Package 'tggd'

October 14, 2022

Type Pa	ackage
	he Standard Distribution Functions for the Truncated eneralised Gamma Distribution
Version	0.1.1
Date 20	015-12-03
Author	Aaron Robotham, Steven Murray
Maintai	iner Aaron Robotham <aaron.robotham@uwa.edu.au></aaron.robotham@uwa.edu.au>
_	tion Density, distribution function, quantile function and random generation for the Trunted Generalised Gamma Distribution (also in $log 10(x)$ and $ln(x)$ space).
License	GPL-3
LazyDa	ta TRUE
Depend	s R (>= 3.00), gsl
NeedsC	ompilation no
Reposit	ory CRAN
Date/Pu	ablication 2015-12-03 13:05:16
R top	oics documented:
	tggd 1 tggd_ln 3 tggd_log 5
Index	8
tggd	The Truncated Generalised Gamma Distribution

Density, distribution function, quantile function and random generation for the Truncated Gener-

Description

alised Gamma Distribution in linear space.

2 tggd

Usage

```
dtggd(x, scale=1e14, a=-1, b=1, xmin=1e10, log = FALSE)
ptggd(q, scale=1e14, a=-1, b=1, xmin=1e10, lower.tail = TRUE, log.p = FALSE)
qtggd(p, scale=1e14, a=-1, b=1, xmin=1e10, lower.tail = TRUE, log.p = FALSE,
res.approx=1e-2)
rtggd(n, scale=1e14, a=-1, b=1, xmin=1e10, res.approx=1e-2)
```

Arguments

x,q	Vector of quantiles.
р	Vector of probabilities.
n	Number of observations. If $length(n) > 1$, the length is taken to be the number required.
scale	Vector of values for scale, which controls the transition regime between the power law slope and the exponential cut-off of the TGGD. This is analogous to the scale parameter for the standard Gamma distribution (see GammaDist).
а	Vector of values for a, which controls the power law slope of the TGGD.
b	Vector of values for b, which controls the exponential cutoff of the TGGD.
xmin	Vector of values for xmin, which controls the lower limit at which to trancate the TGGD.
res.approx	The resolution used to create the inverted CDF required to map probability integrals back onto quantiles.
log, log.p	Logical; if TRUE, probabilities/densities p are returned as log(p).
lower.tail	Logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.

Details

This distribution function is described in detail in Murray, Robotham and Power 2016. The PDF is given by:

$$f(x;a,b,s,m) = \frac{b(\frac{x}{s})^a \exp(-(\frac{x}{s})^b)}{s\Gamma(\frac{a+1}{b},(\frac{m}{s})^b)}$$

where, from the argument list above, we use x=x, a=a, b=b, s=scale and m=xmin. Γ is the upper incomplete Gamma function as defined by the gsl gamma_inc function, using the same argument ordering, where gamma_inc(a,x)==pgamma(x,a,lower=FALSE)*gamma(x) for a>0. gamma_inc is used because it allows for the computation of upper incomplete integrals in cases where a<=0.

Value

dtggd gives the density, ptggd gives the distribution function, qtggd gives the quantile function, and rtggd generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rtggd, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

tggd_ln 3

Author(s)

Aaron Robotham, Steven Murray

References

Murray, Robotham and Power (2016)

See Also

GammaDist regarding the Gamma distribution. RNG about random number generation in R. Distributions for other standard distributions.

Examples

```
r <- rtggd(100,a=-2)
hist(log10(r))

##Ideally the output below should equal 1, in practice it will be very close:
qtggd(ptggd(r))/r

#These should be the same:
integrate(dtggd,lower=1e10,upper=1e11,a=-1.5,b=0.7,xmin=1e10)
ptggd(1e11,a=-1.5,b=0.7,xmin=1e10)

#This should be very close to 1 (for a true PDF):
ptggd(1e18,a=-1.5,b=0.7,xmin=1e10)

#To show the link to the log10 (called log) and ln variants (and the slight inaccuracies)
#these outputs should be a sequence from 0 to 1 (by=0.1):
ptggd(10^qtggd_log(seq(0,1,by=0.1)))
ptggd(exp(qtggd_ln(seq(0,1,by=0.1))))</pre>
```

tggd_ln

The Truncated Generalised Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Truncated Generalised Gamma Distribution in natural log (ln) space. Specifically, if $\exp(x)$ is drawn from a TGGD distribution (in real space), these functions give the distribution of x, using the same parameter values.

Usage

```
dtggd_ln(x, scale=log(1e14), a=-1, b=1, xmin=log(1e10), log = FALSE)
ptggd_ln(q, scale=log(1e14), a=-1, b=1, xmin=log(1e10), lower.tail = TRUE, log.p = FALSE)
qtggd_ln(p, scale=log(1e14), a=-1, b=1, xmin=log(1e10), lower.tail = TRUE, log.p = FALSE,
res.approx=1e-2)
rtggd_ln(n, scale=log(1e14), a=-1, b=1, xmin=log(1e10), res.approx=1e-2)
```

4 tggd_ln

Arguments

x,q	Vector of quantiles.
p	Vector of probabilities.
n	Number of observations. If $length(n) > 1$, the length is taken to be the number required.
scale	Vector of values for scale, which controls the transition regime between the power law slope and the exponential cut-off of the TGGD. This is analogous to the scale parameter for the standard Gamma distribution (see GammaDist).
а	Vector of values for a, which controls the power law slope of the TGGD.
b	Vector of values for b, which controls the exponential cutoff of the TGGD.
xmin	Vector of values for xmin, which controls the lower limit at which to trancate the TGGD.
res.approx	The resolution used to create the inverted CDF required to map probability integrals back onto quantiles.
log, log.p	Logical; if TRUE, probabilities/densities p are returned as log(p).
lower.tail	Logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.

Details

This distribution function is described in detail in Murray, Robotham and Power 2016.

$$f(x; a, b, s, m) = \frac{b \exp((x - s)^{(a+1)}) \exp(-\exp(b(x - s)))}{s\Gamma(\frac{a+1}{b}, \exp(m - s)^b)}$$

where, from the argument list above, we use x=x, a=a, b=b, s=scale and m=xmin. Γ is the upper incomplete Gamma function as defined by the gsl gamma_inc function, using the same argument ordering, where gamma_inc(a,x)==pgamma(x,a,lower=FALSE)*gamma(x) for a>0. gamma_inc is used because it allows for the computation of upper incomplete integrals in cases where a<=0.

Value

dtggd_ln gives the density, ptggd_ln gives the distribution function, qtggd_ln gives the quantile function, and rtggd_ln generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rtggd_ln, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Note

The intended application of the log-space version of the TGGD is to provide the correct distribution when variates are drawn from a real-space TGGD, but there are priors on their uncertainty which operate in logspace (eg. a lognormal distribution). The likelihood of a given set of parameters is incorrect in such a case if the real-space version is used without an adjustment to the Jacobian.

tggd_log 5

Author(s)

Aaron Robotham, Steven Murray

References

Murray, Robotham and Power (2016)

See Also

GammaDist regarding the Gamma distribution. RNG about random number generation in R. Distributions for other standard distributions.

Examples

```
r <- rtggd_ln(100,a=-2)
hist(r)

##Ideally the output below should equal 0, in practice it will be very close:
qtggd_ln(ptggd_ln(r))-r

#These should be the same:
integrate(dtggd_ln,lower=log(1e10),upper=log(1e11),a=-1.5,b=0.7,xmin=log(1e10))
ptggd_ln(log(1e11),a=-1.5,b=0.7,xmin=log(1e10))

#This should be very close to 1 (for a true PDF):
ptggd_ln(log(1e18),a=-1.5,b=0.7,xmin=log(1e10))

#To show the link to the linear and log10 (called log) variants (and the slight #inaccuracies) these outputs should be a sequence from 0 to 1 (by=0.1):
ptggd_log(log10(qtggd(seq(0,1,by=0.1))))
ptggd_log(qtggd_ln(seq(0,1,by=0.1))/log(10))</pre>
```

tggd_log

The Truncated Generalised Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Truncated Generalised Gamma Distribution in log base 10 (log10) space. Specifically, if 10^x is drawn from a TGGD distribution (in real space), these functions give the distribution of x, using the same parameter values.

Usage

```
dtggd_log(x, scale=14, a=-1, b=1, xmin=10, log = FALSE)
ptggd_log(q, scale=14, a=-1, b=1, xmin=10, lower.tail = TRUE, log.p = FALSE)
qtggd_log(p, scale=14, a=-1, b=1, xmin=10, lower.tail = TRUE, log.p = FALSE,
res.approx=1e-2)
rtggd_log(n, scale=14, a=-1, b=1, xmin=10, res.approx=1e-2)
```

6 tggd_log

Arguments

x,q	Vector of quantiles.
p	Vector of probabilities.
n	Number of observations. If $length(n) > 1$, the length is taken to be the number required.
scale	Vector of values for scale, which controls the transition regime between the power law slope and the exponential cut-off of the TGGD. This is analogous to the scale parameter for the standard Gamma distribution (see GammaDist).
a	Vector of values for a, which controls the power law slope of the TGGD.
b	Vector of values for b, which controls the exponential cutoff of the TGGD.
xmin	Vector of values for xmin, which controls the lower limit at which to trancate the TGGD.
res.approx	The resolution used to create the inverted CDF required to map probability integrals back onto quantiles.
log, log.p	Logical; if TRUE, probabilities/densities p are returned as log(p).
lower.tail	Logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.

Details

This distribution function is described in detail in Murray, Robotham and Power 2016. The PDF is given by:

$$f(x;a,b,s,m) = \frac{\ln(10).b(10^{(x-s)})^{(a+1)} \exp(-10^{(b(x-s))})}{s\Gamma(\frac{a+1}{b},(10^{(m-s)})^b)}$$

where, from the argument list above, we use x=x, a=a, b=b, s=scale and m=xmin. Γ is the upper incomplete Gamma function as defined by the gsl gamma_inc function, using the same argument ordering, where gamma_inc(a,x)==pgamma(x,a,lower=FALSE)*gamma(x) for a>0. gamma_inc is used because it allows for the computation of upper incomplete integrals in cases where a<=0.

Value

dtggd_log gives the density, ptggd_log gives the distribution function, qtggd_log gives the quantile function, and rtggd_log generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

The length of the result is determined by n for rtggd_log, and is the maximum of the lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements of the logical arguments are used.

Note

The intended application of the log-space version of the TGGD is to provide the correct distribution when variates are drawn from a real-space TGGD, but there are priors on their uncertainty which operate in logspace (eg. a lognormal distribution). The likelihood of a given set of parameters is incorrect in such a case if the real-space version is used without an adjustment to the Jacobian.

tggd_log 7

Author(s)

Aaron Robotham, Steven Murray

References

Murray, Robotham and Power (2016)

See Also

GammaDist regarding the Gamma distribution. RNG about random number generation in R. Distributions for other standard distributions.

Examples

```
r <- rtggd_log(100,a=-2)
hist(r)

##Ideally the output below should equal 0, in practice it will be very close:
qtggd_log(ptggd_log(r))-r

#These should be the same:
integrate(dtggd_log,lower=10,upper=11,a=-1.5,b=0.7,xmin=10)
ptggd_log(11,a=-1.5,b=0.7,xmin=10)

#This should be very close to 1 (for a true PDF):
ptggd_log(18,a=-1.5,b=0.7,xmin=10)

#To show the link to the linear and ln variants (and the slight inaccuracies) these
#outputs should be a sequence from 0 to 1 (by=0.1):
ptggd_ln(log(qtggd(seq(0,1,by=0.1))))
ptggd_ln(qtggd_log(seq(0,1,by=0.1))*log(10))</pre>
```

Index

```
* ~distribution
    tggd, 1
    tggd_ln, 3
    tggd_log, 5
* ~tggd_ln
    tggd_ln, 3
* ~tggd_log
    tggd_log, 5
* ~tggd
    tggd, 1
Distributions, 3, 5, 7
dtggd (tggd), 1
dtggd_ln(tggd_ln), 3
dtggd_log (tggd_log), 5
gamma_inc, 2, 4, 6
GammaDist, 2-7
ptggd (tggd), 1
ptggd_ln(tggd_ln), 3
ptggd_log (tggd_log), 5
qtggd (tggd), 1
qtggd_ln(tggd_ln), 3
qtggd_log(tggd_log), 5
RNG, 3, 5, 7
rtggd (tggd), 1
rtggd_ln (tggd_ln), 3
\verb|rtggd_log|(tggd_log), 5|
tggd, 1
tggd_ln, 3
tggd_log, 5
```