Synthesizing Causal Evidence in a Distributed Research Network


[Up] [Top]

Documentation for package ‘EvidenceSynthesis’ version 1.0.0

Help Pages

approximateHierarchicalNormalPosterior Approximate Bayesian posterior for hierarchical Normal model
approximateLikelihood Approximate a likelihood function
approximateSimplePosterior Approximate simple Bayesian posterior
biasCorrectionInference Bias Correction with Inference
buildLabelReferences Build a list of references that map likelihood names to integer labels for later use
computeBayesianMetaAnalysis Compute a Bayesian random-effects meta-analysis
computeConfidenceInterval Compute the point estimate and confidence interval given a likelihood function approximation
computeFixedEffectMetaAnalysis Compute a fixed-effect meta-analysis
computeHierarchicalMetaAnalysis Compute a Bayesian random-effects hierarchical meta-analysis
constructDataModel Construct 'DataModel' objects from approximate likelihood or profile likelihood data
createApproximations Create likelihood approximations from individual-trajectory data
createSccsSimulationSettings Create SCCS simulation settings
createSimulationSettings Create simulation settings
customFunction A custom function to approximate a log likelihood function
detectApproximationType Detect the type of likelihood approximation based on the data format
extractSourceSpecificEffects Compute source-specific biases and bias-corrected estimates from hierarchical meta analysis results
fitBiasDistribution Fit Bias Distribution
generateBayesianHMAsettings Generate settings for the Bayesian random-effects hierarchical meta-analysis model
hermiteInterpolation Cubic Hermite interpolation using both values and gradients to approximate a log likelihood function
hmaLikelihoodList Example profile likelihoods for hierarchical meta analysis with bias correction
likelihoodProfileLists A bigger example of profile likelihoods for hierarchical meta analysis with bias correction
loadCyclopsLibraryForJava Load the Cyclops dynamic C++ library for use in Java
ncLikelihoods Example profile likelihoods for negative control outcomes
ooiLikelihoods Example profile likelihoods for a synthetic outcome of interest
plotBiasCorrectionInference Plot bias correction inference
plotBiasDistribution Plot bias distributions
plotCovariateBalances Plot covariate balances
plotEmpiricalNulls Plot empirical null distributions
plotLikelihoodFit Plot the likelihood approximation
plotMcmcTrace Plot MCMC trace
plotMetaAnalysisForest Create a forest plot
plotPerDbMcmcTrace Plot MCMC trace for individual databases
plotPerDbPosterior Plot posterior density per database
plotPosterior Plot posterior density
plotPreparedPs Plot the propensity score distribution
preparePsPlot Prepare to plot the propensity score distribution
prepareSccsIntervalData Prepare SCCS interval data for pooled analysis
sequentialFitBiasDistribution Fit Bias Distribution Sequentially or in Groups
simulateMetaAnalysisWithNegativeControls Simulate survival data across a federated data network, with negative control outcomes as well.
simulatePopulations Simulate survival data for multiple databases
skewNormal The skew normal function to approximate a log likelihood function
summarizeChain Utility function to summarize MCMC samples (posterior mean, median, HDI, std, etc.)
supportsJava8 Determine if Java virtual machine supports Java