R Language Definition

Version 3.4.1 (2017-06-30) DRAFT

R Core Team

This manual is for R, version 3.4.1 (2017-06-30).
Copyright (© 2000-2016 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 Introduction.................., 1
2 0Objects. ... 2
2.1 BasiC by PeS .o 3
2.1 1 VeCtors. « oo 3
2.1.2 LSS .ot 3
2.1.3 Language objects........ ..o 4
2.1.3.1 Symbol objects 4

2.1.4 Expression objects.t 4
2.1.5 Function objects ... 4
2.1.6 NULL. ..o 5
2.1.7 Builtin objects and special forms 5
2.1.8 Promise objects 5
2.1.9 Dot-dot-doto 6
2.1.10 Environments......... ... 6
2.1.11 Pairlist objects. ... 6
2.1.12 The “Any” tyPe. vt 7
2.2 AtrIbUbes. ..o 7
2.2 1 NaAINES . oottt ettt e 7
2.2.2 DImMensions.uuiit i e 7
2.2.3 DIMNamesttt 8
2.2.4 ClaSSES . v vttt 8
2.2.5 Time series attributeso 8
2.2.6 Copying of attributes......... i i 8
2.3 Special compound objectS 8
2.3. 1 Factors. ... e 8
2.3.2 Data frame objectso 9

3 Evaluation of expressions..................... 10
3.1 Simple evaluationo i 10
3.1.1 Constantsoouuiiii i 10
3.1.2 Symbol looKUpo 10
3.1.3 Function calls. ..., 11
314 Operatorsot 11
3.2 Control structures.ot e 13
5 30 PP 13
3.2.2 LOODING . . vt et 14
3.2.3 repeat. .. 15
3.2.4 while. ..o 15
.25 for . 15
3.2.6 switch. ..o 15

3.3 Elementary arithmetic operations 16

3.3.1 Recycling rules..........ooiiiiiiii 16
3.3.2 Propagation of names i 16
3.3.3 Dimensional attributes................... 17
334 NAhandlingo 17
34 Indexingooi i 17
3.4.1 Indexing by vectorscoouiiiiiiiiiiiiiiiiia... 18
3.4.2 Indexing matrices and arrays.............c..ooiiiiiiii.n. 19
3.4.3 Indexing other structures................ 20
3.4.4 Subset assignment......... ... i i 20
3.5 Scopeof variables........ ... 22
3.5.1 Global environment, 22
3.5.2 Lexical environment.......... i 22
3.5.3 Thecall stack...... ..o 23
3.5.4 Search path...... 24
Functions.......... 25
4.1 Writing functions i 25
4.1.1 Syntax and examples. ... 25
4.1.2 Arguments...........iiii i 25
4.2 Functions as objects. ... 26
4.3 Evaluation....... ... i 26
4.3.1 Evaluation environment 26
4.3.2 Argument matching........... i 26
4.3.3 Argument evaluation............. ...l 26
.34 SCOPE « oottt e 28
Object-oriented programming................ 30
5.1 Definition.o 30
5.2 Inheritance o 32
5.3 Method dispatching.......... o i 32
5.4 UseMethodo i e 32
5.5 NextMethodo i 34
5.6 Group methodsc.oiiiiiiiii 34
5.7 Writing methods 35
Computing on the language 36
6.1 Direct manipulation of language objects....................... 36
6.2 Substitutions............co i 38
6.3 More on evaluation............ .o i i 40
6.4 FEvaluation of expression objects............o ... 40
6.5 Manipulation of function calls..............., 41
6.6 Manipulation of functions............. L. 43
System and foreign language interfaces...... 45
7.1 Operating SySteIm ACCESSvvuttt et 45
7.2 Foreign language interfaces............ i, 45

7.3 Internal and .Primitive 46

ii

8 Exception handling............................ 47
G 1 70 o 47
8.2 WATIUIIZ . . .ttt ettt ettt et e e 47
8.3 OMeXib. .o 47
8.4 Error OPtiONSvtt e 47

9 Debugging 49
LS 021 49
9.2 debug/undebug 50
0.3 trace/Untraceouiuinin i 50
9.4 traceback 51

10 Parser.......... 52
10.1 The parsing ProCessS.ottt 52

10.1.1 Modes of parsing..........oouuiiiiiiii i 52
10.1.2 Internal representation............. il 52
10.1.3 Deparsing.........oouuuui i 52
10.2 Commentsooiiii e 53
10.3 TOKENS. .ottt 53
10.3.1 ConstantsS.ovviiii i e 53
10.3.2 Identifiers. ... 55
10.3.3 Reserved words ...t 55
10.3.4 Special operators...........ooiiiiiiii e 55
10.3.5 Separatorsuuit e 55
10.3.6 Operator toKens.o 56
10.3.7 Groupingvvvv e 56
10.3.8 Indexing tokens.......... ... 56
104 EXPIreSSiONSottt ettt e 56
10.4.1 Function calls....... .o 56
10.4.2 Infix and prefix operators ..., 57
10.4.3 Index constructions, 58
10.4.4 Compound eXpressionsc.o.eeevrieeennneeennnnn.. 58
10.4.5 Flow control elements...............oviiiiiiiiiiinn... 58
10.4.6 Function definitions.............oooiiiiiiii... 58
10.5 DIrectives.ot 59
Function and Variable Index 60
Concept Index..............iiiiiiiii. 62

Appendix A References 63

iii

Chapter 1: Introduction 1

1 Introduction

R is a system for statistical computation and graphics. It provides, among other things,
a programming language, high level graphics, interfaces to other languages and debugging
facilities. This manual details and defines the R language.

The R language is a dialect of S which was designed in the 1980s and has been in wide-
spread use in the statistical community since. Its principal designer, John M. Chambers,
was awarded the 1998 ACM Software Systems Award for S.

The language syntax has a superficial similarity with C, but the semantics are of the
FPL (functional programming language) variety with stronger affinities with Lisp and APL.
In particular, it allows “computing on the language”, which in turn makes it possible to
write functions that take expressions as input, something that is often useful for statistical
modeling and graphics.

It is possible to get quite far using R interactively, executing simple expressions from
the command line. Some users may never need to go beyond that level, others will want to
write their own functions either in an ad hoc fashion to systematize repetitive work or with
the perspective of writing add-on packages for new functionality.

The purpose of this manual is to document the language per se. That is, the objects that
it works on, and the details of the expression evaluation process, which are useful to know
when programming R functions. Major subsystems for specific tasks, such as graphics, are
only briefly described in this manual and will be documented separately.

Although much of the text will equally apply to S, there are also some substantial
differences, and in order not to confuse the issue we shall concentrate on describing R.

The design of the language contains a number of fine points and common pitfalls which
may surprise the user. Most of these are due to consistency considerations at a deeper level,
as we shall explain. There are also a number of useful shortcuts and idioms, which allow
the user to express quite complicated operations succinctly. Many of these become natural
once one is familiar with the underlying concepts. In some cases, there are multiple ways of
performing a task, but some of the techniques will rely on the language implementation, and
others work at a higher level of abstraction. In such cases we shall indicate the preferred
usage.

Some familiarity with R is assumed. This is not an introduction to R but rather a
programmers’ reference manual. Other manuals provide complementary information: in
particular Section “Preface” in An Introduction to R provides an introduction to R and
Section “System and foreign language interfaces” in Writing R Extensions details how to
extend R using compiled code.

Chapter 2: Objects 2

2 Objects

In every computer language variables provide a means of accessing the data stored in mem-
ory. R does not provide direct access to the computer’s memory but rather provides a
number of specialized data structures we will refer to as objects. These objects are referred
to through symbols or variables. In R, however, the symbols are themselves objects and
can be manipulated in the same way as any other object. This is different from many other
languages and has wide ranging effects.

In this chapter we provide preliminary descriptions of the various data structures pro-
vided in R. More detailed discussions of many of them will be found in the subsequent
chapters. The R specific function typeof returns the type of an R object. Note that in
the C code underlying R, all objects are pointers to a structure with typedef SEXPREC;
the different R data types are represented in C by SEXPTYPE, which determines how the
information in the various parts of the structure is used.

The following table describes the possible values returned by typeof and what they are.

"NULL" NULL

"symbol" a variable name

"pairlist" a pairlist object (mainly internal)

"closure" a function

"environment" an environment

"promise" an object used to implement lazy evaluation

"language" an R language construct

"special™ an internal function that does not evaluate its arguments

"builtin" an internal function that evaluates its arguments

"char" a ‘scalar’ string object (internal only) ***

"logical" a vector containing logical values

"integer" a vector containing integer values

"double" a vector containing real values

"complex" a vector containing complex values

"character" a vector containing character values

mLLn the special variable length argument ***

"any" a special type that matches all types: there are no objects of
this type

"expression" an expression object

"list" a list

"bytecode" byte code (internal only) ***

"externalptr" an external pointer object

"weakref" a weak reference object

"raw" a vector containing bytes

"s4n an S4 object which is not a simple object

Users cannot easily get hold of objects of types marked with a “***’,

Function mode gives information about the mode of an object in the sense of Becker,
Chambers & Wilks (1988), and is more compatible with other implementations of the S
language. Finally, the function storage.mode returns the storage mode of its argument
in the sense of Becker et al. (1988). It is generally used when calling functions written in
another language, such as C or FORTRAN, to ensure that R objects have the data type

Chapter 2: Objects 3

expected by the routine being called. (In the S language, vectors with integer or real values
are both of mode "numeric", so their storage modes need to be distinguished.)

> x <-1:3

> typeof (x)

[1] "integer"

> mode (x)

[1] "numeric"

> storage.mode(x)
[1] "integer"

R objects are often coerced to different types during computations. There are also many
functions available to perform explicit coercion. When programming in the R language the
type of an object generally doesn’t affect the computations, however, when dealing with
foreign languages or the operating system it is often necessary to ensure that an object is
of the correct type.

2.1 Basic types

2.1.1 Vectors

Vectors can be thought of as contiguous cells containing data. Cells are accessed through
indexing operations such as x[5]. More details are given in Section 3.4 [Indexing], page 17.

R has six basic (‘atomic’) vector types: logical, integer, real, complex, string (or charac-
ter) and raw. The modes and storage modes for the different vector types are listed in the
following table.

typeof mode storage.mode
logical logical logical
integer numeric integer
double numeric double
complex complex complex
character character character
raw raw raw

Single numbers, such as 4.2, and strings, such as "four point two" are still vectors, of
length 1; there are no more basic types. Vectors with length zero are possible (and useful).

String vectors have mode and storage mode "character". A single element of a character
vector is often referred to as a character string.

2.1.2 Lists

Lists (“generic vectors”) are another kind of data storage. Lists have elements, each of
which can contain any type of R object, i.e. the elements of a list do not have to be of the
same type. List elements are accessed through three different indexing operations. These
are explained in detail in Section 3.4 [Indexing|, page 17.

Lists are vectors, and the basic vector types are referred to as atomic vectors where it
is necessary to exclude lists.

Chapter 2: Objects 4

2.1.3 Language objects

There are three types of objects that constitute the R language. They are calls, expressions,
and names. Since R has objects of type "expression" we will try to avoid the use of the
word expression in other contexts. In particular syntactically correct expressions will be
referred to as statements.

These objects have modes "call", "expression", and "name", respectively.

They can be created directly from expressions using the quote mechanism and converted
to and from lists by the as.list and as.call functions. Components of the parse tree can
be extracted using the standard indexing operations.

2.1.3.1 Symbol objects

Symbols refer to R objects. The name of any R object is usually a symbol. Symbols can
be created through the functions as.name and quote.

Symbols have mode "name", storage mode "symbol", and type "symbol". They can be
coerced to and from character strings using as.character and as.name. They naturally
appear as atoms of parsed expressions, try e.g. as.list(quote(x + y)).

2.1.4 Expression objects

In R one can have objects of type "expression". An ezrpression contains one or more
statements. A statement is a syntactically correct collection of tokens. Expression objects
are special language objects which contain parsed but unevaluated R statements. The main
difference is that an expression object can contain several such expressions. Another more
subtle difference is that objects of type "expression" are only evaluated when explicitly
passed to eval, whereas other language objects may get evaluated in some unexpected
cases.

An expression object behaves much like a list and its components should be accessed in
the same way as the components of a list.

2.1.5 Function objects

In R functions are objects and can be manipulated in much the same way as any other
object. Functions (or more precisely, function closures) have three basic components: a
formal argument list, a body and an environment. The argument list is a comma-separated
list of arguments. An argument can be a symbol, or a ‘symbol = default’ construct, or the

special argument ‘. .. . The second form of argument is used to specify a default value for
an argument. This value will be used if the function is called without any value specified for
that argument. The ‘...’ argument is special and can contain any number of arguments.

It is generally used if the number of arguments is unknown or in cases where the arguments
will be passed on to another function.

The body is a parsed R statement. It is usually a collection of statements in braces but
it can be a single statement, a symbol or even a constant.

A function’s environment is the environment that was active at the time that the function
was created. Any symbols bound in that environment are captured and available to the
function. This combination of the code of the function and the bindings in its environment
is called a ‘function closure’, a term from functional programming theory. In this document

Chapter 2: Objects 5

we generally use the term ‘function’, but use ‘closure’ to emphasize the importance of the
attached environment.

It is possible to extract and manipulate the three parts of a closure object using formals,
body, and environment constructs (all three can also be used on the left hand side of
assignments). The last of these can be used to remove unwanted environment capture.

When a function is called, a new environment (called the evaluation environment) is cre-
ated, whose enclosure (see Section 2.1.10 [Environment objects], page 6) is the environment

from the function closure. This new environment is initially populated with the unevaluated
arguments to the function; as evaluation proceeds, local variables are created within it.

There is also a facility for converting functions to and from list structures using as.list
and as.function. These have been included to provide compatibility with S and their use
is discouraged.

2.1.6 NULL

There is a special object called NULL. It is used whenever there is a need to indicate or
specify that an object is absent. It should not be confused with a vector or list of zero
length.

The NULL object has no type and no modifiable properties. There is only one NULL object
in R, to which all instances refer. To test for NULL use is.null. You cannot set attributes
on NULL.

2.1.7 Builtin objects and special forms

These two kinds of object contain the builtin functions of R, i.e., those that are displayed
as .Primitive in code listings (as well as those accessed via the .Internal function and
hence not user-visible as objects). The difference between the two lies in the argument
handling. Builtin functions have all their arguments evaluated and passed to the internal
function, in accordance with call-by-value, whereas special functions pass the unevaluated
arguments to the internal function.

From the R language, these objects are just another kind of function. The is.primitive
function can distinguish them from interpreted functions.

2.1.8 Promise objects

Promise objects are part of R’s lazy evaluation mechanism. They contain three slots: a
value, an expression, and an environment. When a function is called the arguments are
matched and then each of the formal arguments is bound to a promise. The expression
that was given for that formal argument and a pointer to the environment the function was
called from are stored in the promise.

Until that argument is accessed there is no wvalue associated with the promise. When
the argument is accessed, the stored expression is evaluated in the stored environment, and
the result is returned. The result is also saved by the promise. The substitute function
will extract the content of the expression slot. This allows the programmer to access either
the value or the expression associated with the promise.

Within the R language, promise objects are almost only seen implicitly: actual function
arguments are of this type. There is also a delayedAssign function that will make a promise

Chapter 2: Objects 6

out of an expression. There is generally no way in R code to check whether an object is a
promise or not, nor is there a way to use R code to determine the environment of a promise.

2.1.9 Dot-dot-dot

The ‘...” object type is stored as a type of pairlist. The components of ‘...’ can be
accessed in the usual pairlist manner from C code, but is not easily accessed as an object
in interpreted code. The object can be captured as a list, so for example in table one sees

)

args <- list(...)
...
for (a in args) {
.. ..
If a function has as a formal argument then any actual arguments that do not
match a formal argument are matched with ‘...’

4)

2.1.10 Environments

Environments can be thought of as consisting of two things. A frame, consisting of a set
of symbol-value pairs, and an enclosure, a pointer to an enclosing environment. When R
looks up the value for a symbol the frame is examined and if a matching symbol is found its
value will be returned. If not, the enclosing environment is then accessed and the process
repeated. Environments form a tree structure in which the enclosures play the role of
parents. The tree of environments is rooted in an empty environment, available through
emptyenv (), which has no parent. It is the direct parent of the environment of the base
package (available through the baseenv() function). Formerly baseenv() had the special
value NULL, but as from version 2.4.0, the use of NULL as an environment is defunct.

Environments are created implicitly by function calls, as described in Section 2.1.5 [Func-
tion objects|, page 4 and Section 3.5.2 [Lexical environment|, page 22. In this case the
environment contains the variables local to the function (including the arguments), and its
enclosure is the environment of the currently called function. Environments may also be
created directly by new.env. The frame content of an environment can be accessed and
manipulated by use of 1s, get and assign as well as eval and evalg.

The parent.env function may be used to access the enclosure of an environment.

Unlike most other R objects, environments are not copied when passed to functions
or used in assignments. Thus, if you assign the same environment to several symbols and
change one, the others will change too. In particular, assigning attributes to an environment
can lead to surprises.

2.1.11 Pairlist objects

Pairlist objects are similar to Lisp’s dotted-pair lists. They are used extensively in the
internals of R, but are rarely visible in interpreted code, although they are returned by
formals, and can be created by (e.g.) the pairlist function. A zero-length pairlist is
NULL, as would be expected in Lisp but in contrast to a zero-length list. Each such object
has three slots, a CAR value, a CDR value and a TAG value. The TAG value is a text string
and CAR and CDR usually represent, respectively, a list item (head) and the remainder
(tail) of the list with a NULL object as terminator (the CAR/CDR terminology is traditional
Lisp and originally referred to the address and decrement registers on an early 60’s IBM
computer).

Chapter 2: Objects 7

Pairlists are handled in the R language in exactly the same way as generic vectors
(“lists”). In particular, elements are accessed using the same [[]] syntax. The use of
pairlists is deprecated since generic vectors are usually more efficient to use. When an
internal pairlist is accessed from R it is generally (including when subsetted) converted to
a generic vector.

In a very few cases pairlists are user-visible: one is .Options.

2.1.12 The “Any” type

It is not really possible for an object to be of “Any” type, but it is nevertheless a valid
type value. It gets used in certain (rather rare) circumstances, e.g. as.vector(x, "any"),
indicating that type coercion should not be done.

2.2 Attributes

All objects except NULL can have one or more attributes attached to them. Attributes are
stored as a pairlist where all elements are named, but should be thought of as a set of
name=value pairs. A listing of the attributes can be obtained using attributes and set
by attributes<-, individual components are accessed using attr and attr<-.

Some attributes have special accessor functions (e.g. levels<- for factors) and these
should be used when available. In addition to hiding details of implementation they may per-
form additional operations. R attempts to intercept calls to attr<- and to attributes<-
that involve the special attributes and enforces the consistency checks.

Matrices and arrays are simply vectors with the attribute dim and optionally dimnames
attached to the vector.

Attributes are used to implement the class structure used in R. If an object has a class
attribute then that attribute will be examined during evaluation. The class structure in R
is described in detail in Chapter 5 [Object-oriented programming], page 30.

2.2.1 Names

A names attribute, when present, labels the individual elements of a vector or list. When
an object is printed the names attribute, when present, is used to label the elements. The
names attribute can also be used for indexing purposes, for example, quantile (x) ["25%"].

One may get and set the names using names and names<- constructions. The latter will
perform the necessary consistency checks to ensure that the names attribute has the proper
type and length.

Pairlists and one-dimensional arrays are treated specially. For pairlist objects, a
virtual names attribute is used; the names attribute is really constructed from the tags
of the list components. For one-dimensional arrays the names attribute really accesses
dimnames[[1]].

2.2.2 Dimensions

The dim attribute is used to implement arrays. The content of the array is stored in a
vector in column-major order and the dim attribute is a vector of integers specifying the
respective extents of the array. R ensures that the length of the vector is the product of
the lengths of the dimensions. The length of one or more dimensions may be zero.

Chapter 2: Objects 8

A vector is not the same as a one-dimensional array since the latter has a dim attribute
of length one, whereas the former has no dim attribute.

2.2.3 Dimnames

Arrays may name each dimension separately using the dimnames attribute which is a list of
character vectors. The dimnames list may itself have names which are then used for extent
headings when printing arrays.

2.2.4 Classes

R has an elaborate class system!, principally controlled via the class attribute. This
attribute is a character vector containing the list of classes that an object inherits from.
This forms the basis of the “generic methods” functionality in R.

This attribute can be accessed and manipulated virtually without restriction by users.
There is no checking that an object actually contains the components that class methods
expect. Thus, altering the class attribute should be done with caution, and when they are
available specific creation and coercion functions should be preferred.

2.2.5 Time series attributes

The tsp attribute is used to hold parameters of time series, start, end, and frequency. This
construction is mainly used to handle series with periodic substructure such as monthly or
quarterly data.

2.2.6 Copying of attributes

Whether attributes should be copied when an object is altered is a complex area, but there
are some general rules (Becker, Chambers & Wilks, 1988, pp. 144-6).

Scalar functions (those which operate element-by-element on a vector and whose output
is similar to the input) should preserve attributes (except perhaps class).

Binary operations normally copy most attributes from the longer argument (and if they
are of the same length from both, preferring the values on the first). Here ‘most’ means
all except the names, dim and dimnames which are set appropriately by the code for the
operator.

Subsetting (other than by an empty index) generally drops all attributes except names,
dim and dimnames which are reset as appropriate. On the other hand, subassignment
generally preserves attributes even if the length is changed. Coercion drops all attributes.

The default method for sorting drops all attributes except names, which are sorted along
with the object.

2.3 Special compound objects

2.3.1 Factors

Factors are used to describe items that can have a finite number of values (gender, social
class, etc.). A factor has a levels attribute and class "factor". Optionally, it may also

1 actually two, but this draft manual predates the methods package.

Chapter 2: Objects 9

contain a contrasts attribute which controls the parametrisation used when the factor is
used in a modeling functions.

A factor may be purely nominal or may have ordered categories. In the latter case, it
should be defined as such and have a class vector c("ordered"," factor").

Factors are currently implemented using an integer array to specify the actual levels and
a second array of names that are mapped to the integers. Rather unfortunately users often
make use of the implementation in order to make some calculations easier. This, however,
is an implementation issue and is not guaranteed to hold in all implementations of R.

2.3.2 Data frame objects

Data frames are the R structures which most closely mimic the SAS or SPSS data set, i.e.
a “cases by variables” matrix of data.

A data frame is a list of vectors, factors, and/or matrices all having the same length
(number of rows in the case of matrices). In addition, a data frame generally has a names
attribute labeling the variables and a row.names attribute for labeling the cases.

A data frame can contain a list that is the same length as the other components. The
list can contain elements of differing lengths thereby providing a data structure for ragged
arrays. However, as of this writing such arrays are not generally handled correctly.

Chapter 3: Evaluation of expressions 10

3 Evaluation of expressions

When a user types a command at the prompt (or when an expression is read from a file)
the first thing that happens to it is that the command is transformed by the parser into an
internal representation. The evaluator executes parsed R expressions and returns the value
of the expression. All expressions have a value. This is the core of the language.

This chapter describes the basic mechanisms of the evaluator, but avoids discussion of
specific functions or groups of functions which are described in separate chapters later on
or where the help pages should be sufficient documentation.

Users can construct expressions and invoke the evaluator on them.

3.1 Simple evaluation

3.1.1 Constants
Any number typed directly at the prompt is a constant and is evaluated.

> 1
(11 1

Perhaps unexpectedly, the number returned from the expression 1 is a numeric. In most
cases, the difference between an integer and a numeric value will be unimportant as R will
do the right thing when using the numbers. There are, however, times when we would like
to explicitly create an integer value for a constant. We can do this by calling the function
as.integer or using various other techniques. But perhaps the simplest approach is to
qualify our constant with the suffix character ‘L’. For example, to create the integer value
1, we might use

> 1L
[1]

We can use the ‘L’ suffix to qualify any number with the intent of making it an explicit
integer. So ‘0x10L’ creates the integer value 16 from the hexadecimal representation. The
constant 1e3L gives 1000 as an integer rather than a numeric value and is equivalent to
1000L. (Note that the ‘L’ is treated as qualifying the term 1e3 and not the 3.) If we qualify
a value with ‘L’ that is not an integer value, e.g. 1e-3L, we get a warning and the numeric
value is created. A warning is also created if there is an unnecessary decimal point in the
number, e.g. 1.L.

We get a syntax error when using ‘L.” with complex numbers, e.g. 12iL gives an error.

Constants are fairly boring and to do more we need symbols.

3.1.2 Symbol lookup

When a new variable is created it must have a name so it can be referenced and it usually
has a value. The name itself is a symbol. When a symbol is evaluated its value is returned.
Later we shall explain in detail how to determine the value associated with a symbol.

In this small example y is a symbol and its value is 4. A symbol is an R object too, but
one rarely needs to deal with symbols directly, except when doing “programming on the
language” (Chapter 6 [Computing on the language], page 36).

Chapter 3: Evaluation of expressions 11

3.1.3 Function calls

Most of the computations carried out in R involve the evaluation of functions. We will also
refer to this as function invocation. Functions are invoked by name with a list of arguments
separated by commas.

> mean(1:10)

[1] 5.5
In this example the function mean was called with one argument, the vector of integers from
1 to 10.

R contains a huge number of functions with different purposes. Most are used for
producing a result which is an R object, but others are used for their side effects, e.g.,
printing and plotting functions.

Function calls can have tagged (or named) arguments, as in plot(x, y, pch = 3). Argu-
ments without tags are known as positional since the function must distinguish their mean-
ing from their sequential positions among the arguments of the call, e.g., that x denotes the
abscissa variable and y the ordinate. The use of tags/names is an obvious convenience for
functions with a large number of optional arguments.

A special type of function calls can appear on the left hand side of the assignment
operator as in

> class(x) <- "foo"

What this construction really does is to call the function class<- with the original object
and the right hand side. This function performs the modification of the object and returns
the result which is then stored back into the original variable. (At least conceptually, this
is what happens. Some additional effort is made to avoid unnecessary data duplication.)

3.1.4 Operators

R allows the use of arithmetic expressions using operators similar to those of the C pro-
gramming language, for instance

>1+ 2
(1] 3

Expressions can be grouped using parentheses, mixed with function calls, and assigned
to variables in a straightforward manner

>y <= 2 % (a + log(x))
R contains a number of operators. They are listed in the table below.

- Minus, can be unary or binary

+ Plus, can be unary or binary
! Unary not
- Tilde, used for model formulae, can be either unary or binary

? Help
: Sequence, binary (in model formulae: interaction)
* Multiplication, binary

Chapter 3: Evaluation of expressions 12

/ Division, binary

- Exponentiation, binary

%X Special binary operators, x can be replaced by any valid name
he Modulus, binary

Wl h Integer divide, binary

yAYA Matrix product, binary

YAYA Outer product, binary

%z Kronecker product, binary

%in% Matching operator, binary (in model formulae: nesting)

< Less than, binary

Greater than, binary
== Equal to, binary

>= Greater than or equal to, binary
<= Less than or equal to, binary

& And, binary, vectorized

&& And, binary, not vectorized

| Or, binary, vectorized
'l Or, binary, not vectorized

<- Left assignment, binary
-> Right assignment, binary
$ List subset, binary

Except for the syntax, there is no difference between applying an operator and calling
a function. In fact, x + y can equivalently be written ‘+¢(x, y). Notice that since ‘+’ is a
non-standard function name, it needs to be quoted.

R deals with entire vectors of data at a time, and most of the elementary operators
and basic mathematical functions like log are vectorized (as indicated in the table above).
This means that e.g. adding two vectors of the same length will create a vector containing
the element-wise sums, implicitly looping over the vector index. This applies also to other
operators like -, *, and / as well as to higher dimensional structures. Notice in particular
that multiplying two matrices does not produce the usual matrix product (the %*% operator
exists for that purpose). Some finer points relating to vectorized operations will be discussed
in Section 3.3 [Elementary arithmetic operations|, page 16.

To access individual elements of an atomic vector, one generally uses the x[i] construc-
tion.

> x <- rnorm(5)

> X
[1] -0.12526937 -0.27961154 -1.03718717 -0.08156527 1.37167090
> x[2]

[1] -0.2796115
List components are more commonly accessed using x$a or x[[i]].

> x <- options()
> x$prompt
[1] ||> n

Indexing constructs can also appear on the right hand side of an assignment.

Chapter 3: Evaluation of expressions 13

Like the other operators, indexing is really done by functions, and one could have used
‘[“(x, 2) instead of x[2].

R’s indexing operations contain many advanced features which are further described in
Section 3.4 [Indexing], page 17.

)

3.2 Control structures

Computation in R consists of sequentially evaluating statements. Statements, such as
x<-1:10 or mean(y), can be separated by either a semi-colon or a new line. Whenever
the evaluator is presented with a syntactically complete statement that statement is evalu-
ated and the value returned. The result of evaluating a statement can be referred to as the
value of the statement! The value can always be assigned to a symbol.

Both semicolons and new lines can be used to separate statements. A semicolon always
indicates the end of a statement while a new line may indicate the end of a statement.
If the current statement is not syntactically complete new lines are simply ignored by the
evaluator. If the session is interactive the prompt changes from >’ to ‘+.

>x <-0; x+5
[1] 5

>y <-1:10
>1; 2

(1] 1

[1] 2

Statements can be grouped together using braces ‘{’ and ‘}’. A group of statements is
sometimes called a block. Single statements are evaluated when a new line is typed at the
end of the syntactically complete statement. Blocks are not evaluated until a new line is
entered after the closing brace. In the remainder of this section, statement refers to either
a single statement or a block.

>{x<-0
+ x + 5

+ }

[1] 5

3.2.1 if

The if /else statement conditionally evaluates two statements. There is a condition which
is evaluated and if the value is TRUE then the first statement is evaluated; otherwise the
second statement will be evaluated. The if /else statement returns, as its value, the value
of the statement that was selected. The formal syntax is

if (statementl)
statement?2
else
statement3

First, statementl is evaluated to yield valuel. If valuel is a logical vector with first
element TRUE then statement2 is evaluated. If the first element of valuel is FALSE then

! Evaluation always takes place in an environment. See Section 3.5 [Scope of variables], page 22 for more
details.

Chapter 3: Evaluation of expressions 14

statement3 is evaluated. If valuel is a numeric vector then statement3 is evaluated when
the first element of valuel is zero and otherwise statement2 is evaluated. Only the first
element of valuel is used. All other elements are ignored. If valuel has any type other than
a logical or a numeric vector an error is signalled.

if /else statements can be used to avoid numeric problems such as taking the logarithm
of a negative number. Because if/else statements are the same as other statements you
can assign the value of them. The two examples below are equivalent.

> if(any(x <= 0)) y <- log(1l+x) else y <- log(x)
>y <= if(any(x <= 0)) log(l+x) else log(x)

The else clause is optional. The statement if (any(x <= 0)) x <- x[x <= 0] is valid.
When the if statement is not in a block the else, if present, must appear on the same line
as the end of statement2. Otherwise the new line at the end of statement2 completes the
if and yields a syntactically complete statement that is evaluated. A simple solution is to
use a compound statement wrapped in braces, putting the else on the same line as the
closing brace that marks the end of the statement.

if /else statements can be nested.

if (statementl) {
statement?2

} else if (statement3) {
statement4

} else if (statement5) {
statement6

} else
statement8

One of the even numbered statements will be evaluated and the resulting value returned.
If the optional else clause is omitted and all the odd numbered statements evaluate to FALSE
no statement will be evaluated and NULL is returned.

The odd numbered statements are evaluated, in order, until one evaluates to TRUE and
then the associated even numbered statement is evaluated. In this example, statement6
will only be evaluated if statementl is FALSE and statement3 is FALSE and statement5 is
TRUE. There is no limit to the number of else if clauses that are permitted.

3.2.2 Looping

R has three statements that provide explicit looping.? They are for, while and repeat.
The two built-in constructs, next and break, provide additional control over the evaluation.
R provides other functions for implicit looping such as tapply, apply, and lapply. In
addition many operations, especially arithmetic ones, are vectorized so you may not need
to use a loop.

There are two statements that can be used to explicitly control looping. They are break
and next. The break statement causes an exit from the innermost loop that is currently
being executed. The next statement immediately causes control to return to the start of
the loop. The next iteration of the loop (if there is one) is then executed. No statement
below next in the current loop is evaluated.

The value returned by a