and a few evaluations of EM followed by global and local optimization.

By default, the estimation time is limited to 60 seconds in global optimization step, so it is advisable to change the default settings for the proper global optimization.

Any algorithm available in the nloptr function can be used for the global and local steps.

Equality constraints for emission distributions can be defined using the argument constraints. This should be a vector with length equal to the number of states, with numbers starting from 1 and increasing for each unique row of the emission probability matrix. For example in case of five states with emissions of first and third states being equal, constraints = c(1, 2, 1, 3, 4). Similarly, some of the model parameters can be fixed to their initial values by using arguments fixed_inits, fixed_emissions, and fixed_transitions, where the structure of the arguments should be same as the corresponding model components, so that TRUE value means that the parameter should be fixed and FALSE otherwise (it is still treated as fixed if it is zero though). For both types of constrains, only numerical optimisation (local or global) is available, and currently the gradients are computed numerically (if needed) in these cases.

In a case where the is no transitions from one state to anywhere (even to itself), the state is defined as absorbing in a way that probability of staying in this state is fixed to 1. See also build_mm function.

Value

- logLik
 Log-likelihood of the estimated model.
- em_results
 Results after the EM step: log-likelihood (logLik), number of iterations (iterations), relative change in log-likelihoods between the last two iterations (change), and the log-likelihoods of the n_optimum best models after the EM step (best_opt_restart).
- global_results
 Results after the global step.
- local_results Results after the local step.

call
 The matched function call.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

build_hmm(), build_mhmm(), build_mmm(), build_mmm(), and build_lcm() for constructing different types of models; summary.mhmm() for a summary of a MHMM; separate_mhmm() for reorganizing a MHMM into a list of separate hidden Markov models; and plot.hmm() and plot.mhmm() for plotting model objects.

Examples

```
# Hidden Markov model for mvad data
data("mvad", package = "TraMineR")
mvad_alphabet <-</pre>
 c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c(</pre>
  "employment", "further education", "higher education",
  "joblessness", "school", "training"
)
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- segdef(mvad, 15:86,</pre>
 alphabet = mvad_alphabet,
 states = mvad_scodes, labels = mvad_labels, xtstep = 6,
 cpal = colorpalette[[6]]
)
# Starting values for the emission matrix
emiss <- matrix(
 c(
   0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC
   0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE
   0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
   0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
   0.75, 0.05, 0.05, 0.05, 0.05, 0.05
 ), # EM
 nrow = 5, ncol = 6, byrow = TRUE
)
# Starting values for the transition matrix
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9
# Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)
```

```
# Building a hidden Markov model
init_hmm_mvad <- build_hmm(</pre>
 observations = mvad_seq,
 transition_probs = trans, emission_probs = emiss,
 initial_probs = initial_probs
)
## Not run:
set.seed(21)
fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 50)))</pre>
hmm_mvad <- fit_hmm_mvad$model</pre>
## End(Not run)
# save time, load the previously estimated model
data("hmm_mvad")
# Markov model
# Note: build_mm estimates model parameters from observations,
# no need for estimating with fit_model unless there are missing observations
mm_mvad <- build_mm(observations = mvad_seq)</pre>
# Comparing likelihoods, MM fits better
logLik(hmm_mvad)
logLik(mm_mvad)
## Not run:
require("igraph") # for layout_in_circle
plot(mm_mvad,
 layout = layout_in_circle, legend.prop = 0.3,
 edge.curved = 0.3, edge.label = NA,
 vertex.label.pos = c(0, 0, pi, pi, pi, 0)
)
#' # Three-state three-channel hidden Markov model
# See ?hmm_biofam for five-state version
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
 start = 15,
 alphabet = c("single", "married", "divorced"),
 cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
child_seq <- seqdef(biofam3c$children,</pre>
 start = 15,
```

```
alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("lightblue", "red3")
# Starting values for emission matrices
emiss_marr <- matrix(NA, nrow = 3, ncol = 3)</pre>
emiss_marr[1, ] <- seqstatf(marr_seq[, 1:5])[, 2] + 1</pre>
emiss_marr[2, ] \leftarrow seqstatf(marr_seq[, 6:10])[, 2] + 1
emiss_marr[3, ] \leftarrow seqstatf(marr_seq[, 11:16])[, 2] + 1
emiss_marr <- emiss_marr / rowSums(emiss_marr)</pre>
emiss_child <- matrix(NA, nrow = 3, ncol = 2)</pre>
emiss\_child[1, ] \leftarrow seqstatf(child\_seq[, 1:5])[, 2] + 1
emiss_child[2, ] <- seqstatf(child_seq[, 6:10])[, 2] + 1
emiss_child[3, ] \leftarrow seqstatf(child_seq[, 11:16])[, 2] + 1
emiss_child <- emiss_child / rowSums(emiss_child)</pre>
emiss_left <- matrix(NA, nrow = 3, ncol = 2)</pre>
emiss_left[1, ] \leftarrow seqstatf(left_seq[, 1:5])[, 2] + 1
emiss_left[2, ] \leftarrow seqstatf(left_seq[, 6:10])[, 2] + 1
emiss_left[3, ] \leftarrow seqstatf(left_seq[, 11:16])[, 2] + 1
emiss_left <- emiss_left / rowSums(emiss_left)</pre>
# Starting values for transition matrix
trans <- matrix(c(</pre>
  0.9, 0.07, 0.03,
  0, 0.9, 0.1,
  0, 0, 1
), nrow = 3, ncol = 3, byrow = TRUE)
# Starting values for initial state probabilities
inits <-c(0.9, 0.09, 0.01)
# Building hidden Markov model with initial parameter values
init_hmm_bf <- build_hmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child, emiss_left),
  initial_probs = inits
)
# Fitting the model with different optimization schemes
# Only EM with default values
hmm_1 <- fit_model(init_hmm_bf)</pre>
hmm_1$logLik # -24179.1
```

```
# Only L-BFGS
hmm_2 <- fit_model(init_hmm_bf, em_step = FALSE, local_step = TRUE)</pre>
hmm_2$logLik # -22267.75
# Global optimization via MLSL_LDS with L-BFGS as local optimizer and final polisher
# This can be slow, use parallel computing by adjusting threads argument
# (here threads = 1 for portability issues)
hmm_3 <- fit_model(</pre>
  init_hmm_bf,
  em_step = FALSE, global_step = TRUE, local_step = TRUE,
  control_global = list(maxeval = 5000, maxtime = 0), threads = 1
hmm_3$logLik # -21675.42
# EM with restarts, much faster than MLSL
set.seed(123)
hmm_4 <- fit_model(init_hmm_bf, control_em = list(restart = list(times = 5)))</pre>
hmm_4$logLik # -21675.4
# Global optimization via StoGO with L-BFGS as final polisher
# This can be slow, use parallel computing by adjusting threads argument
# (here threads = 1 for portability issues)
set.seed(123)
hmm_5 <- fit_model(</pre>
  init_hmm_bf,
  em_step = FALSE, global_step = TRUE, local_step = TRUE,
  lb = -50, ub = 50, control_global = list(
   algorithm = "NLOPT_GD_STOGO",
   maxeval = 2500, maxtime = 0
  ), threads = 1
)
hmm_5$logLik # -21675.4
# Mixture HMM
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
)
child_seq <- seqdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
```

```
cpal = c("lightblue", "red3")
## Starting values for emission probabilities
# Cluster 1
B1_marr <- matrix(
  c(
    0.8, 0.1, 0.1, # High probability for single
   0.8, 0.1, 0.1,
   0.3, 0.6, 0.1, # High probability for married
   0.3, 0.3, 0.4
  ), # High probability for divorced
 nrow = 4, ncol = 3, byrow = TRUE
B1_child <- matrix(
 c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.9, 0.1,
   0.9, 0.1
 ),
 nrow = 4, ncol = 2, byrow = TRUE
B1_left <- matrix(
 c(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9, # High probability for having left home
   0.1, 0.9,
   0.1, 0.9
  nrow = 4, ncol = 2, byrow = TRUE
)
# Cluster 2
B2_marr <- matrix(
  c(
    0.8, 0.1, 0.1, # High probability for single
   0.8, 0.1, 0.1,
   0.1, 0.8, 0.1, \# High probability for married
   0.7, 0.2, 0.1
 ),
 nrow = 4, ncol = 3, byrow = TRUE
)
B2_child <- matrix(</pre>
  c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.9, 0.1,
   0.1, 0.9
```

```
),
 nrow = 4, ncol = 2, byrow = TRUE
B2_left <- matrix(
 c(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9,
   0.1, 0.9,
   0.1, 0.9
  ),
 nrow = 4, ncol = 2, byrow = TRUE
)
# Cluster 3
B3_marr <- matrix(
 c(
   0.8, 0.1, 0.1, # High probability for single
   0.8, 0.1, 0.1,
   0.8, 0.1, 0.1,
   0.1, 0.8, 0.1, # High probability for married
   0.3, 0.4, 0.3,
   0.1, 0.1, 0.8
  ), \# High probability for divorced
  nrow = 6, ncol = 3, byrow = TRUE
)
B3_child <- matrix(
 c(
   0.9, 0.1, # High probability for childless
   0.9, 0.1,
   0.5, 0.5,
   0.5, 0.5,
   0.5, 0.5,
   0.1, 0.9
 ),
 nrow = 6, ncol = 2, byrow = TRUE
)
B3_left <- matrix(
 c(
   0.9, 0.1, # High probability for living with parents
   0.1, 0.9,
   0.5, 0.5,
   0.5, 0.5,
   0.1, 0.9,
   0.1, 0.9
 nrow = 6, ncol = 2, byrow = TRUE
# Starting values for transition matrices
```

```
A1 <- matrix(
 c(
   0.80, 0.16, 0.03, 0.01,
   0, 0.90, 0.07, 0.03,
   0, 0, 0.90, 0.10,
   0, 0, 0, 1
  nrow = 4, ncol = 4, byrow = TRUE
)
A2 <- matrix(
  c(
    0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
    0, 0.70, 0.10, 0.10, 0.05, 0.05,
   0, 0, 0.85, 0.01, 0.10, 0.04,
   0, 0, 0, 0.90, 0.05, 0.05,
   0, 0, 0, 0, 0.90, 0.10,
   0, 0, 0, 0, 0, 1
 ),
 nrow = 6, ncol = 6, byrow = TRUE
)
# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)
# Birth cohort
biofam3c$covariates$cohort <- cut(biofam3c$covariates$birthyr, c(1908, 1935, 1945, 1957))
biofam3c$covariates$cohort <- factor(</pre>
  biofam3c$covariates$cohort,
  labels = c("1909-1935", "1936-1945", "1946-1957")
)
# Build mixture HMM
init_mhmm_bf <- build_mhmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
  transition_probs = list(A1, A1, A2),
  emission_probs = list(
    list(B1_marr, B1_child, B1_left),
   list(B2_marr, B2_child, B2_left),
   list(B3_marr, B3_child, B3_left)
  ),
  formula = ~ sex + cohort, data = biofam3c$covariates,
  channel_names = c("Marriage", "Parenthood", "Residence")
)
# Fitting the model with different settings
# Only EM with default values
mhmm_1 <- fit_model(init_mhmm_bf)</pre>
mhmm_1$logLik # -12713.08
```

```
# Only L-BFGS
mhmm_2 <- fit_model(init_mhmm_bf, em_step = FALSE, local_step = TRUE)</pre>
mhmm_2$logLik # -12966.51
# Use EM with multiple restarts
set.seed(123)
mhmm_3 <- fit_model(init_mhmm_bf, control_em = list(restart = list(times = 5, transition = FALSE)))</pre>
mhmm_3$logLik # -12713.08
## End(Not run)
# Left-to-right HMM with equality constraint:
set.seed(1)
# Transition matrix
# Either stay or move to next state
A \leftarrow diag(c(0.9, 0.95, 0.95, 1))
A[1, 2] < 0.1
A[2, 3] < -0.05
A[3, 4] < 0.05
# Emission matrix, rows 1 and 3 equal
B <- rbind(
 c(0.4, 0.2, 0.3, 0.1),
 c(0.1, 0.5, 0.1, 0.3),
 c(0.4, 0.2, 0.3, 0.1),
  c(0, 0.2, 0.4, 0.4)
# Start from first state
init <-c(1, 0, 0, 0)
# Simulate sequences
sim <- simulate_hmm(</pre>
  n_{sequences} = 100,
  sequence_length = 20, init, A, B
# initial model, use true values as inits for faster estimation here
model <- build_hmm(sim$observations, init = init, trans = A, emiss = B)</pre>
# estimate the model subject to constraints:
# First and third row of emission matrix are equal (see details)
fit <- fit_model(model,</pre>
  constraints = c(1, 2, 1, 3),
  em_step = FALSE, local_step = TRUE
)
fit$model
## Fix some emissions:
```

48 forward_backward

```
fixB <- matrix(FALSE, 4, 4)
fixB[2, 1] <- fixB[1, 3] <- TRUE # these are fixed to their initial values
fit <- fit_model(model,
    fixed_emissions = fixB,
    em_step = FALSE, local_step = TRUE
)
fit$model$emission_probs</pre>
```

forward_backward

Forward and Backward Probabilities for Hidden Markov Model

Description

The forward_backward function computes forward and backward probabilities of a hidden Markov model.

Usage

```
forward_backward(model, ...)
## S3 method for class 'hmm'
forward_backward(model, forward_only = FALSE, ...)
## S3 method for class 'mhmm'
forward_backward(model, forward_only = FALSE, ...)
## S3 method for class 'nhmm'
forward_backward(model, forward_only = FALSE, ...)
## S3 method for class 'mnhmm'
forward_backward(model, forward_only = FALSE, ...)
```

Arguments

```
model A hidden Markov model.... Ignored.forward_only If TRUE, only forward probabilities are computed. The default is FALSE.
```

Value

A data. frame with log-values of forward and backward probabilities.

get_cluster_probs 49

Examples

```
# Load a pre-defined MHMM
data("mhmm_biofam")
# Compute forward and backward probabilities
fb <- forward_backward(mhmm_biofam)
head(fb)</pre>
```

get_cluster_probs

Extract the Prior Cluster Probabilities of MHMM or MNHMM

Description

Extract the Prior Cluster Probabilities of MHMM or MNHMM

Usage

```
get_cluster_probs(model)
## S3 method for class 'mnhmm'
get_cluster_probs(model)
## S3 method for class 'mhmm'
get_cluster_probs(model)
```

Arguments

mode1

A hidden Markov model.

See Also

```
posterior_cluster_probabilities().
```

get_emission_probs

Extract the Emission Probabilities of Hidden Markov Model

Description

Extract the Emission Probabilities of Hidden Markov Model

50 get_initial_probs

Usage

```
get_emission_probs(model)

## S3 method for class 'nhmm'
get_emission_probs(model)

## S3 method for class 'mnhmm'
get_emission_probs(model)

## S3 method for class 'hmm'
get_emission_probs(model)

## S3 method for class 'mhmm'
get_emission_probs(model)
```

Arguments

model

A hidden Markov model.

get_initial_probs

Extract the Initial State Probabilities of Hidden Markov Model

Description

Extract the Initial State Probabilities of Hidden Markov Model

Usage

```
get_initial_probs(model)
## S3 method for class 'nhmm'
get_initial_probs(model)
## S3 method for class 'mnhmm'
get_initial_probs(model)
## S3 method for class 'hmm'
get_initial_probs(model)
## S3 method for class 'mhmm'
get_initial_probs(model)
```

Arguments

model

A hidden Markov model.

get_marginals 51

get_marginals

Compute the Marginal Probabilities from NHMMs

Description

get_marginals returns the marginal state, response, transition, and emission probabilities, optionally per grouping defined by condition. By default, the marginalization weights sequences by the corresponding posterior probabilities of the latent states, i.e., conditional probabilities of the latent states given all data (weighting = "posterior"). If weighting = "forward", marginalization is based on forward probabilities, i.e. state probabilities given data up to that point which allows you to compute, for example, state marginals of form $P(state_t|data_1,\ldots,data_t)$ (whereas in posterior probability weighting the conditioning is on $data_1,\ldots,data_T$. If weighting = "none", all individuals and time points are treated equally, without accounting for the probability that individual is at particular state at particular time.

Usage

```
get_marginals(
  model,
  probs = NULL,
  condition = NULL,
  newdata = NULL,
  type = c("state", "response", "transition", "emission"),
  weighting = c("posterior", "forward", "none")
)
```

Arguments

model	An object of class nhmm or mnhmm.
probs	Vector defining the quantiles of interest. Default is NULL, in which case no quantiles are computed. The quantiles are based on bootstrap samples of coefficients, stored in object\$boot.
condition	An optional vector of variable names used for conditional marginal probabilities. Default is NULL, in which case marginalization is done over all variables, so that for example marginal emission probabilities are computed over all individuals and time points.
newdata	An optional data frame containing the new data to be used in computing the probabilities.
type	A character vector defining the marginal probabilities of interest. Can be one or multiple of "state", "response", "transition", and "emission". Default is to compute all of these.
weighting	A character string defining the type of weighting used in marginalization. One

of "posterior", "forward", "none". See details.

52 gridplot

get_transition_probs Extract the State Transition Probabilities of Hidden Markov Model

Description

Extract the State Transition Probabilities of Hidden Markov Model

Usage

```
get_transition_probs(model)
## S3 method for class 'nhmm'
get_transition_probs(model)
## S3 method for class 'mnhmm'
get_transition_probs(model)
## S3 method for class 'hmm'
get_transition_probs(model)
## S3 method for class 'mhmm'
get_transition_probs(model)
```

Arguments

model

A hidden Markov model.

gridplot

Plot Multidimensional Sequence Plots in a Grid

Description

Function gridplot plots multiple ssp objects to a grid.

Usage

```
gridplot(
    X,
    nrow = NA,
    ncol = NA,
    byrow = FALSE,
    with.legend = "auto",
    legend.pos = "auto",
    legend.pos2 = "center",
    title.legend = "auto",
```

gridplot 53

```
ncol.legend = "auto",
with.missing.legend = "auto",
row.prop = "auto",
col.prop = "auto",
cex.legend = 1
)
```

Arguments

x A list of ssp() objects.

nrow, ncol Optional arguments to arrange plots.

byrow Controls the order of plotting. Defaults to FALSE, i.e. plots are arranged column-

wise.

with.legend Defines if and how the legends for the states are plotted. The default value

"auto" (equivalent to TRUE and "many") creates separate legends for each requested plot. Other possibilities are "combined" (all legends combined) and

FALSE (no legend).

legend.pos Defines the positions of the legend boxes relative to the whole plot. Either one

of "bottom" (equivalent to "auto") or "right", or a numerical vector of grid cells (by order) to print the legends to (the cells must be in one row/column).

legend.pos2 Defines the positions of the legend boxes relative to the cell(s). One of "bottomright",

"bottom", "bottomleft", "left", "topleft", "top" (the default), "topright",

"right" and "center".

title.legend The titles for the legend boxes. The default "auto" takes the titles from the

channel labels provided by the first object in x. NA prints no title.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"

creates one column for each legend.

with.missing.legend

If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in data contain missing states. With the value TRUE a legend for the missing state is added in any case; equivalently

FALSE omits the legend for the missing state.

row.prop Sets the proportions of the row heights of the grid. The default value is "auto"

for even row heights. Takes a vector of values from 0 to 1, with values summing

to 1.

col.prop Sets the proportion of the column heights of the grid. The default value is

"auto" for even column widths. Takes a vector of values from 0 to 1, with

values summing to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values

greater than 1 will increase the size.

54 hidden_paths

hidden_paths

Most Probable Paths of Hidden States

Description

Function hidden_paths computes the most probable path of hidden states of a (mixture) hidden Markov model given the observed sequences.

Usage

```
hidden_paths(model, ...)
## S3 method for class 'hmm'
hidden_paths(model, as_stslist = FALSE, ...)
## S3 method for class 'mhmm'
hidden_paths(model, as_stslist = FALSE, ...)
## S3 method for class 'nhmm'
hidden_paths(model, as_stslist = FALSE, ...)
## S3 method for class 'mnhmm'
hidden_paths(model, as_stslist = FALSE, ...)
```

Arguments

```
model A hidden Markov model.

... Ignored.

as_stslist Logical. If TRUE, the output the is converted to an stslist object. Default is FALSE, which returns a data.table.
```

Value

The most probable paths of hidden states as an data.table. The log-probability is included as an attribute log_prop.

See Also

hmm_biofam for information on the model used in the example; and ggseqplot::ggseqiplot() and stacked_sequence_plot() for plotting hidden paths.

Examples

```
# Load a pre-defined HMM
data("hmm_biofam")
```

Compute the most probable hidden state paths given the data and the model

hmm_biofam 55

```
mpp <- hidden_paths(hmm_biofam)
head(mpp)
# Plot hidden paths for the first 100 individuals
seqs <- data_to_stslist(mpp, "id", "time", "state")
stacked_sequence_plot(seqs, type = "i", ids = 1:100)
# Because the model structure is so sparse that the posterior probabilities are
# mostly peaked to single state at each time point, the joint probability of
# observations and most probable paths of hidden states is almost identical to
# log-likelihood:
sum(attr(mpp, "log_prob"))
logLik(hmm_biofam)</pre>
```

hmm_biofam

Hidden Markov model for the biofam data

Description

A five-state hidden Markov model (HMM) fitted for the TraMineR::biofam() data.

Format

A hidden Markov model of class hmm; a left-to-right model with four hidden states.

Details

The model is loaded by calling data(hmm_biofam). It was created with the following code:

```
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
)
child_seq <- seqdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("lightblue", "red3")
)
```

56 hmm_biofam

```
init < c(0.9, 0.05, 0.02, 0.02, 0.01)
# Starting values for transition matrix
trans <- matrix(</pre>
  c(0.8, 0.10, 0.05, 0.03, 0.02,
          0.9, 0.05, 0.03, 0.02,
            0, 0.9, 0.07, 0.03,
                0, 0.9, 0.1,
    0,
            0,
                  0,
                         0,
  nrow = 5, ncol = 5, byrow = TRUE)
# Starting values for emission matrices
emiss_marr <- matrix(</pre>
  c(0.9, 0.05, 0.05, # High probability for single
    0.9, 0.05, 0.05,
    0.05, 0.9, 0.05, # High probability for married
   0.05, 0.9, 0.05,
    0.3, 0.3, 0.4), # mixed group
  nrow = 5, ncol = 3, byrow = TRUE)
emiss_child <- matrix(</pre>
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.1, 0.9,
   0.1, 0.9,
    0.5, 0.5),
  nrow = 5, ncol = 2, byrow = TRUE)
emiss_left <- matrix(</pre>
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.1, 0.9,
   0.1, 0.9,
    0.5, 0.5),
 nrow = 5, ncol = 2, byrow = TRUE)
initmod <- build_hmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = init, transition_probs = trans,
  emission_probs = list(emiss_marr, emiss_child,
    emiss_left),
  channel_names = c("Marriage", "Parenthood", "Residence"))
fit_biofam <- fit_model(initmod, em = FALSE, local = TRUE)</pre>
hmm_biofam <- fit_biofam$model</pre>
```

hmm_mvad 57

See Also

Examples of building and fitting HMMs in build_hmm() and fit_model(); and TraMineR::biofam() for the original data and biofam3c() for the three-channel version used in this model.

Examples

```
# Plotting the model
plot(hmm_biofam)
```

hmm_mvad

Hidden Markov model for the mvad data

Description

A hidden Markov model (MMM) fitted for the TraMineR::mvad() data.

Format

A hidden Markov model of class hmm; unrestricted model with six hidden states.

Details

Model was created with the following code:

```
data("mvad", package = "TraMineR")
mvad_alphabet <-</pre>
  c("employment", "FE", "HE", "joblessness", "school", "training")
mvad_labels <- c("employment", "further education", "higher education",</pre>
  "joblessness", "school", "training")
mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")</pre>
mvad_seq <- seqdef(mvad, 15:86, alphabet = mvad_alphabet,</pre>
  states = mvad_scodes, labels = mvad_labels, xtstep = 6,
  cpal = colorpalette[[6]])
# Starting values for the emission matrix
emiss <- matrix(</pre>
  c(0.05, 0.05, 0.05, 0.05, 0.75, 0.05, # SC
    0.05, 0.75, 0.05, 0.05, 0.05, 0.05, # FE
    0.05, 0.05, 0.05, 0.4, 0.05, 0.4, # JL, TR
    0.05, 0.05, 0.75, 0.05, 0.05, 0.05, # HE
    0.75, 0.05, 0.05, 0.05, 0.05, 0.05),# EM
  nrow = 5, ncol = 6, byrow = TRUE)
# Starting values for the transition matrix
```

58 leaves

```
trans <- matrix(0.025, 5, 5)
diag(trans) <- 0.9

# Starting values for initial state probabilities
initial_probs <- c(0.2, 0.2, 0.2, 0.2, 0.2)

# Building a hidden Markov model
init_hmm_mvad <- build_hmm(observations = mvad_seq,
    transition_probs = trans, emission_probs = emiss,
    initial_probs = initial_probs)

set.seed(21)
fit_hmm_mvad <- fit_model(init_hmm_mvad, control_em = list(restart = list(times = 100)))
hmm_mvad <- fit_hmm_mvad$model</pre>
```

See Also

Examples of building and fitting HMMs in build_hmm() and fit_model(); and TraMineR::mvad() for more information on the data.

Examples

```
data("hmm_mvad")
# Plotting the model
plot(hmm_mvad)
```

leaves

Synthetic data on fathers' parental leaves in Finland

Description

Synthetic data on fathers' parental leaves in Finland

Format

A data. table with 9281 rows and 9 variables

Details

The leaves data is a synthetic version of the Finnish fathers' leave-taking data used in Helske et al. (2024) and Helske (2025). The data consists of variables

- workplace: Workplace ID.
- father: father ID within workplace. More accurately, this is the birth of a child, i.e. same father can have multiple entries in data, but each entry has separate ID.
- year: Year when the child was born.

logLik.hmm 59

- leave: Factor of leave-taking of the father.
- Occupation: Factor of skill level of the father's occupation
- reform2013: Factor indicating whether the father was eligible for the leave under the 2013 reform.
- same_occupation: Logical value, TRUE if father had same occupation as the previous father.
- lag_reform2013: Factor indicating whether the previous father was eligible for the reform.
- lag_occupation: Factor indiciting the occupation of previous father.

References

Helske S, Helske J, Chapman SN, Kotimäki S, Salin M, and Tikka S (2024). Heterogeneous workplace peer effects in fathers' parental leave uptake in Finland. doi: 10.31235/osf.io/p3chf Helske J (2025). Feedback-augmented Non-homogeneous Hidden Markov Models for Longitudinal Causal Inference. ArXiv preprint. doi:10.48550/arXiv.2503.16014

Examples

```
data("leaves")
head(leaves)
# convert to stslist
leaves_sequences <- data_to_stslist(
   leaves, id = "workplace", time = "father", responses = "leave",
   seqdef_args = list(cpal = c("tomato", "navyblue", "goldenrod"))
)
stacked_sequence_plot(leaves_sequences)</pre>
```

logLik.hmm

Log-likelihood of a Hidden Markov Model

Description

Log-likelihood of a Hidden Markov Model

Usage

```
## S3 method for class 'hmm'
logLik(object, partials = FALSE, threads = 1, log_space = TRUE, ...)
## S3 method for class 'mhmm'
logLik(object, partials = FALSE, threads = 1, log_space = TRUE, ...)
```

60 logLik.nhmm

Arguments

object A hidden Markov model. partials Return a vector containing the individual contributions of each sequence to the total log-likelihood. The default is FALSE, which returns the sum of all loglikelihood components. threads Number of threads to use in parallel computing. The default is 1. Make computations using log-space instead of scaling for greater numerical stalog_space bility at the cost of decreased computational performance. The default is TRUE. Ignored.

. . .

Value

Log-likelihood of the hidden Markov model. This is an object of class logLik with attributes nobs and df inherited from the model object.

logLik.nhmm Log-likelihood of a Non-homogeneous Hidden Markov Model

Description

Log-likelihood of a Non-homogeneous Hidden Markov Model

Usage

```
## S3 method for class 'nhmm'
logLik(object, partials = FALSE, ...)
## S3 method for class 'mnhmm'
logLik(object, partials = FALSE, ...)
```

Arguments

object A hidden Markov model.

partials Return a vector containing the individual contributions of each sequence to the

total log-likelihood. The default is FALSE, which returns the sum of all log-

likelihood components.

Ignored.

Value

Log-likelihood of the hidden Markov model. This is an object of class logLik with attributes nobs and df inherited from the model object.

 mc_to_sc 61

mc_to_sc	Transform a Multichannel Hidden Markov Model into a Single Chan-
	nel Representation

Description

Transforms data and parameters of a multichannel model into a single channel model. Observed states (symbols) are combined and parameters multiplied across channels.

Usage

```
mc_to_sc(model, combine_missing = TRUE, all_combinations = FALSE, cpal)
```

Arguments

model An object of class hmm or mhmm. combine_missing

Controls whether combined states of observations at time t are coded missing (coded with * in stslists) if one or more of the channels include missing information at time t. Defaults to TRUE. FALSE keeps missing states as they are, producing more states in data; e.g. single/childless/* where the observation in channel 3 is missing.

all_combinations

Controls whether all possible combinations of observed states are included in the single channel representation or only combinations that are found in the data. Defaults to FALSE, i.e. only actual observations are included.

cpal

The color palette used for the new combined symbols. Optional in a case where the number of symbols is less or equal to 200 (in which case the seqHMM::colorpalette is used).

Details

Note that in case of no missing observations, the log-likelihood of the original and transformed models are identical but the AIC and BIC can be different as the model attribute df is recomputed based on the single channel representation.

See Also

build_hmm() and fit_model() for building and fitting Hidden Markov models; and hmm_biofam() for information on the model used in the example.

Examples

```
# Loading a hidden Markov model of the biofam data (hmm object)
data("hmm_biofam")
```

Convert the multichannel model to a single-channel model

mc_to_sc_data

```
sc <- mc_to_sc(hmm_biofam)

# Likelihoods of the single-channel and the multichannel model are the same
# (Might not be true if there are missing observations)
logLik(sc)
logLik(hmm_biofam)</pre>
```

mc_to_sc_data

Merge Multiple Sequence Objects into One (from Multichannel to Single Channel Data)

Description

Function mc_to_sc_data combines observed states of multiple sequence objects into one, time point by time point.

Usage

```
mc_to_sc_data(data, combine_missing = TRUE, all_combinations = FALSE, cpal)
```

Arguments

data

A list of state sequence objects (stslists) created with the seqdef() function.

combine_missing

Controls whether combined states of observations at time t are coded missing (coded with * in stslists) if one or more of the channels include missing information at time t. Defaults to TRUE. FALSE keeps missing states as they are, producing more states in data; e.g. single/childless/* where the observation in channel 3 is missing.

 $all_combinations$

Controls whether all possible combinations of observed states are included in the single channel representation or only combinations that are found in the data. Defaults to FALSE, i.e. only actual observations are included.

cpal

The color palette used for the new combined symbols. Optional in a case where the number of symbols is less or equal to 200 (in which case the seqHMM::colorpalette is used).

See Also

mc_to_sc() for transforming multichannel hmm or mhmm objects into single-channel representations; stacked_sequence_plot for plotting multiple sequence data sets in the same plot; and seqdef() for creating state sequence objects.

mc_to_sc_data 63

Examples

```
# Load three-channel sequence data
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
)
child_seq <- seqdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("lightblue", "red3")
)
# Converting multichannel data to single-channel data
sc_data <- mc_to_sc_data(list(marr_seq, child_seq, left_seq))</pre>
# 10 combined states
alphabet(sc_data)
# Colors for combined states
attr(sc_data, "cpal") <- colorpalette[[14]][1:10]</pre>
# Plotting sequences for the first 10 subjects
stacked_sequence_plot(
 list(
    "Marriage" = marr_seq, "Parenthood" = child_seq,
    "Residence" = left_seq, "Combined" = sc_data
  ),
  type = "i",
  ids = 1:10
)
# Including all combinations (whether or not available in data)
sc_data_all <- mc_to_sc_data(list(marr_seq, child_seq, left_seq),</pre>
  all_combinations = TRUE
)
# 12 combined states, 2 with no observations in data
seqstatf(sc_data_all)
```

64 mhmm_biofam

mhmm_biofam

Mixture hidden Markov model for the biofam data

Description

A mixture hidden Markov model (MHMM) fitted for the TraMineR::biofam() data.

Format

A mixture hidden Markov model of class mhmm: three clusters with left-to-right models including 4, 4, and 6 hidden states. Two covariates, sex and cohort, explaining the cluster membership.

Details

The model was created with the following code:

```
data("biofam3c")
# Building sequence objects
marr_seq <- seqdef(biofam3c$married,</pre>
  start = 15,
  alphabet = c("single", "married", "divorced"),
  cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")
)
child_seq <- seqdef(biofam3c$children,</pre>
  start = 15,
  alphabet = c("childless", "children"),
  cpal = c("darkseagreen1", "coral3")
)
left_seq <- seqdef(biofam3c$left,</pre>
  start = 15,
  alphabet = c("with parents", "left home"),
  cpal = c("lightblue", "red3")
## Starting values for emission probabilities
# Cluster 1
B1_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.3, 0.6, 0.1, # High probability for married
    0.3, 0.3, 0.4), # High probability for divorced
  nrow = 4, ncol = 3, byrow = TRUE)
B1_child <- matrix(</pre>
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
```

mhmm_biofam 65

```
0.9, 0.1,
    0.9, 0.1),
  nrow = 4, ncol = 2, byrow = TRUE)
B1_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9, # High probability for having left home
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)
# Cluster 2
B2_marr <- matrix(</pre>
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.7, 0.2, 0.1),
  nrow = 4, ncol = 3, byrow = TRUE)
B2_child <- matrix(</pre>
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.9, 0.1,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)
B2_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.1, 0.9,
    0.1, 0.9),
  nrow = 4, ncol = 2, byrow = TRUE)
# Cluster 3
B3_marr <- matrix(
  c(0.8, 0.1, 0.1, # High probability for single
    0.8, 0.1, 0.1,
    0.8, 0.1, 0.1,
    0.1, 0.8, 0.1, # High probability for married
    0.3, 0.4, 0.3,
    0.1, 0.1, 0.8), # High probability for divorced
  nrow = 6, ncol = 3, byrow = TRUE)
B3_child <- matrix(
  c(0.9, 0.1, # High probability for childless
    0.9, 0.1,
    0.5, 0.5,
```

66 mhmm_biofam

```
0.5, 0.5,
    0.5, 0.5,
    0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)
B3_left <- matrix(
  c(0.9, 0.1, # High probability for living with parents
    0.1, 0.9,
    0.5, 0.5,
   0.5, 0.5,
   0.1, 0.9,
   0.1, 0.9),
  nrow = 6, ncol = 2, byrow = TRUE)
# Starting values for transition matrices
A1 <- matrix(
  c(0.80, 0.16, 0.03, 0.01,
          0.90, 0.07, 0.03,
    0,
   0,
          0,
               0.90, 0.10,
   0,
                      1),
        0,
             0,
  nrow = 4, ncol = 4, byrow = TRUE)
A2 <- matrix(
  c(0.80, 0.10, 0.05, 0.03, 0.01, 0.01,
          0.70, 0.10, 0.10, 0.05, 0.05,
    0,
    0,
               0.85, 0.01, 0.10, 0.04,
                     0.90, 0.05, 0.05,
    0,
          0,
               0,
   0,
                      0, 0.90, 0.10,
          0, 0,
                                   1),
   0,
          0,
              0,
                      0,
                            0,
  nrow = 6, ncol = 6, byrow = TRUE)
# Starting values for initial state probabilities
initial_probs1 <- c(0.9, 0.07, 0.02, 0.01)
initial_probs2 <- c(0.9, 0.04, 0.03, 0.01, 0.01, 0.01)
# Birth cohort
biofam3c$covariates$cohort <- factor(cut(biofam3c$covariates$birthyr,</pre>
   c(1908, 1935, 1945, 1957)), labels = c("1909-1935", "1936-1945", "1946-1957"))
# Build mixture HMM
init_mhmm_bf <- build_mhmm(</pre>
  observations = list(marr_seq, child_seq, left_seq),
  initial_probs = list(initial_probs1, initial_probs1, initial_probs2),
  transition_probs = list(A1, A1, A2),
  emission_probs = list(list(B1_marr, B1_child, B1_left),
    list(B2_marr, B2_child, B2_left),
    list(B3_marr, B3_child, B3_left)),
```

mhmm_mvad 67

```
formula = ~sex + cohort, data = biofam3c$covariates,
  channel_names = c("Marriage", "Parenthood", "Residence"))
# Fitting the model
mhmm_biofam <- fit_model(init_mhmm_bf)$model</pre>
```

See Also

Examples of building and fitting MHMMs in build_mhmm() and fit_model(); and TraMineR::biofam() for the original data and biofam3c() for the three-channel version used in this model.

Examples

```
data("mhmm_biofam")

# use conditional_se = FALSE for more accurate standard errors
# (these are considerebly slower to compute)
summary(mhmm_biofam$model)

if (interactive()) {
    # Plotting the model for each cluster (change with Enter)
    plot(mhmm_biofam)
}
```

mhmm_mvad

Mixture hidden Markov model for the mvad data

Description

A mixture hidden Markov model (MHMM) fitted for the TraMineR::mvad() data.

Format

A mixture hidden Markov model of class mhmm: two clusters including 3 and 4 hidden states. No covariates.

Details

The model is loaded by calling data(mhmm_mvad). It was created with the following code:

```
data("mvad", package = "TraMineR")

mvad_alphabet <-
    c("employment", "FE", "HE", "joblessness", "school", "training")

mvad_labels <- c("employment", "further education", "higher education",
    "joblessness", "school", "training")

mvad_scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")

mvad_seq <- seqdef(mvad, 15:86, alphabet = mvad_alphabet,</pre>
```

68 mhmm_mvad

```
states = mvad_scodes, labels = mvad_labels, xtstep = 6,
  cpal = colorpalette[[6]])
# Starting values for the emission matrices
emiss_1 <- matrix(</pre>
  c(0.01, 0.01, 0.01, 0.01, 0.01, 0.95,
    0.95, 0.01, 0.01, 0.01, 0.01, 0.01,
    0.01, 0.01, 0.01, 0.95, 0.01, 0.01),
  nrow = 3, ncol = 6, byrow = TRUE)
emiss_2 <- matrix(</pre>
  c(0.01, 0.01, 0.01, 0.06, 0.90, 0.01,
    0.01, 0.95, 0.01, 0.01, 0.01, 0.01,
    0.01, 0.01, 0.95, 0.01, 0.01, 0.01,
   0.95, 0.01, 0.01, 0.01, 0.01, 0.01),
  nrow = 4, ncol = 6, byrow = TRUE)
# Starting values for the transition matrix
trans_1 <- matrix(</pre>
 c(0.95, 0.03, 0.02,
    0.01, 0.98, 0.01,
    0.01, 0.01, 0.98),
  nrow = 3, ncol = 3, byrow = TRUE)
trans_2 <- matrix(</pre>
  c(0.97, 0.01, 0.01, 0.01,
   0.01, 0.97, 0.01, 0.01,
    0.01, 0.01, 0.97, 0.01,
    0.01, 0.01, 0.01, 0.97),
  nrow = 4, ncol = 4, byrow = TRUE)
# Starting values for initial state probabilities
initial_probs_1 <- c(0.5, 0.25, 0.25)
initial_probs_2 <- c(0.4, 0.4, 0.1, 0.1)
# Building a hidden Markov model with starting values
init_mhmm_mvad <- build_mhmm(observations = mvad_seq,</pre>
  transition_probs = list(trans_1, trans_2),
  emission_probs = list(emiss_1, emiss_2),
  initial_probs = list(initial_probs_1, initial_probs_2))
# Fit the model
set.seed(123)
mhmm_mvad <- fit_model(init_mhmm_mvad, control_em = list(restart = list(times = 25)))$model</pre>
```

most_probable_cluster 69

See Also

Examples of building and fitting MHMMs in build_mhmm() and fit_model(); and TraMineR::mvad() for more information on the data.

Examples

```
data("mhmm_mvad")
summary(mhmm_mvad)
if (interactive()) {
    # Plotting the model for each cluster (change with Enter)
    plot(mhmm_mvad)
}
```

Description

Extract Most Probable Cluster for Each Sequence

Usage

```
most_probable_cluster(x, type = "viterbi", hp = NULL)
```

Arguments

x An object of class mhmm or mnhmm.

type A character string specifying the method to use. Either "viterbi" (default)

or "posterior". Former uses the most probable hidden path to determine the cluster membership for each sequence, while the latter finds the cluster which

has the largest sum of posterior probabilities of states of that cluster.

hp An output from hidden_paths() function. Only used in case of type = "viterbi".

If missing, hidden paths will be computed using x.

Value

A vector containing the most probable cluster for each sequence.

70 mssplot

mssplot

Interactive Stacked Plots of Multichannel Sequences and/or Most Probable Paths for Mixture Hidden Markov Models

Description

Function mssplot plots stacked sequence plots of observation sequences and/or most probable hidden state paths for each model of the mhmm object (model chosen according to the most probable path).

Usage

```
mssplot(
  х,
  ask = FALSE,
 which.plots = NULL,
 hidden.paths = NULL,
  plots = "obs",
  type = "d",
  tlim = 0,
  sortv = NULL,
  sort.channel = 1,
  dist.method = "OM"
  with.missing = FALSE,
  missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
  with.legend = "auto",
  ncol.legend = "auto",
 with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
  hidden.states.colors = "auto",
  hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
  xtlab = NULL,
  xlab.pos = 1,
  ylab = "auto",
  hidden.states.title = "Hidden states",
  yaxis = FALSE,
  ylab.pos = "auto",
  cex.lab = 1,
  cex.axis = 1,
  respect_void = TRUE,
```

mssplot 71

)

Arguments

x Mixture hidden Markov model object of class mhmm.

ask If TRUE and which.plots is NULL, plot.mhmm operates in interactive mode, via menu(). Defaults to FALSE.

which.plots The number(s) of the requested model(s) as an integer vector. The default NULL

produces all plots.

hidden.paths Output from the hidden_paths() function. The default value NULL computes hidden paths automatically, if needed.

What to plot. One of "obs" for observations (the default), "hidden.paths" for most probable paths of hidden states, or "both" for observations and hidden paths together.

The type of the plot. Available types are "I" for index plots and "d" for state distribution plots (the default). See TraMineR::seqplot() for details.

Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted). For example, tlim = 1:10 plots the first ten subjects in data.

A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs", or "mds.hidden") for type = "I". The value "mds.hidden" is only available when which = "both" and which = "hidden.paths". Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional scaling (using stats::cmdscale()) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument dist.method. See TraMineR::plot.stslist() for more details on "from.start" and "from.end".

The number of the channel according to which the "from.start" or "from.end" sorting is done. Sorting according to hidden states is called with value 0. The default value is 1 (the first channel).

The metric to be used for computing the distances of the sequences if multi-dimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See TraMineR::seqdef() for more information on the metrics.

Controls whether missing states are included in state distribution plots (type = "d"). The default is FALSE.

Alternative color for representing missing values in the sequences. By default, this color is taken from the missing.color attribute of the sequence object.

A vector of main titles for the graphics. The default is NA: if title.n = TRUE, the name of the cluster and the number of subjects is plotted. FALSE prints no titles, even when title.n = TRUE.

plots

type

tlim

sortv

sort.channel

dist.method

with.missing

missing.color

title

72 mssplot

title.n Controls whether the number of subjects is printed in the main titles of the plots. The default is TRUE: n is plotted if title is anything but FALSE. cex.title Expansion factor for setting the size of the font for the main titles. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size. title.pos Controls the position of the main titles of the plots. The default value is 1. Values greater than 1 will place the title higher. with.legend Defines if and where the legend for the states is plotted. The default value "auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and positiones them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE prints no legend. ncol.legend (A vector of) the number of columns for the legend(s). The default "auto" creates one column for each legend. with.missing.legend If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states and type = "I". If type = "d" missing states are omitted from the legends unless with.missing = TRUE. With the value TRUE a legend for the missing state is added in any case; equivalently FALSE omits the legend for the missing state. Sets the proportion of the graphic area used for plotting the legend when with. legend legend.prop is not FALSE. The default value is 0.3. Takes values from 0 to 1. cex.legend Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size. hidden.states.colors A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the stslist object (created with TraMineR::seqdef()) if hidden.paths is given; otherwise colors from colorpalette() are automatically used. hidden.states.labels Labels for the hidden states. The default value "auto" uses the names provided in x\$state_names if x is an hmm object; otherwise the number of the hidden Controls whether an x-axis is plotted below the plot at the bottom. The default xaxis value is TRUE. xlab An optional label for the x-axis. If set to NA, no label is drawn. xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of the sequence object are used (see TraMineR::seqdef()). xlab.pos Controls the position of the x-axis label. The default value is 1. Values greater than 1 will place the label further away from the plot. ylab Labels for the channels shown as labels for y-axes. A vector of names for each

channel (observations). The default value "auto" uses the names provided in x\$channel_names if x is an hmm object; otherwise the names of the list in x if

nobs.hmm 73

	given, or the number of the channel if names are not given. FALSE prints no labels.
hidden.states.	
	Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".
yaxis	Controls whether or not to plot the y-axis. The default is FALSE.
ylab.pos	Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the plots the titles are positioned. The default value "auto" positions all titles on line 1. Shorter vectors are recycled.
cex.lab	Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
cex.axis	Expansion factor for setting the size of the font for the x-axis tick labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
respect_void	If TRUE (default), states at the time points corresponding to TraMineR's void in the observed sequences are set to void in the hidden state sequences as well.
	Other arguments to be passed on to TraMineR::seqplot().

See Also

build_mhmm() and fit_model() for building and fitting mixture hidden Markov models, hidden_paths()
for computing the most probable paths (Viterbi paths) of hidden states, plot.mhmm() for plotting
mhmm objects as directed graphs, and colorpalette() for default colors.

nobs.hmm

Number of Observations in Hidden Markov Model

Description

Extract the number of non-missing observations of HMM. When computing nobs for a multichannel model with \$C\$ channels, each observed value in a single channel amounts to \$1/C\$ observation, i.e. a fully observed time point for a single sequence amounts to one observation.

```
## S3 method for class 'hmm'
nobs(object, ...)
## S3 method for class 'mhmm'
nobs(object, ...)
## S3 method for class 'nhmm'
nobs(object, ...)
## S3 method for class 'mnhmm'
nobs(object, ...)
```

Arguments

```
object An object of class hmm, mhmm, nhmm, or mnhmm.
... Ignored.
```

plot.hmm

Plot hidden Markov models

Description

Function plot. hmm plots a directed graph with pie charts of emission probabilities as vertices/nodes.

```
## S3 method for class 'hmm'
plot(
  х,
 layout = "horizontal",
 pie = TRUE,
 vertex.size = 40,
  vertex.label = "initial.probs",
  vertex.label.dist = "auto",
  vertex.label.pos = "bottom"
  vertex.label.family = "sans",
  loops = FALSE,
  edge.curved = TRUE,
  edge.label = "auto",
  edge.width = "auto",
  cex.edge.width = 1,
  edge.arrow.size = 1.5,
  edge.label.family = "sans",
  label.signif = 2,
  label.scientific = FALSE,
  label.max.length = 6,
  trim = 1e-15,
  combine.slices = 0.05,
  combined.slice.color = "white",
  combined.slice.label = "others",
 with.legend = "bottom",
  ltext = NULL,
  legend.prop = 0.5,
  cex.legend = 1,
  ncol.legend = "auto",
  cpal = "auto",
  cpal.legend = "auto",
  legend.order = TRUE,
 main = NULL,
```

```
withlegend,
...
)
```

Arguments

Х

A hidden Markov model object of class hmm created with build_hmm() (or build_mm()). Multichannel hmm objects are automatically transformed into single-channel objects. See function mc_to_sc() for more information on the transformation.

layout

specifies the layout of vertices (nodes). Accepts a numerical matrix, a <code>igraph::layout_()</code> function (without quotation marks), or either of the predefined options "horizontal" (the default) and "vertical". Options "horizontal" and "vertical" position vertices at the same horizontal or vertical line. A two-column numerical matrix can be used to give x and y coordinates of the vertices. The <code>igraph::layout_()</code> functions available in the <code>igraph</code> package offer other automatic layouts for graphs.

pie

Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.

vertex.size

Size of vertices, given as a scalar or numerical vector. The default value is 40.

vertex.label

Labels for vertices. Possible options include "initial.probs", "names", NA, and a character or numerical vector. The default "initial.probs" prints the initial probabilities of the model and "names" prints the names of the hidden states as labels. NA prints no labels.

vertex.label.dist

Distance of the label of the vertex from its center. The default value "auto" places the label outside the vertex.

vertex.label.pos

Positions of vertex labels, relative to the center of the vertex. A scalar or numerical vector giving position(s) as radians or one of "bottom" (pi/2 as radians), "top" (-pi/2), "left" (pi), or "right" (0).

vertex.label.family, edge.label.family

Font family to be used for vertex/edge labels. See argument family in par() for more information.

loops

Defines whether transitions back to same states are plotted.

edge.curved

Defines whether to plot curved edges (arcs, arrows) between vertices. A logical or numerical vector or scalar. Numerical values specify curvatures of edges. The default value TRUE gives curvature of 0.5 to all edges. See igraph::igraph.plotting() for more information.

edge.label

Labels for edges. Possible options include "auto", NA, and a character or numerical vector. The default "auto" prints transition probabilities as edge labels. NA prints no labels.

edge.width

Width(s) for edges. The default "auto" determines widths according to transition probabilities between hidden states. Other possibilities are a scalar or a numerical vector of widths.

cex.edge.width An expansion factor for edge widths. Defaults to 1.

edge.arrow.size

Size of the arrow in edges (constant). Defaults to 1.5.

label.signif Rounds labels of model parameters to specified number of significant digits, 2 by default. Ignored for user-given labels.

label.scientific

Defines if scientific notation should be used to describe small numbers. Defaults to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.

label.max.length

Maximum number of digits in labels of model parameters. Ignored for user-given labels.

trim Scalar between 0 and 1 giving the highest probability of transitions that are plotted as edges, defaults to 1e-15.

combine.slices Scalar between 0 and 1 giving the highest probability of emission probabilities that are combined into one state. The dafault value is 0.05.

combined.slice.color

Color of the combined slice that includes the smallest emission probabilities (only if argument "combine.slices" is greater than 0). The default color is white.

combined.slice.label

The label for combined states (when argument "combine.slices" is greater than 0) to appear in the legend.

with.legend Defines if and where the legend of state colors is plotted. Possible values include "bottom" (the default), "top", "left", and "right". FALSE omits the legend.

Optional description of (combined) observed states to appear in the legend. A vector of character strings. See TraMineR::seqplot() for more information.

legend.prop Proportion used for plotting the legend. A scalar between 0 and 1, defaults to

0.5.

cex.legend Expansion factor for setting the size of the font for labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values

greater than 1 will increase the size.

ncol.legend The number of columns for the legend. The default value "auto" sets the num-

ber of columns automatically.

optional color palette for (combinations of) observed states. The default value "auto" uses automatic color palette. Otherwise a vector of length x\$n_symbols is given, i.e. the argument requires a color specified for all (combinations of) ob-

served states even if they are not plotted (if the probability is less than combine. slices).

cpal.legend Optional color palette for the legend, only considered when legend.order is

FALSE. Should match ltext.

legend.order Whether to use the default order in the legend, i.e., order by appearance (first by

hidden state, then by emission probability). TRUE by default.

main Main title for the plot. Omitted by default.

withlegend Deprecated. Use with.legend instead.

... Other parameters passed on to igraph::plot.igraph() such as vertex.color,

vertex.label.cex, or edge.lty.

See Also

build_hmm() and fit_model() for building and fitting Hidden Markov models, mc_to_sc() for transforming multistate hmm objects into single-channel objects, hmm_biofam() and hmm_mvad() for information on the models used in the examples, and igraph::plot.igraph() for the general plotting function of directed graphs.

Examples

```
# Multichannel data, left-to-right model
# Loading a HMM of the biofam data
data("hmm_biofam")
# Plotting hmm object
plot(hmm_biofam)
# Plotting HMM with
plot(hmm_biofam,
 # varying curvature of edges
 edge.curved = c(0, -0.7, 0.6, 0.7, 0, -0.7, 0),
 # legend with two columns and less space
 ncol.legend = 2, legend.prop = 0.4,
 # new label for combined slice
 combined.slice.label = "States with probability < 0.05"</pre>
)
# Plotting HMM with given coordinates
plot(hmm_biofam,
 # layout given in 2x5 matrix
 # x coordinates in the first column
 # y coordinates in the second column
 layout = matrix(c(
   1, 3, 3, 5, 3,
   0, 0, 1, 0, -1
 ), ncol = 2),
 # larger vertices
 vertex.size = 50,
 # straight edges
 edge.curved = FALSE,
 # thinner edges and arrows
 cex.edge.width = 0.5, edge.arrow.size = 1,
 # varying positions for vertex labels (initial probabilities)
 vertex.label.pos = c(pi, pi / 2, -pi / 2, 0, pi / 2),
 # different legend properties
 with.legend = "top", legend.prop = 0.3, cex.legend = 1.1,
 # Fix axes to the right scale
 xlim = c(0.5, 5.5), ylim = c(-1.5, 1.5), rescale = FALSE,
 # all states (not combining states with small probabilities)
 combine.slices = 0,
 # legend with two columns
 ncol.legend = 2
)
```

```
# Plotting HMM with own color palette
plot(hmm_biofam,
  cpal = 1:10,
  # States with emission probability less than 0.2 removed
  combine.slices = 0.2,
  # legend with two columns
  ncol.legend = 2
)
# Plotting HMM without pie graph and with a layout function
require("igraph")
# Setting the seed for a random layout
set.seed(1234)
plot(hmm_biofam,
  # Without pie graph
  pie = FALSE,
  # Using an automatic layout function from igraph
  layout = layout_nicely,
  vertex.size = 30,
  # Straight edges and probabilities of moving to the same state
  edge.curved = FALSE, loops = TRUE,
  # Labels with three significant digits
  label.signif = 3,
  # Fixed edge width
  edge.width = 1,
  # Remove edges with probability less than 0.01
  trim = 0.01,
  # Hidden state names as vertex labels
  vertex.label = "names",
  # Labels insidde vertices
  vertex.label.dist = 0,
  # Fix x-axis (more space on the right-hand side)
  xlim = c(-1, 1.3)
# Single-channel data, unrestricted model
# Loading a hidden Markov model of the mvad data (hmm object)
data("hmm_mvad")
# Plotting the HMM
plot(hmm_mvad)
# Checking the order of observed states (needed for the next call)
require(TraMineR)
alphabet(hmm_mvad$observations)
# Plotting the HMM with own legend (note: observation "none" nonexistent in the observations)
plot(hmm_mvad,
  # Override the default order in the legend
  legend.order = FALSE,
```

```
# Colours in the pies (ordered by the alphabet of observations)
 cpal = c("purple", "pink", "brown", "lightblue", "orange", "green"),
 # Colours in the legend (matching to ltext)
 cpal.legend = c("orange", "pink", "brown", "green", "lightblue", "purple", "gray"),
 # Labels in the legend (matching to cpal.legend)
 ltext = c("school", "further educ", "higher educ", "training", "jobless", "employed", "none")
require("igraph")
plot(hmm_mvad,
 # Layout in circle (layout function from igraph)
 layout = layout_in_circle,
 # Less curved edges with smaller arrows, no labels
 edge.curved = 0.2, edge.arrow.size = 0.9, edge.label = NA,
 # Positioning vertex labels (initial probabilities)
 vertex.label.pos = c("right", "right", "left", "left", "right"),
 \# Less space for the legend
 legend.prop = 0.3
)
```

plot.mhmm

Interactive Plotting for Mixed Hidden Markov Model (mhmm)

Description

Function plot.mhmm plots a directed graph of the parameters of each model with pie charts of emission probabilities as vertices/nodes.

```
## S3 method for class 'mhmm'
plot(
  interactive = TRUE,
  ask = FALSE,
  which.plots = NULL,
  nrow = NA,
  ncol = NA,
  byrow = FALSE,
  row.prop = "auto",
  col.prop = "auto",
  layout = "horizontal",
  pie = TRUE,
  vertex.size = 40,
  vertex.label = "initial.probs",
  vertex.label.dist = "auto",
  vertex.label.pos = "bottom"
  vertex.label.family = "sans",
```

```
loops = FALSE,
  edge.curved = TRUE,
  edge.label = "auto",
  edge.width = "auto",
  cex.edge.width = 1,
  edge.arrow.size = 1.5,
  edge.label.family = "sans",
  label.signif = 2,
  label.scientific = FALSE,
  label.max.length = 6,
  trim = 1e-15,
  combine.slices = 0.05,
  combined.slice.color = "white",
  combined.slice.label = "others",
  with.legend = "bottom",
  ltext = NULL,
  legend.prop = 0.5,
  cex.legend = 1,
  ncol.legend = "auto",
  cpal = "auto",
 main = "auto",
 withlegend,
)
```

Arguments

ask

nrow, ncol

A hidden Markov model object of class mhmm created with build_mhmm() (or Х build_mmm() or build_lcm()). Multichannel mhmm objects are automatically transformed into single-channel objects. See function mc_to_sc() for more information on the transformation.

Whether to plot each cluster in succession or in a grid. Defaults to TRUE, i.e. interactive clusters are plotted one after another.

If TRUE and which.plots is NULL, plot.mhmm operates in interactive mode, via utils::menu(). Defaults to FALSE. Ignored if interactive = FALSE.

which.plots The number(s) of the requested cluster(s) as an integer vector. The default NULL produces all plots.

Optional arguments to arrange plots in a grid. Ignored if interactive = TRUE.

Controls the order of plotting in a grid. Defaults to FALSE, i.e. plots are arranged byrow

column-wise. Ignored if interactive = TRUE.

Sets the proportions of the row heights of the grid. The default value is "auto" row.prop for even row heights. Takes a vector of values from 0 to 1, with values summing

to 1. Ignored if interactive = TRUE.

col.prop Sets the proportion of the column heights of the grid. The default value is "auto" for even column widths. Takes a vector of values from 0 to 1, with

values summing to 1. Ignored if interactive = TRUE.

layout specifies the layout of vertices (nodes). Accepts a numerical matrix, a igraph::layout_()

function (without quotation marks), or either of the predefined options "horizontal" (the default) and "vertical". Options "horizontal" and "vertical" position vertices at the same horizontal or vertical line. A two-column numerical matrix can be used to give x and y coordinates of the vertices. The igraph::layout_() functions available in the igraph package offer other automatic layouts for

graphs.

pie Are vertices plotted as pie charts of emission probabilities? Defaults to TRUE.

vertex. size Size of vertices, given as a scalar or numerical vector. The default value is 40.

vertex.label Labels for vertices. Possible options include "initial.probs", "names", NA,

and a character or numerical vector. The default "initial.probs" prints the initial probabilities of the model and "names" prints the names of the hidden

states as labels. NA prints no labels.

vertex.label.dist

Distance of the label of the vertex from its center. The default value "auto" places the label outside the vertex.

vertex.label.pos

Positions of vertex labels, relative to the center of the vertex. A scalar or numerical vector giving position(s) as radians or one of "bottom" (pi/2 as radians), "top" (-pi/2), "left" (pi), or "right" (0).

vertex.label.family, edge.label.family

Font family to be used for vertex/edge labels. See argument family in par()

for more information.

loops Defines whether transitions back to same states are plotted.

edge.curved Defines whether to plot curved edges (arcs, arrows) between vertices. A logical

or numerical vector or scalar. Numerical values specify curvatures of edges. The default value TRUE gives curvature of 0.5 to all edges. See igraph::igraph.plotting()

default value (NOL gives curvature of 0.3 to an edges. See 1gl april. 1gl april. proteing

for more information.

edge.label Labels for edges. Possible options include "auto", NA, and a character or nu-

merical vector. The default "auto" prints transition probabilities as edge labels.

NA prints no labels.

edge.width Width(s) for edges. The default "auto" determines widths according to tran-

sition probabilities between hidden states. Other possibilities are a scalar or a

numerical vector of widths.

cex.edge.width An expansion factor for edge widths. Defaults to 1.

edge.arrow.size

Size of the arrow in edges (constant). Defaults to 1.5.

label.signif Rounds labels of model parameters to specified number of significant digits, 2

by default. Ignored for user-given labels.

label.scientific

Defines if scientific notation should be used to describe small numbers. Defaults to FALSE, e.g. 0.0001 instead of 1e-04. Ignored for user-given labels.

label.max.length

Maximum number of digits in labels of model parameters. Ignored for user-given labels.

trim	Scalar between 0 and 1 giving the highest probability of transitions that are plotted as edges, defaults to 1e-15.
combine.slices	Scalar between 0 and 1 giving the highest probability of emission probabilities that are combined into one state. The dafault value is 0.05.
combined.slice.	color
	Color of the combined slice that includes the smallest emission probabilities (only if argument "combine.slices" is greater than 0). The default color is white.
combined.slice.	.label
	The label for combined states (when argument "combine.slices" is greater than 0) to appear in the legend.
with.legend	Defines if and where the legend of state colors is plotted. Possible values include "bottom" (the default), "top", "left", and "right". FALSE omits the legend.
ltext	Optional description of (combined) observed states to appear in the legend. A vector of character strings. See TraMineR::seqplot() for more information.
legend.prop	Proportion used for plotting the legend. A scalar between 0 and 1, defaults to 0.5.
cex.legend	Expansion factor for setting the size of the font for labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.
ncol.legend	The number of columns for the legend. The default value "auto" sets the number of columns automatically.
cpal	Optional color palette for (combinations of) observed states. The default value "auto" uses automatic color palette. Otherwise a vector of length x\$n_symbols is given, i.e. the argument requires a color specified for all (combinations of) observed states even if they are not plotted (if the probability is less than combine.slices).
main	Optional main titles for plots. The default "auto" uses cluster_names as titles, NULL prints no titles.
withlegend	Deprecated. Use with.legend instead.
	Other parameters passed on to igraph::plot.igraph() such as vertex.color, vertex.label.cex, or edge.lty.

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

build_mhmm() and fit_model() for building and fitting mixture hidden Markov models; igraph::plot.igraph() for plotting directed graphs; and mhmm_biofam() and mhmm_mvad() for the models used in examples.

plot.ssp 83

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")
# Plotting only the first cluster
plot(mhmm_biofam, which.plots = 1)
if (interactive()) {
  # Plotting each cluster (change with Enter)
  plot(mhmm_biofam)
  # Choosing the cluster (one at a time)
  plot(mhmm_biofam, ask = TRUE)
  # Loading MHMM of the mvad data
  data("mhmm_mvad")
  # Plotting models in the same graph (in a grid)
  # Note: the plotting window must be high enough!
  set.seed(123)
  plot(mhmm_mvad,
    interactive = FALSE,
    # automatic layout, legend on the right-hand side
   layout = layout_nicely, with.legend = "right",
    # Smaller and less curved edges
    edge.curved = 0.2, cex.edge.width = 0.5, edge.arrow.size = 0.7,
    vertex.label.pos = -4 * pi / 5, vertex.label.dist = 5
  )
}
```

plot.ssp

Stack Multichannel Sequence Plots and/or Most Probable Paths Plots from Hidden Markov Models

Description

Function plot.ssp plots stacked sequence plots from ssp objects defined with ssp().

Usage

```
## S3 method for class 'ssp' plot(x, ...)
```

Arguments

```
x An ssp object.
```

... Ignored.

84 plot_colors

References

Helske S. and Helske J. (2019). Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R, Journal of Statistical Software, 88(3), 1-32. doi:10.18637/jss.v088.i03

See Also

ssp() for more examples and information on defining the plot before using plot.ssp; ssplot()
for straight plotting of ssp objects; and gridplot() for plotting multiple ssp objects.

plot_colors

Plot Colorpalettes

Description

Function plot_colors plots colors and their labels for easy visualization of a colorpalette.

Usage

```
plot_colors(x, labels = NULL)
```

Arguments

x A vector of colors.

labels A vector of labels for colors. If omitted, given color names are used.

See Also

See e.g. the colorpalette() data and RColorBrewer package for ready-made color palettes.

Examples

```
plot_colors(colorpalette[[5]], labels = c("one", "two", "three", "four", "five"))
plot_colors(colorpalette[[10]])
plot_colors(1:7)
plot_colors(c("yellow", "orange", "red", "purple", "blue", "green"))
plot_colors(grDevices::rainbow(15))
```

```
posterior_cluster_probabilities

Extract Posterior Cluster Probabilities
```

Description

Extract Posterior Cluster Probabilities

Usage

```
posterior_cluster_probabilities(x)
```

Arguments

Х

An object of class mhmm or mnhmm.

Value

a data. frame of posterior cluster probabilities for each sequence and cluster.

posterior_probs

Posterior Probabilities for Hidden Markov Models

Description

Function posterior_probs computes the posterior probabilities of hidden states of a (mixture) hidden Markov model.

```
posterior_probs(model, ...)
## S3 method for class 'hmm'
posterior_probs(model, ...)
## S3 method for class 'mhmm'
posterior_probs(model, ...)
## S3 method for class 'nhmm'
posterior_probs(model, ...)
## S3 method for class 'mnhmm'
posterior_probs(model, ...)
```

86 predict.nhmm

Arguments

```
model A hidden Markov model object.
... Ignored.
```

Value

A data frame of posterior probabilities for each state and sequence.

Examples

```
# Load a pre-defined MHMM
data("mhmm_biofam")
# Compute posterior probabilities
pb <- posterior_probs(mhmm_biofam)</pre>
```

predict.nhmm

Predictions from Non-homogeneous Hidden Markov Models

Description

This function computes the marginal forward predictions for NHMMs and MNHMMs, where the marginalization is (by default) over individuals and time points, weighted by the latent state probabilities.

```
## S3 method for class 'nhmm'
predict(
 object,
  newdata,
  newdata2 = NULL,
  condition = NULL,
  type = c("state", "response", "transition", "emission"),
  probs = c(0.025, 0.975),
  boot_idx = FALSE,
)
## S3 method for class 'mnhmm'
predict(
  object,
  newdata,
  newdata2 = NULL,
  condition = NULL,
  type = c("state", "response", "transition", "emission"),
```

print.hmm 87

```
probs = c(0.025, 0.975),
boot_idx = FALSE,
...
)
```

Arguments

object	An object of class nhmm or mnhmm.
newdata	A data frame used for computing the predictions.
newdata2	An optional data frame for predictions, in which case the estimates are differences between predictions using newdata and newdata2.
condition	An optional vector of variable names used for conditional predictions.
type	A character vector defining the marginal predictions of interest. Can be one or multiple of "state", "response", "transition", and "emission". Default is to compute all of these.
probs	A numeric vector of quantiles to compute.
boot_idx	Logical indicating whether to use bootstrap samples in marginalization when computing quantiles. Default is FALSE. Currently only used in case where condition is NULL and
	Ignored.

print.hmm

Print Method for a Hidden Markov Model

Description

Prints the parameters of a (mixture) hidden Markov model.

```
## S3 method for class 'hmm'
print(x, digits = 3, ...)

## S3 method for class 'mhmm'
print(x, digits = 3, ...)

## S3 method for class 'nhmm'
print(x, digits = 3, ...)

## S3 method for class 'mnhmm'
print(x, digits = 3, ...)

## S3 method for class 'summary_mhmm'
print(x, digits = 3, ...)
```

88 separate_mhmm

Arguments

x Hidden Markov model.

digits Minimum number of significant digits to print.

... Further arguments to print.default.

See Also

build_hmm() and fit_model() for building and fitting hidden Markov models.

return_msg

Convert return code from estimate_nhmm and estimate_mnhmm to text

Description

Convert return code from estimate_nhmm and estimate_mnhmm to text

Usage

```
return_msg(code)
```

Arguments

code

Integer return code from model\$estimation_results\$return_code.

Value

Code translated to informative message.

separate_mhmm

Reorganize a mixture hidden Markov model to a list of separate hidden Markov models (covariates ignored)

Description

The separate_mhmm function reorganizes the parameters of a mhmm object into a list where each list component is an object of class hmm consisting of the parameters of the corresponding cluster.

Usage

```
separate_mhmm(model)
```

Arguments

model

Mixture hidden Markov model of class mhmm.

seqHMM-deprecated 89

Value

List with components of class hmm.

See Also

build_mhmm() and fit_model() for building and fitting MHMMs; and mhmm_biofam() for more information on the model used in examples.

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")

# Separate models for clusters
sep_hmm <- separate_mhmm(mhmm_biofam)

# Plotting the model for the first cluster
plot(sep_hmm[[1]])</pre>
```

seqHMM-deprecated

Deprecated function(s) in the seqHMM package

Description

These functions still work but will be removed (defunct) in the next version of seqHMM.

Details

- ssplot, ssp, mssplot, plot.ssp. Use stacked_sequence_plot() instead.
- gridplot Use stacked_sequence_plot(), ggseqplot, and patchwork packages instead.

simulate_hmm

Simulate hidden Markov models

Description

Simulate sequences of observed and hidden states given parameters of a hidden Markov model.

```
simulate_hmm(
   n_sequences,
   initial_probs,
   transition_probs,
   emission_probs,
   sequence_length
)
```

Arguments

```
n_sequences The number of sequences to simulate.

initial_probs A vector of initial state probabilities.

transition_probs
A matrix of transition probabilities.

emission_probs A matrix of emission probabilities or a list of such objects (one for each channel).

sequence_length
Length for simulated sequences.
```

Value

A list of state sequence objects of class stslist.

See Also

build_hmm() and fit_model() for building and fitting hidden Markov models; stacked_sequence_plot() for plotting multiple sequence data sets; seqdef() for more information on state sequence objects; and simulate_mhmm() for simulating mixture hidden Markov models.

Examples

```
# Parameters for the HMM
emission_probs <- matrix(c(0.5, 0.2, 0.5, 0.8), 2, 2)
transition_probs <- matrix(c(5 / 6, 1 / 6, 1 / 6, 5 / 6), 2, 2)
initial_probs <- c(1, 0)

# Setting the seed for simulation
set.seed(1)

# Simulating sequences
sim <- simulate_hmm(
    n_sequences = 10, initial_probs = initial_probs,
    transition_probs = transition_probs,
    emission_probs = emission_probs,
    sequence_length = 20
)

stacked_sequence_plot(sim, sort_by = "mds", type = "i")</pre>
```

simulate_initial_probs

Simulate Parameters of Hidden Markov Models

Description

These are helper functions for quick construction of initial values for various model building functions. Mostly useful for global optimization algorithms which do not depend on initial values.

simulate_mhmm 91

Usage

```
simulate_initial_probs(n_states, n_clusters = 1, alpha = 1)

simulate_transition_probs(
    n_states,
    n_clusters = 1,
    left_right = FALSE,
    diag_c = 0,
    alpha = 1
)

simulate_emission_probs(n_states, n_symbols, n_clusters = 1, alpha = 1)
```

Arguments

n_states	Number of states in each cluster.
n_clusters	Number of clusters.
alpha	A scalar, or a vector of length S (number of states) or M (number of symbols) defining the parameters of the Dirichlet distribution used to simulate the probabilities.
left_right	Constrain the transition probabilities to upper triangular. Default is FALSE.
diag_c	A constant value to be added to diagonal of transition matrices before scaling.
n_symbols	Number of distinct symbols in each channel.

simulate_mhmm

Simulate Mixture Hidden Markov Models

Description

Simulate sequences of observed and hidden states given the parameters of a mixture hidden Markov model.

```
simulate_mhmm(
    n_sequences,
    initial_probs,
    transition_probs,
    emission_probs,
    sequence_length,
    formula = NULL,
    data = NULL,
    coefficients = NULL)
```

92 simulate_mhmm

Arguments

n_sequences The number of sequences to simulate.

initial_probs A list containing vectors of initial state probabilities for the submodel of each

cluster.

transition_probs

A list of matrices of transition probabilities for the submodel of each cluster.

emission_probs A list which contains matrices of emission probabilities or a list of such objects

(one for each channel) for the submodel of each cluster. Note that the matrices must have dimensions sxm where s is the number of hidden states and m is the

number of unique symbols (observed states) in the data.

sequence_length

The length of the simulated sequences.

formula Covariates as an object of class formula(), left side omitted.

data An optional data frame, a list or an environment containing the variables in the

model. If not found in data, the variables are taken from environment(formula).

coefficients An optional kxl matrix of regression coefficients for time-constant covariates

for mixture probabilities, where l is the number of clusters and k is the number of covariates. A logit-link is used for mixture probabilities. The first column is

set to zero.

Value

A list of state sequence objects of class stslist.

See Also

build_mhmm() and fit_model() for building and fitting mixture hidden Markov models.

Examples

```
emission_probs_1 <- matrix(c(0.75, 0.05, 0.25, 0.95), 2, 2)
emission_probs_2 <- matrix(c(0.1, 0.8, 0.9, 0.2), 2, 2)
colnames(emission_probs_1) <- colnames(emission_probs_2) <-
    c("heads", "tails")

transition_probs_1 <- matrix(c(9, 0.1, 1, 9.9) / 10, 2, 2)
transition_probs_2 <- matrix(c(35, 1, 1, 35) / 36, 2, 2)
rownames(emission_probs_1) <- rownames(transition_probs_1) <-
    colnames(transition_probs_1) <- c("coin 1", "coin 2")
rownames(emission_probs_2) <- rownames(transition_probs_2) <-
    colnames(transition_probs_2) <- c("coin 3", "coin 4")

initial_probs_1 <- c(1, 0)
initial_probs_2 <- c(1, 0)

n <- 30
set.seed(123)
covariate_1 <- runif(n)</pre>
```

simulate_mnhmm 93

```
covariate_2 <- sample(c("A", "B"),</pre>
  size = n, replace = TRUE,
  prob = c(0.3, 0.7)
)
dataf <- data.frame(covariate_1, covariate_2)</pre>
coefs <- cbind(cluster_1 = c(0, 0, 0), cluster_2 = c(-1.5, 3, -0.7))
rownames(coefs) <- c("(Intercept)", "covariate_1", "covariate_2B")</pre>
sim <- simulate_mhmm(</pre>
  n = n, initial_probs = list(initial_probs_1, initial_probs_2),
  transition_probs = list(transition_probs_1, transition_probs_2),
  emission_probs = list(emission_probs_1, emission_probs_2),
  sequence_length = 20, formula = ~ covariate_1 + covariate_2,
  data = dataf, coefficients = coefs
)
stacked_sequence_plot(sim,
  sort_by = "start", sort_channel = "states", type = "i"
hmm <- build_mhmm(sim$observations,</pre>
  initial_probs = list(initial_probs_1, initial_probs_2),
  transition_probs = list(transition_probs_1, transition_probs_2),
  emission_probs = list(emission_probs_1, emission_probs_2),
  formula = ~ covariate_1 + covariate_2,
  data = dataf
)
fit <- fit_model(hmm)</pre>
fit$model
paths <- hidden_paths(fit$model, as_stslist = TRUE)</pre>
stacked_sequence_plot(
  list(
    "estimated paths" = paths,
    "true (simulated)" = sim$states
  sort_by = "start",
  sort_channel = "true (simulated)",
  type = "i"
)
```

94 simulate_mnhmm

Description

Simulate sequences of observed and hidden states given the parameters of a mixture non-homogeneous hidden Markov model.

Usage

```
simulate_mnhmm(
   n_states,
   n_clusters,
   emission_formula,
   initial_formula = ~1,
   transition_formula = ~1,
   cluster_formula = ~1,
   data,
   id,
   time,
   coefs = NULL,
   init_sd = 2 * is.null(coefs)
)
```

Arguments

 n_{states} An integer > 1 defining the number of hidden states.

n_clusters The number of clusters/mixtures.

emission_formula

of class formula() for the state emission probabilities, or a list of such formulas in case of multiple response variables. The left-hand side of formulas define the responses. For multiple responses having same formula, you can use a form $c(y1, y2) \sim x$, where y1 and y2 are the response variables.

initial_formula

of class formula() for the initial state probabilities. Left-hand side of the formula should be empty.

transition_formula

of class formula() for the state transition probabilities. Left-hand side of the formula should be empty.

cluster_formula

of class formula() for the mixture probabilities.

data

id

A data frame containing the variables used in the model formulas. Note that this should also include also the response variable(s), which are used to define the number of observed symbols (using levels()) and the length of sequences. The actual values of the response variables does not matter though, as they are replaced by the simulated values. The exception is the first time point in FAN-HMM case: If the emission_formula contains lagged responses, the response variable values at the first time point are used to define the emissions at the second time point, and the simulations are done from the second time point onwards. This matches the case prior_obs = "fixed" in estimate_nhmm().

Name of the id variable in data identifying different sequences.

simulate_nhmm 95

time	Name of the time index variable in data.
coefs	Same as argument inits in estimate_mnhmm(). If NULL, (default), the model parameters are generated randomly. If you want to simulate new sequences based on an estimated model fit, you can use coefs = fit\$etas and init_sd = 0.
init_sd	Standard deviation of the normal distribution used to generate random coefficients. Default is 2 when coefs is NULL and 0 otherwise.

Value

A list with the model used in simulation as well as the simulated hidden state sequences.

simulate_nhmm Simulate Non-homogeneous Hidden Markov Models

Description

Simulate sequences of observed and hidden states given the parameters of a non-homogeneous hidden Markov model.

Usage

```
simulate_nhmm(
   n_states,
   emission_formula,
   initial_formula = ~1,
   transition_formula = ~1,
   data,
   id,
   time,
   coefs = NULL,
   init_sd = 2 * is.null(coefs)
)
```

Arguments

 $\label{eq:n_states} \textbf{An integer} > 1 \mbox{ defining the number of hidden states.}$ $\mbox{emission_formula}$

of class formula() for the state emission probabilities, or a list of such formulas in case of multiple response variables. The left-hand side of formulas define the responses. For multiple responses having same formula, you can use a form $c(y1, y2) \sim x$, where y1 and y2 are the response variables.

initial_formula

of class formula() for the initial state probabilities. Left-hand side of the formula should be empty.

96 sort_sequences

transition_formula

of class formula() for the state transition probabilities. Left-hand side of the

formula should be empty.

data A data frame containing the variables used in the model formulas. Note that

this should also include also the response variable(s), which are used to define the number of observed symbols (using levels()) and the length of sequences. The actual values of the response variables does not matter though, as they are replaced by the simulated values. The exception is the first time point in FAN-HMM case: If the emission_formula contains lagged responses, the response variable values at the first time point are used to define the emissions at the second time point, and the simulations are done from the second time point onwards. This matches the case prior_obs = "fixed" in estimate_nhmm().

id Name of the id variable in data identifying different sequences.

time Name of the time index variable in data.

coefs Same as argument inits in estimate_nhmm(). If NULL, (default), the model

parameters are generated randomly. If you want to simulate new sequences based on an estimated model fit, you can use coefs = fit\$etas and init_sd

= 0.

init_sd Standard deviation of the normal distribution used to generate random coeffi-

cients. Default is 2 when coefs is NULL and 0 otherwise.

Value

A list with the model used in simulation as well as the simulated hidden state sequences.

Description

Sort sequences in a sequence object

Usage

```
sort_sequences(x, sort_by = "start", sort_channel = 1, dist_method = "OM")
```

Arguments

X	An stslist object or a list of of such objects of same size, typically created
	'A Tooktoop oods (A) oods a saasta (A)

with TraMineR::seqdef() or data_to_stslist().

sort_by A character string specifying the sorting criterion. Options are "none" (no sort-

ing), "start" (sort by the first state), "end" (sort by last state), and "mds" (sort

by the multidimensional scaling).

sort_channel An integer or character string specifying the channel to sort by (unless sort_by = "mds

in which case all channels are used for defining the sorting).

ssp 97

dist_method

A character string specifying the distance method to use when sorting by the multidimensional scaling. Passed to TraMineR::seqdist(), or TraMineR::seqMD() in the multichannel case.

ssp

Define Arguments for Plotting Multichannel Sequences and/or Most Probable Paths from Hidden Markov Models

Description

Function ssp defines the arguments for plotting with plot.ssp() or gridplot().

```
ssp(
 Х,
 hidden.paths = NULL,
 plots = "obs",
  type = "d",
  tlim = 0,
  sortv = NULL,
  sort.channel = 1,
  dist.method = "OM".
 with.missing = FALSE,
 missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
 with.legend = "auto",
 ncol.legend = "auto",
 with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
 hidden.states.colors = "auto",
 hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
 xtlab = NULL,
 xlab.pos = 1,
 ylab = "auto",
  hidden.states.title = "Hidden states",
 yaxis = FALSE,
 ylab.pos = "auto",
  cex.lab = 1,
  cex.axis = 1,
 withlegend,
```

98 ssp

```
respect_void = TRUE,
...
)
```

Arguments

x Either a hidden Markov model object of class hmm or a state sequence object of class stslist (created with the TraMineR::seqdef()) function) or a list of

state sequence objects.

hidden.paths Output from hidden_paths() function. Optional, if x is a hmm object or if type

= "obs".

plots What to plot. One of "obs" for observations (the default), "hidden.paths" for

most probable paths of hidden states, or "both" for observations and hidden

paths together.

type The type of the plot. Available types are "I" for sequence index plots and "d"

for state distribution plots (the default). See TraMineR::seqplot() for details.

tlim Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted).

For example, tlim = 1:10 plots the first ten subjects in data.

sorty A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs",

or "mds.hidden") for type = "I". The value "mds.hidden" is only available when hidden paths are available. Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional scaling (using stats::cmdscale()) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument dist.method. See TraMineR::plot.stslist() for more details

on "from.start" and "from.end".

sort.channel The number of the channel according to which the "from.start" or "from.end"

sorting is done. Sorting according to hidden states is called with value 0. The

default value is 1 (the first channel).

dist.method The metric to be used for computing the distances of the sequences if multi-

dimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See TraMineR::seqdef() for more

information on the metrics.

with.missing Controls whether missing states are included in state distribution plots (type =

"d"). The default is FALSE.

missing.color Alternative color for representing missing values in the sequences. By default,

this color is taken from the missing. color attribute of the sequence object.

title Main title for the graphic. The default is NA: if title.n = TRUE, only the number

of subjects is plotted. FALSE prints no title, even when title.n = TRUE.

title.n Controls whether the number of subjects (in the first channel) is printed in the

title of the plot. The default is TRUE: n is plotted if title is anything but FALSE.

ssp 99

cex.title Expansion factor for setting the size of the font for the title. The default value is

1. Values lesser than 1 will reduce the size of the font, values greater than 1 will

increase the size.

title.pos Controls the position of the main title of the plot. The default value is 1. Values

greater than 1 will place the title higher.

with.legend Defines if and where the legend for the states is plotted. The default value

"auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and positiones them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE

prints no legend.

ncol.legend (A vector of) the number of columns for the legend(s). The default "auto"

determines number of columns depending on the position of the legend.

with.missing.legend

legend.prop

If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states and type = "I". If type = "d" missing states are omitted from the legends unless with missing = TRUE. With the value TRUE a legend for the missing state

is added in any case; equivalently ${\sf FALSE}$ omits the legend for the missing state.

Sets the proportion of the graphic area used for plotting the legend when with.legend is not FALSE. The default value is 0.3. Takes values from 0 to 1.

cex.legend Expansion factor for setting the size of the font for the labels in the legend. The

default value is 1. Values lesser than 1 will reduce the size of the font, values

greater than 1 will increase the size.

hidden.states.colors

A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the stslist object (created with TraMineR::seqdef()) if hidden.paths is given; otherwise colors from colorpalette() are automati-

cally used.

hidden.states.labels

Labels for the hidden states. The default value "auto" uses the names provided in x\$state_names if x is an hmm object; otherwise the number of the hidden

state.

xaxis Controls whether an x-axis is plotted below the plot at the bottom. The default

value is TRUE.

xlab An optional label for the x-axis. If set to NA, no label is drawn.

xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of

the sequence object are used (see TraMineR::seqdef()).

xlab.pos Controls the position of the x-axis label. The default value is 1. Values greater

than 1 will place the label further away from the plot.

ylab Labels for the channels shown as labels for y-axes. A vector of names for each

channel (observations). The default value "auto" uses the names provided in x\$channel_names if x is an hmm object; otherwise the names of the list in x if given, or the number of the channel if names are not given. FALSE prints no

labels.

hidden.states.	hidden.states.title	
	Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".	
yaxis	Controls whether or not to plot the y-axis. The default is FALSE.	
ylab.pos	Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the plots the titles are positioned. The default value "auto" positions all titles on line 1. Shorter vectors are recycled.	
cex.lab	Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.	
cex.axis	Expansion factor for setting the size of the font for the x-axis tick labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size.	
withlegend	Deprecated. Use with.legend instead.	
respect_void	If TRUE (default), states at the time points corresponding to TraMineR's void in the observed sequences are set to void in the hidden state sequences as well.	
	Other arguments to be passed on to TraMineR::seqplot().	

Details

This function is deprecated, use stacked_sequence_plot() instead.

Value

Object of class ssp.

ssplot	Stacked Plots of Multichannel Sequences and/or Most Probable Paths
330100	from Hidden Markov Models
	J. C. M. 12144 CO. 1120 CO. 11

Description

Function ssplot plots stacked sequence plots of sequence object created with the seqdef() function or observations and/or most probable paths of hmm objects.

```
ssplot(
    x,
    hidden.paths = NULL,
    plots = "obs",
    type = "d",
    tlim = 0,
    sortv = NULL,
```

```
sort.channel = 1,
 dist.method = "OM",
 with.missing = FALSE,
 missing.color = NULL,
  title = NA,
  title.n = TRUE,
  cex.title = 1,
  title.pos = 1,
 with.legend = "auto",
  ncol.legend = "auto",
 with.missing.legend = "auto",
  legend.prop = 0.3,
  cex.legend = 1,
  hidden.states.colors = "auto",
  hidden.states.labels = "auto",
  xaxis = TRUE,
  xlab = NA,
  xtlab = NULL,
  xlab.pos = 1,
  ylab = "auto",
 hidden.states.title = "Hidden states",
 yaxis = FALSE,
 ylab.pos = "auto",
  cex.lab = 1,
  cex.axis = 1,
  respect_void = TRUE,
)
```

Arguments

plots

type

tlim

sortv

Х Either a hidden Markov model object of class hmm or a state sequence object of class stslist (created with the TraMineR::seqdef()) function) or a list of state sequence objects.

hidden.paths Output from hidden_paths() function. Optional, if x is a hmm object or if type = "obs".

> What to plot. One of "obs" for observations (the default), "hidden.paths" for most probable paths of hidden states, or "both" for observations and hidden paths together.

> The type of the plot. Available types are "I" for sequence index plots and "d" for state distribution plots (the default). See TraMineR::seqplot() for details.

Indexes of the subjects to be plotted (the default is 0, i.e. all subjects are plotted).

For example, t = 1:10 plots the first ten subjects in data.

A sorting variable or a sort method (one of "from.start", "from.end", "mds.obs", or "mds.hidden") for type = "I". The value "mds.hidden" is only available when hidden paths are available. Options "mds.obs" and "mds.hidden" automatically arrange the sequences according to the scores of multidimensional

scaling (using stats::cmdscale()) for the observed data or hidden states paths. MDS scores are computed from distances/dissimilarities using a metric defined in argument dist.method. See TraMineR::plot.stslist() for more details on "from.start" and "from.end". sort.channel The number of the channel according to which the "from. start" or "from. end" sorting is done. Sorting according to hidden states is called with value 0. The default value is 1 (the first channel). dist.method The metric to be used for computing the distances of the sequences if multidimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See TraMineR::segdef() for more information on the metrics. with.missing Controls whether missing states are included in state distribution plots (type = "d"). The default is FALSE. missing.color Alternative color for representing missing values in the sequences. By default, this color is taken from the missing.color attribute of the sequence object. title Main title for the graphic. The default is NA: if title.n = TRUE, only the number of subjects is plotted. FALSE prints no title, even when title.n = TRUE. Controls whether the number of subjects (in the first channel) is printed in the title.n title of the plot. The default is TRUE: n is plotted if title is anything but FALSE. cex.title Expansion factor for setting the size of the font for the title. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater than 1 will increase the size. title.pos Controls the position of the main title of the plot. The default value is 1. Values greater than 1 will place the title higher. Defines if and where the legend for the states is plotted. The default value with.legend "auto" (equivalent to TRUE and "right") creates separate legends for each requested plot and positiones them on the right-hand side of the plot. Other possible values are "bottom", "right.combined", and "bottom.combined", of which the last two create a combined legend in the selected position. FALSE prints no legend. ncol.legend (A vector of) the number of columns for the legend(s). The default "auto" determines number of columns depending on the position of the legend. with.missing.legend If set to "auto" (the default), a legend for the missing state is added automatically if one or more of the sequences in the data/channel contains missing states and type = "I". If type = "d" missing states are omitted from the legends unless with.missing = TRUE. With the value TRUE a legend for the missing state is added in any case; equivalently FALSE omits the legend for the missing state. Sets the proportion of the graphic area used for plotting the legend when with.legend legend.prop is not FALSE. The default value is 0.3. Takes values from 0 to 1. cex.legend Expansion factor for setting the size of the font for the labels in the legend. The default value is 1. Values lesser than 1 will reduce the size of the font, values

greater than 1 will increase the size.

hidden.states.colors

A vector of colors assigned to hidden states. The default value "auto" uses the colors assigned to the stslist object (created with TraMineR::seqdef()) if hidden.paths is given; otherwise colors from colorpalette() are automatically used.

hidden.states.labels

xaxis

ylab

Labels for the hidden states. The default value "auto" uses the names provided in x\$state_names if x is an hmm object; otherwise the number of the hidden

Controls whether an x-axis is plotted below the plot at the bottom. The default value is TRUE.

xlab An optional label for the x-axis. If set to NA, no label is drawn.

xtlab Optional labels for the x-axis tick labels. If unspecified, the column names of the segdata sequence object are used (see TraMineR::segdef()).

Controls the position of the x-axis label. The default value is 1. Values greater

xlab.pos than 1 will place the label further away from the plot.

> Labels for the channels shown as labels for y-axes. A vector of names for each channel (observations). The default value "auto" uses the names provided in x\$channel_names if x is an hmm object; otherwise the names of the list in x if given, or the number of the channel if names are not given. FALSE prints no

labels.

hidden.states.title

Optional label for the hidden state plot (in the y-axis). The default is "Hidden states".

Controls whether or not to plot the y-axis. The default is FALSE. yaxis

ylab.pos Controls the position of the y axis labels (labels for channels and/or hidden states). Either "auto" or a numerical vector indicating how far away from the plots the titles are positioned. The default value "auto" positions all titles on

line 1. Shorter vectors are recycled.

cex.lab Expansion factor for setting the size of the font for the axis labels. The default value is 1. Values lesser than 1 will reduce the size of the font, values greater

than 1 will increase the size.

cex.axis Expansion factor for setting the size of the font for the x-axis tick labels. The

default value is 1. Values lesser than 1 will reduce the size of the font, values

greater than 1 will increase the size.

If TRUE (default), states at the time points corresponding to TraMineR's void in respect_void

the observed sequences are set to void in the hidden state sequences as well.

Other arguments to be passed on to TraMineR::seqplot().

Details

This function is deprecated and will be removed in future versions of seqHMM.

stacked_sequence_plot Stacked Sequence Plots of Multichannel Sequences and/or Most Probable Paths from Hidden Markov Models

Description

Function stacked_sequence_plot draws stacked sequence plots of sequence object created with the TraMineR::seqdef function or observations and/or most probable paths of model objects of seqHMM (e.g., hmm and mhmm).

Usage

```
stacked_sequence_plot(
    x,
    plots = "obs",
    type = "distribution",
    ids,
    sort_by = "none",
    sort_channel,
    dist_method = "OM",
    group = NULL,
    legend_position = "right",
    ...
)
```

Arguments

X	Either a hidden Markov model object of class hmm, mhmm, nhmm, or mnhmm, a sequence object of class stslist (created with the TraMineR::seqdef() function) or a list of stslist objects.
plots	What to plot. One of "obs" for observations (the default), "hidden_paths" for most probable paths of hidden states, or "both" for observations and hidden paths together. Latter two options are only possible for model objects.
type	The type of the plot. Available types are "index" for sequence index plots and "distribution" for state distribution plots (the default). See ggseqplot::ggseqiplot() and ggseqplot::ggseqdplot() for details.
ids	Indexes of the subjects to be plotted (the default is all). For example, 'ids = $c(1:10, 15)$ plots the first ten subjects and subject 15 in the data.
sort_by	A sorting variable or a sort method (one of "none, "start", "end", or "mds" for type = "index". Option "mds" arranges the sequences according to the scores of multidimensional scaling (using stats::cmdscale()). Default is "none", i.e., no sorting. Numeric vectors are passed to sortv argument of ggseqplot::ggseqiplot().
sort_channel	Name of the channel which should be used for the sorting. Alternatively value "Hidden states" uses the hidden state sequences for sorting. Default is to sort

state_names 105

by the first channel in the data. If sort_by = "mds", all channels are used for defining the sorting.

dist_method

The metric to be used for computing the distances of the sequences if multidimensional scaling is used for sorting. One of "OM" (optimal matching, the default), "LCP" (longest common prefix), "RLCP" (reversed LCP, i.e. longest common suffix), "LCS" (longest common subsequence), "HAM" (Hamming distance), and "DHD" (dynamic Hamming distance). Transition rates are used for defining substitution costs if needed. See TraMineR::seqdef() for more information on the metrics.

group

Variable used for grouping the sequences in each channel, which is passed to ggseqplot::ggseqiplot() and ggseqplot::ggseqdplot(). By default, no grouping is done, except for mixture models where the grouping is based on most probable clusters (defined by the most probable hidden paths). Grouping by clusters can be overloaded by supplying variable for group or by setting group = NA.

legend_position

Position of legend for each channel, passed to legend.position argument of ggplot2::theme(). Either a vector of length 1, or of length matching the number of channels to be plotted.

Other arguments to ggseqplot::ggseqiplot() or ggseqplot::ggseqdplot().

Examples

```
p <- stacked_sequence_plot(
    mhmm_biofam,
    plots = "both",
    type = "d",
    legend_position = c("right", "right", "right", "none"))
library("ggplot2")
p & theme(plot.margin = unit(c(1, 1, 0, 2), "mm"))</pre>
```

state_names

Get State Names of Hidden Markov Model

Description

Get State Names of Hidden Markov Model Set State Names of Hidden Markov Model

```
state_names(object)
## S3 method for class 'hmm'
```

106 summary.mhmm

```
state_names(object)
## S3 method for class 'mhmm'
state_names(object)
## S3 method for class 'nhmm'
state_names(object)
## S3 method for class 'mnhmm'
state_names(object)
state_names(object) <- value</pre>
## S3 replacement method for class 'hmm'
state_names(object) <- value</pre>
## S3 replacement method for class 'mhmm'
state_names(object) <- value</pre>
## S3 replacement method for class 'nhmm'
state_names(object) <- value</pre>
## S3 replacement method for class 'mnhmm'
state_names(object) <- value</pre>
```

Arguments

object An object of class hmm, mhmm, nhmm, or mnhmm.

value A character vector containing the new state names, or a list of such vectors in

case of mixture models.

Value

A character vector containing the state names, or a list of such vectors in case of mixture models. The original object with updated state names.

summary.mhmm

Summary method for mixture hidden Markov models

Description

Function summary.mhmm gives a summary of a mixture hidden Markov model.

```
## S3 method for class 'mhmm'
summary(object, parameters = FALSE, conditional_se = TRUE, ...)
```

summary.mhmm 107

Arguments

object Mixture hidden Markov model of class mhmm.

parameters Whether or not to return transition, emission, and initial probabilities. FALSE by

default.

conditional_se Return conditional standard errors of coefficients. See vcov.mhmm() for details.

TRUE by default.

... Further arguments to vcov.mhmm().

Details

The summary.mhmm function computes features from a mixture hidden Markov model and stores them as a list. A print method prints summaries of these: log-likelihood and BIC, coefficients and standard errors of covariates, means of prior cluster probabilities, and information on most probable clusters.

Value

· transition_probs

Transition probabilities. Only returned if parameters = TRUE.

emission probs

Emission probabilities. Only returned if parameters = TRUE.

• initial_probs

Initial state probabilities. Only returned if parameters = TRUE.

logLik

Log-likelihood.

• BIC

Bayesian information criterion.

• most_probable_cluster

The most probable cluster according to posterior probabilities.

· coefficients

Coefficients of covariates.

vcov

Variance-covariance matrix of coefficients.

• prior_cluster_probabilities

Prior cluster probabilities (mixing proportions) given the covariates.

• posterior_cluster_probabilities

Posterior cluster membership probabilities.

· classification table

Cluster probabilities (columns) by the most probable cluster (rows).

See Also

build_mhmm() and fit_model() for building and fitting mixture hidden Markov models; and mhmm_biofam() for information on the model used in examples.

108 trim_model

Examples

```
# Loading mixture hidden Markov model (mhmm object)
# of the biofam data
data("mhmm_biofam")
# Model summary
summary(mhmm_biofam)
```

summary.mnhmm

Summary method for mixture non-homogenous hidden Markov models

Description

Summary method for mixture non-homogenous hidden Markov models

Usage

```
## S3 method for class 'mnhmm'
summary(object, ...)
```

Arguments

object Non-homogeneous hidden Markov model of class mnhmm.
... Ignored

trim_model

Trim Small Probabilities of Hidden Markov Model

Description

Function trim_model tries to set small insignificant probabilities to zero without decreasing the likelihood.

```
trim_model(
  model,
  maxit = 0,
  return_loglik = FALSE,
  zerotol = 1e-08,
  verbose = TRUE,
  ...
)
```

update.nhmm 109

Arguments

model	Model of class hmm or mhmm for which trimming is performed.
maxit	Number of iterations. After zeroing small values, the model is refitted, and this is repeated until there is nothing to trim or maxit iterations are done.
return_loglik	Return the log-likelihood of the trimmed model together with the model object. The default is FALSE.
zerotol	Values smaller than this are trimmed to zero.
verbose	Print results of trimming. The default is TRUE.
• • •	Further parameters passed on to fit_model().

See Also

build_hmm() and fit_model() for building and fitting hidden Markov models; and hmm_biofam() for information on the model used in the example.

Examples

```
data("hmm_biofam")
# Testing if changing parameter values smaller than 1e-03 to zero
# leads to improved log-likelihood.
hmm_trim <- trim_model(hmm_biofam, zerotol = 1e-03, maxit = 10)</pre>
```

update.nhmm

Update Covariate Values of NHMM

Description

This function can be used to replace original covariate values of NHMMs. The responses, model formulae and estimated coefficients are not altered.

Usage

```
## S3 method for class 'nhmm'
update(object, newdata, ...)
## S3 method for class 'mnhmm'
update(object, newdata, ...)
```

Arguments

object An object of class nhmm or mnhmm.

newdata A data frame containing the new covariate values.

.. Ignored.

110 vcov.mhmm

vcov.mhmm	Variance-Covariance Matrix for Coefficients of Covariates of Mixture Hidden Markov Model

Description

Returns the asymptotic covariances matrix of maximum likelihood estimates of the coefficients corresponding to the explanatory variables of the model.

Usage

```
## S3 method for class 'mhmm'
vcov(object, conditional = TRUE, threads = 1, log_space = TRUE, ...)
```

Arguments

object Object of class mhmm.

conditional If TRUE (default), the standard errors are computed conditional on other model

parameters. See details.

threads Number of threads to use in parallel computing. Default is 1.

log_space Make computations using log-space instead of scaling for greater numerical sta-

bility at cost of decreased computational performance. Default is TRUE.

... Additional arguments to function jacobian of numDeriv package.

Details

The conditional standard errors are computed using analytical formulas by assuming that the coefficient estimates are not correlated with other model parameter estimates (or that the other parameters are assumed to be fixed). This often underestimates the true standard errors, but is substantially faster approach for preliminary analysis. The non-conditional standard errors are based on the numerical approximation of the full Hessian of the coefficients and the model parameters corresponding to nonzero probabilities. Computing the non-conditional standard errors can be slow for large models as the Jacobian of analytical gradients is computed using finite difference approximation.

Alternatively, by using the non-homogeneous model via estimate_mnhmm you can compute the standard errors of the coefficients using the bootstrap method.

Value

Matrix containing the variance-covariance matrix of coefficients.

Index

* datasets biofam3c, 4 colorpalette, 28 fanhmm_leaves, 35 hmm_biofam, 55 hmm_mvad, 57 leaves, 58 mhmm_biofam, 64	<pre>fanhmm_leaves, 35 fit_model, 36 fit_model(), 9, 13, 18, 25, 57, 58, 61, 67, 69,</pre>
mhmm_mvad, 67 biofam3c, 4 biofam3c(), 57, 67	get_emission_probs, 49 get_initial_probs, 50 get_marginals, 51
<pre>bootstrap_coefs, 6 build_hmm, 7 build_hmm(), 40, 57, 58, 61, 75, 77, 88, 90,</pre>	<pre>get_transition_probs, 52 ggplot2::theme(), 105 ggseqplot::ggseqdplot(), 104, 105 ggseqplot::ggseqiplot(), 54, 104, 105 gridplot, 52 gridplot(), 84, 97</pre>
build_mhmm, 15 build_mhmm(), 40, 67, 69, 73, 80, 82, 89, 92, 107 build_mm, 21 build_mm(), 21, 22, 40, 75 build_mmm, 23 build_mmm(), 23, 40, 80	hidden_paths, 54 hidden_paths(), 69, 71, 73, 98, 101 hmm_biofam, 54, 55 hmm_biofam(), 61, 77, 109 hmm_mvad, 57 hmm_mvad(), 77
<pre>cluster_names, 26 cluster_names<-, 27 coef.mnhmm (coef.nhmm), 27</pre>	<pre>igraph::igraph.plotting(), 75, 81 igraph::layout_(), 75, 81 igraph::plot.igraph(), 76, 77, 82</pre>
coef.nhmm, 27 colorpalette, 28 colorpalette(), 72, 73, 84, 99, 103 data_to_stslist, 29	<pre>leaves, 58 levels(), 94, 96 logLik.hmm, 59 logLik.mhmm (logLik.hmm), 59 logLik.mnhmm (logLik.nhmm), 60</pre>
data_to_stslist(),96	logLik.nhmm, 60
estimate_mnhmm, 29 estimate_mnhmm(), 6 , 95 estimate_nhmm, 32 estimate_nhmm(), 6 , 29 , 31 , 94 , 96	mc_to_sc, 61 mc_to_sc(), 62, 75, 77, 80 mc_to_sc_data, 62 menu(), 71

INDEX

	simulata uhum 05
mhmm_biofam, 64	simulate_nhmm, 95
mhmm_biofam(), 82, 89, 107	simulate_transition_probs
mhmm_mvad, 67	(simulate_initial_probs), 90
mhmm_mvad(), 82	<pre>simulate_transition_probs(), 8</pre>
most_probable_cluster, 69	sort_sequences, 96
mssplot, 70	ssp, 97
	ssp(), 53, 83, 84
nloptr::nloptr(), 31, 34, 36–38	ssplot, 100
nobs.hmm, 73	ssplot(), 84
nobs.mhmm (nobs.hmm), 73	stacked_sequence_plot, 62, 104
nobs.mnhmm (nobs.hmm), 73	stacked_sequence_plot(), 54, 89, 90, 100
nobs.nhmm (nobs.hmm), 73	state_names, 105
	state_names<- (state_names), 105
par(), 75, 81	stats::cmdscale(), 71, 98, 102, 104
plot.hmm, 74	stats::rnorm(), 37
plot.hmm(), 9, 23, 40	stslist_to_data(data_to_stslist), 29
plot.mhmm, 79	summary.mhmm, 106
plot.mhmm(), 13, 18, 25, 40, 73	summary.mhmm(), 13, 18, 25, 40
plot.ssp, 83	summary.mnhmm, 108
plot.ssp(), 97	Sammar y : mr r minn, 100
plot_colors, 84	TraMineR::biofam(), 4, 6, 55, 57, 64, 67
plot_colors(), 28	TraMineR::mvad(), 57, 58, 67, 69
posterior_cluster_probabilities, 85	TraMineR::plot.stslist(), 71, 98, 102
posterior_cluster_probabilities(), 49	TraMineR::seqdef, 104
posterior_probs, 85	TraMineR::seqdef(), 7, 12, 16, 22, 24, 29,
predict.mnhmm (predict.nhmm), 86	71, 72, 96, 98, 99, 101–105
predict.nhmm, 86	TraMineR::seqdist(), 97
	TraMineR::seqMD(), 97
print.hmm, 87	TraMineR::seqplot(), 71, 73, 76, 82, 98,
print.mhmm (print.hmm), 87	100, 101, 103
print.mnhmm (print.hmm), 87	trim_model, 108
print.nhmm (print.hmm), 87	ti ili_lilode1, 108
print.summary_mhmm (print.hmm), 87	update.mnhmm(update.nhmm), 109
<pre>progressr::with_progress(), 34</pre>	update.nhmm, 109
	utils::menu(), 80
return_msg, 88	utilsmenu(), 80
	vcov.mhmm, 110
separate_mhmm, 88	vcov.mhmm(), 107
separate_mhmm(), 13, 18, 25, 40	VCOV(), 107
seqdef(), 62, 90, 100	
seqHMM (seqHMM-package), 3	
seqHMM-deprecated, 89	
seqHMM-package, 3	
simulate_emission_probs	
(simulate_initial_probs), 90	
simulate_hmm, 89	
simulate_initial_probs, 90	
simulate_mhmm, 91	
$simulate_mhmm(), 90$	
simulate_mnhmm, 93	