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tober 20061 Introdu
tion1.1 Why the POT pa
kage?ThePOT pa
kage is an add-on pa
kage for the R statisti
al software (R Development Core Team,2006). The main goal of this pa
kage is to develop tools to perform stasti
al analyses of PeaksOver a Threshold (POT).Most of fun
tions are related to the Extreme Value Theory (EVT). Coles (2001) gives a 
om-prehensive introdu
tion to the EVT, while Kluppelberg and Mikos
h (1997) present advan
edresults.1.2 Obtaining the pa
kage/guideThe pa
kage 
an be downloaded from CRAN (The Comprehensive R Ar
hive Network) athttp://
ran.r-proje
t.org/. This guide (in pdf) will be in the dire
tory POT/do
/ underneathwherever the pa
kage is installed.1.3 ContentsTo help users to use properly the POT pa
kage, this guide 
ontains pra
ti
al examples on theuse of this pa
kage. Se
tion 2 introdu
e qui
kly the Extreme Value Theory (EVT). Some basi
examples are des
ribed in se
tion 3, while se
tion 4 gives a 
on
rete statisti
al analysis of extremevalue for river Adieéres at Beaujeu (FRANCE).1.4 Citing the pa
kage/guideTo 
ite this guide or the pa
kage in publi
ations please use the following bibliographi
 databaseentry.�Manual{key,title = {A User's Guide to the POT Pa
kage (Version 1.0)},author = {Ribatet, M. A.},year = {2006},month = {August},url = {http://
ran.r-proje
t.org/}} 1
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1.5 CaveatI have 
he
ked these fun
tions as best I 
an but, as ever, they may 
ontain bugs. If you �nd a bugor suspe
ted bug in the 
ode or the do
umentation please report it to me at ribatet�hotmail.
om.Please in
lude an appropriate subje
t line.1.6 LegaleseThis program is free software; you 
an redistribute it and/or modify it under the terms of theGNU General Publi
 Li
ense as published by the Free Software Foundation; either version 2 ofthe Li
ense, or (at your option) any later version.This program is distributed in the hope that it will be useful, but without any warranty; withouteven the implied warranty of mer
hantability or �tness for a parti
ular purpose. See the GNUGeneral Publi
 Li
ense for more details.The GNUGeneral Publi
 Li
ense 
an be obtained from http://www.gnu.org/
opyleft/gpl.html.You 
an also obtain it by writing to the Free Software Foundation, In
., 59 Temple Pla
e � Suite330, Boston, MA 02111-1307, USA.2 An Introdu
tion the EVT2.1 The univariate 
aseEven if this pa
kage is only related to peaks over a threshold, a 
lassi
al introdu
tion to the EVTmust deal with �blo
k maxima�. Let X1, . . . ,Xn be a series of independent and identi
ally dis-tributed random variables with 
ommom distribution fun
tion F . Let Mn = max(X1, . . . ,Xn).Suppose there exists normalizing 
onstants an > 0 and bn su
h that:
Pr

[

Mn − bn
an

≤ y

]

= Fn(any + bn) −→ G(y), n→ +∞ (2.1)for all y ∈ R, whereG is a non-degenerate distribution fun
tion. A

ording to the Extremal TypesTheorem (Fisher and Tippett, 1928), G must be either Fré
het, Gumbel or negative Weibull.Jenkinson (1955) noted that these three distributions 
an be merged into a single parametri
family: the Generalized Extreme Value (GEV) distribution. The GEV has a distribution fun
-tion de�ned by:
G(y) = exp

[

−

(

1 + ξ
y − µ

σ

)

−1/ξ

+

]

, (2.2)where (µ, σ, ξ) are the lo
ation, s
ale and shape parameters respe
tively, σ > 0 and z+ =
max(z, 0).The Fré
het 
ase is obtained when ξ > 0, the negative Weibull when ξ < 0 while the Gumbel
ase is de�ned by 
ontinuity when ξ → 0.From this result, Pi
kands (1975) showed that the limiting distribution of normalized ex
essesof a threshold µ as the threshold approa
hes the endpoint µend of the variable of interest is theGeneralized Pareto Distribution (GPD). That is, if X is a random variable whi
h holds (2.1),then:

Pr [X ≤ y|X > µ] −→ H(y), µ→ µend (2.3)2
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with
H(y) = 1 −

(

1 + ξ
y − µ

σ

)

−1/ξ

+

, (2.4)where (µ, σ, ξ) are the lo
ation, s
ale and shape parameters respe
tively, σ > 0 and z+ =
max(z, 0). Note that the Exponential distribution is obtained by 
ontinuity as ξ → 0.In pra
ti
e, these two asymptoti
al results motivated modelling blo
k maxima with a GEV, whilepeaks over threshold with a GPD.2.2 The multivariate 
aseWhen dealing with multivariate extremes, it is usual to transform data to a parti
ular distribu-tion. For example, Falk and Reiss (2005) used the inverted standard exponential distribution �
Pr[Z ≤ z] = exp(z), z ≤ 0, Coles et al. (1999) use the uniform distribution on [0, 1]. However,the most 
ommon distribution seems to be the standard Fré
het one � Pr[Z ≤ z] = exp(−1/z)(Smith, 1994; Smith et al., 1997; Bortot and Coles, 2000). Thus, in the following, we will only
onsider this 
ase. For this purpose, margins are transformed a

ording to:

Zj = −
1

logFj (Yj)where Fj is the distribution of the j-th margin.Obviously, in pra
ti
e, the margins Fj are unknown. When dealing with extremes, the univariateEVT tells us what to do. Thus, if blo
k maxima or peaks over a threshold are of interest, wemust repla
e Fj with GEV or GPD respe
tively.De�nition 2.2.1. A multivariate extreme value distribution in dimension d has representation:
G (y1, . . . , yd) = exp [−V (z1, . . . , zd)] (2.5)with

V (z1, . . . , zd) =

∫

Tp

max
j=1,...,d

(

qj
zj

) dH (q1, . . . , qd)where H is a measure with mass 2 
alled spe
tral density de�ned on the set
Tp =







(q1, . . . , qd) : qj ≥ 0,

d
∑

j=1

q2j = 1





with the 
onstraint
∫

Tp

qjdH(qj) = 1, ∀j ∈ {1, . . . , d}The V fun
tion is often 
alled exponential measure (Klüppelberg and May, 2006) and is anhomogeneous fun
tion of order -1.Contrary to the univariate 
ase, there is an in�nity of fun
tions V for d > 1. Thus, it is usual toused spe
i�
 parametri
 families for V . Several examples for these families are given in Annexe A.Another representation for a multivariate extreme value distribution is the Pi
kands' represen-tation (Pi
kands, 1981). We give here only the bivariate 
ase.
3



De�nition 2.2.2. A bivariate extreme value distribution has the Pi
kands' representation:
G (y1, y2) = exp

[

−

(

1

z1
+

1

z2

)

A

(

z2
z1 + z2

)] (2.6)with
A : [0, 1] −→ [0, 1]

w 7−→ A(w) =

∫ 1

0
max {w (1 − q) , (1 − w) q} dH(q)In parti
ular, the fun
tions V and A are linked by the relation:

A(w) =
V (z1, z2)

z−1
1 + z−1

2

, w =
z2

z1 + z2The dependen
e fun
tion A holds:1. A(0) = A(1) = 1;2. max(w, 1 − w) ≤ A(w) ≤ 1, ∀w;3. A is 
onvex;4. Two random variables (with unit Fré
het margins) are independent if A(w) = 1, ∀w;5. Two random variables (with unit Fré
het margins) are perfe
tly dependent if A(w) =
max(w, 1 − w), ∀w.We de�ne the multivariate extreme value distributions whi
h are identi
al to the blo
k max-ima approa
h in higher dimensions. We now establish the multivariate theory for peaks overthreshold.A

ording to Resni
k (1987, Prop. 5.15), multivariate peaks over thresholds uj has the samerepresentation than for blo
k maxima. Only the margins Fj must be repla
ed by GPD insteadof GEV. Thus,

F (y1, . . . , yd) = exp

[

−V

(

−
1

logF1 (y1)
, . . . ,−

1

logFd (yd)

)]

, yj > uj (2.7)3 Basi
 Use3.1 Random Numbers and Distribution Fun
tionsFirst of all, lets start with basi
 stu�s. The POT pa
kage uses the R 
onvention for randomnumbers generation and distribution fun
tion features.> ##Random number generation> rgpd(5, lo
 = 1, s
ale = 2, shape = -0.2)[1℄ 4.672547 2.365295 1.899087 1.577886 2.409450> ##Varying threshold 
an be performed also> rgpd(6, 
(1, -5), 2, -0.2)[1℄ 2.424368 -3.389774 3.965086 -3.332016 4.707819 -4.985408> ##The same but with a varying s
ale parameter4



> rgpd(6, 0, 
(2, 3), 0)[1℄ 2.9850740 3.1486256 1.0705649 0.7401753 3.1231517 2.3994109> ##Probability of non ex
eeden
e> pgpd(
(9, 15, 20), 1, 2, 0.25)[1℄ 0.9375000 0.9825149 0.9922927> ##Quantile asso
iated to probability of non ex
eeden
e> qgpd(
(.25, .5, .75), 1, 2, 0)[1℄ 1.575364 2.386294 3.772589> ##Evaluate the density at point...> dgpd(
(9, 15, 20), 1, 2, 0.25)[1℄ 0.015625000 0.003179117 0.001141829Several options 
an be passed to three of these four fun
tions. In parti
ular:
• for �pgpd�, user 
an spe
ify if non ex
eeden
e or ex
eeden
e probability should be 
omputedwith option lower.tail = TRUE or lower.tail = FALSE respe
tively;
• for �qgpd�, user 
an spe
ify if quantile is related to non ex
eeden
e or ex
eeden
e probabilitywith option lower.tail = TRUE or lower.tail = FALSE respe
tively;
• for �dgpd�, user 
an spe
ify if the density or the log-density should be 
omputed with optionlog = FALSE or log = TRUE respe
tively.3.2 Threshold Sele
tionThe lo
ation for the GPD or equivalently the threshold is a parti
ular parameter as must often itis not estimated as the other ones. All methods to de�ne a suitable threshold use the asymptoti
approximation de�ned by equation (2.3). In other words, we sele
t a threshold for whi
h theasymptoti
 distribution H in equation (2.4) is a good approximation.The POT pa
kage has several tools to de�ne a reasonable threshold. For this purpose, the usermust use t
plot, mrlplot, lmomplot, exiplot and diplot fun
tions.The main goal of threshold sele
tion is to sele
ts enough events to redu
e the varian
e; but nottoo mu
h as we 
ould sele
t events 
oming from the 
entral part of the distribution1 and indu
ebias.3.2.1 Threshold Choi
e plot: t
plotLet X ∼ GP (µ0, σ0, ξ0). Let µ1 be a another threshold as µ1 > µ0. The random variable

X|X > µ1 is also GPD with updated parameters σ1 = σ0 + ξ0(µ1 − µ0) and ξ1 = ξ0. Let
σ∗ = σ1 − ξ1µ1 (3.1)With this new parametrization, σ∗ is independent of µ1. Thus, estimates of σ∗ and ξ1 are
onstant for all µ1 > µ0 if µ0 is a suitable threshold for the asymptoti
 approximation.Threshold 
hoi
e plots represent the points de�ned by:

{(µ1, σ∗) : µ1 ≤ xmax} and {(µ1, ξ1) : µ1 ≤ xmax} (3.2)where xmax is the maximum of the observations x.Moreover, 
on�den
e intervals 
an be 
omputed using Fisher information.Here is an appli
ation.1i.e. not extreme events. 5
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Figure 1: Threshold Choi
e plot on syntheti
 data> x <- runif(10000)> par(mfrow=
(1,2))> t
plot(x, u.range = 
(0.9, 0.995))Results of the t
plot fun
tion is displayed in Figure 1. We 
an see 
learly that a thresholdaround 0.98 is a reasonable 
hoi
e. However, in pra
ti
e de
ision are not so 
lear-
ut as for thissyntheti
 example.3.2.2 Mean Residual Life Plot: mrlplotThe mean residual life plot is based on the theoreti
al mean of the GPD. Let X be a r.v.distributed as GPD(µ, σ, ξ). Then, theoreti
ally we have:
E [X] = µ+

σ

1 − ξ
, for ξ < 1 (3.3)When ξ ≥ 1, the theoreti
al mean is in�nite.In pra
ti
e, if X represents ex
ess over a threshold µ0, and if the approximation by a GPD isgood enough, we have:

E [X − µ0|X > µ0] =
σµ0

1 − ξ
(3.4)For all new threshold µ1 su
h as µ1 > µ0, ex
esses above the new threshold are also approximateby a GPD with updated parameters - see se
tion 3.2.1. Thus,

E [X − µ1|X > µ1] =
σµ1

1 − ξ
=
σµ0

+ ξµ1

1 − ξ
(3.5)6
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Figure 2: Mean residual life plot on syntheti
 dataThe quantity E [X − µ1|X > µ1] is linear in µ1. Or, E [X − µ1|X > µ1] is simply the mean ofex
esses above the threshold µ1 whi
h 
an easily be estimated using the empiri
al mean.A mean residual life plot 
onsists in representing points:
{(

µ,
1

nµ

nµ
∑

i=1

xi,nµ
− µ

)

: µ ≤ xmax

} (3.6)where nµ is the number of observations x above the threshold µ, xi,nµ
is the i-th observationabove the threshold µ and xmax is the maximum of the observations x.Con�den
e intervals 
an be added to this plot as the empiri
al mean 
an be supposed to benormally distributed (Central Limit Theorem). However, normality doesn't hold anymore forhigh threshold as there are less and less ex
esses. Moreover, by 
onstru
tion, this plot always
onverge to the point (xmax, 0).Here is another syntheti
 example.> x <- rnorm(10000)mrlplot(x, u.range = 
(1, 3.5), 
ol = 
("green", "bla
k", "green"))Figure 2 displays the mean residual life plot. A threshold around 2.5 should be reasonable.3.2.3 L-Moments plot: lmomplotL-moments are summary statisti
s for probability distributions and data samples. They are anal-ogous to ordinary moments � they provide measures of lo
ation, dispersion, skewness, kurtosis,7
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Figure 3: L-Moment plot on syntheti
 dataand other aspe
ts of the shape of probability distributions or data samples � but are 
omputedfrom linear 
ombinations of the ordered data values (hen
e the pre�x L).For the GPD, the following relation holds:
τ4 = τ3

1 + 5τ3
5 + τ3

(3.7)where τ4 is the L-Kurtosis and τ3 is the L-Skewness.The L-Moment plot represents points de�ned by:
{(τ̂3,u, τ̂4,u) : u ≤ xmax} (3.8)where τ̂3,u and τ̂4,u are estimations of the L-Kurtosis and L-Skewness based on ex
esses overthreshold u and xmax is the maximum of the observations x. The theoreti
al 
urve de�ned byequation (3.7) is tra
ed as a guideline.Here is a trivial example.> x <- 
(1 - abs(rnorm(200, 0, 0.2)), rgpd(100, 1, 2, 0.25))> lmomplot(x, u.range = 
(0.9, 2), identify = FALSE)Figure 3 displays the L-Moment plot. By passing option identiy = TRUE user 
an 
li
k on thegraphi
 to identify the threshold related to the point sele
ted.We found that this graphi
 has often poor performan
e on real data.8



3.2.4 Dispersion Index Plot: diplotThe Dispersion Index plot is parti
ularly useful when dealing with time series. The EVTstates that ex
esses over a threshold 
an be approximated by a GPD. However, the EVT alsostates that the o

urren
es of these ex
esses must be represented by a Poisson pro
ess.Let X be a r.v. distributed as a Poisson distribution with parameter λ. That is:
Pr [X = k] = e−λλ

k

k!
, k ∈ N. (3.9)Thus, we have E [X] = V ar [X]. Cunnane (1979) introdu
ed a Dispersion Index statisti
de�ned by:

DI =
s2

λ
(3.10)where s2 is the intensity of the Poisson pro
ess and λ the mean number of events in a blo
k -most often this is a year. Moreover, a 
on�den
e interval 
an be 
omputed by using a χ2 test:

Iα =

[

χ2
(1−α)/2,M−1

M − 1
,
χ2

1−(1−α)/2,M−1

M − 1

] (3.11)where Pr [DI ∈ Iα] = α.For the next example, we use the data set ardieres in
luded in the POT pa
kage. Moreover,as ardieres is a time series, and thus strongly auto-
orrelated, we must �extra
t� extreme eventswhile preserving independen
e between events. This is a
hieved using fun
tion 
lust2.> data(ardieres)> events <- 
lust(ardieres, u = 2, tim.
ond = 8 / 365,+ 
lust.max = TRUE)> diplot(events, u.range = 
(2, 20))The Dispersion Index plot is presented in Figure 4. From this �gure, a threshold around 5 shouldbe reasonable.3.3 Fitting the GPD3.3.1 The univariate 
aseThe main fun
tion to �t the GPD is 
alled �tgpd. This is a generi
 fun
tion whi
h 
an �tthe GPD a

ording several estimators. There are 
urrently 7 estimators available: method ofmoments moments, maximum likelihood mle, biased and unbiased probability weighted momentspwmb, pwmu, mean power density divergen
e mdpd, median med and pi
kands' pi
kands estima-tors. Details for these estimators 
an be found in (Coles, 2001), (Hosking and Wallis, 1987),(Juárez and S
hu
any, 2004), (Peng and Welsh, 2001) and (Pi
kands, 1975).The MLE is a parti
ular 
ase as it is the only one whi
h allows varying threshold. Moreover, twotypes of standard errors are available: �expe
ted� or �observed� information of Fisher. The optionobs.fish spe
i�es if we want observed (obs.fish = TRUE) or expe
ted (obs.fish = FALSE).As Pi
kands' estimator is not always feasible, user must 
he
k the message of feasibility returnby fun
tion fitgpd.We give here several dida
ti
 examples.2The 
lust fun
tion will be presented later in se
tion 3.6.9
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Figure 4: Dispersion index plot for the dataset ardieres> x <- rgpd(200, 1, 2, 0.25)> mom <- fitgpd(x, 1, "moments")$param> mle <- fitgpd(x, 1, "mle")$param> pwmu <- fitgpd(x, 1, "pwmu")$param> pwmb <- fitgpd(x, 1, "pwmb")$param> pi
kands <- fitgpd(x, 1, "pi
kands")$param> med <- fitgpd(x, 1, "med", start = mle)$param> mdpd <- fitgpd(x, 1, "mdpd")$param> print(rbind(mom, mle, pwmu, pwmb, pi
kands, med, mdpd))s
ale shapemom 1.693222 0.22258795mle 1.758304 0.18825359pwmu 1.774835 0.18511688pwmb 1.783859 0.18097373pi
kands 1.867132 0.02210745med 1.826378 0.08445534 ##Convergen
e: iteration limit rea
hedmdpd 1.788432 0.16608265The MLE method allows to �x either the s
ale or the shape parameter. For example, if we wantto �t a Exponential distribution, just do:> x <- rgpd(100, 1, 2, 0)> fitgpd(x, thresh = 1, shape = 0, method = "mle")> ##The same but with a fixed s
ale value> fitgpd(x, thresh = 1, s
ale = 2, method = "mle")10



If now, we want to �t a GPD with a varying threshold, just do:> x <- rgpd(500, 1:2, 0.3, 0.01)> fitgpd(x, 1:2, method = "mle")Note that the varying threshold is repeated 
y
li
ally until it mat
hes the length of obje
t x.3.3.2 The bivariate 
aseThe generi
 fun
tion to �t bivariate POTs is �tbvgpd. There is 
urrently 6 models for thebivariates GPD � see Annexe A. All of these models are �tted using maximum likelihoodestimator. Moreover, the approa
h uses 
ensored likelihood � see (Smith et al., 1997).> x <- rgpd(500, 0, 1, 0.25)> y <- rgpd(500, 2, 0.5, -0.25)> Mlog <- fitbvgpd(
bind(x,y), 
(0,2), model = "log")> MlogCall: fitbvgpd(data = 
bind(x, y), threshold = 
(0, 2), model = "log")Estimator: MLEDependen
e Model and Strenght:Model : Logisti
lim_u Pr[ X_1 > u | X_2 > u℄ = 0.02Devian
e: 1397.460AIC: 1407.460Marginal Threshold: 0 2Marginal Number Above: 500 500Marginal Proportion Above: 1 1Joint Number Above: 500Joint Proportion Above: 1Number of events su
h as {Y1 > u1} U {Y2 > u2}: 500Estimatess
ale1 s
ale2 shape1 shape2 alpha1.0912 0.5155 0.2241 -0.2500 0.9853Standard Errorss
ale1 s
ale2 shape1 shape2 alpha0.07892 0.03026 0.05767 0.03960 0.02398Asymptoti
 Varian
e Covarian
es
ale1 s
ale2 shape1 shape2 alphas
ale1 6.228e-03 3.624e-05 -3.033e-03 -3.347e-05 1.561e-05s
ale2 3.624e-05 9.157e-04 -7.282e-07 -1.002e-03 1.856e-05shape1 -3.033e-03 -7.282e-07 3.326e-03 2.136e-05 -9.574e-05shape2 -3.347e-05 -1.002e-03 2.136e-05 1.568e-03 -5.620e-05alpha 1.561e-05 1.856e-05 -9.574e-05 -5.620e-05 5.750e-04Optimization Information 11
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Figure 5: The Pi
kands' dependen
e fun
tion.Convergen
e: su

essfulFun
tion Evaluations: 47Gradient Evaluations: 10In the summary, we 
an see lim_u Pr[ X_1 > u | X_2 > u℄ = 0.02 . This is the χ statisti
sof Coles et al. (1999). For the parametri
 model, we have:
χ = 2 − V (1, 1) = 2 (1 −A(0.5))For independent variables, χ = 0 while for perfe
t dependen
e, χ = 1. In our appli
ation, thevalue 0.02 indi
ates that the variables are independent � whi
h is obvious. In this perspe
tive,it is possible to �xed some parameters. For our purpose of independen
e, we 
an run:> fitbvgpd(
bind(x,y), 
(0,2), model = "log", alpha = 1)> ##This is equivalent to fit x and y separately of 
ourse.Note that as all bivariate extreme value distributions are asymptoti
ally dependent, the χ statisti
of Coles et al. (1999) is always equal to 1.Another way to dete
t the strength of dependen
e is to plot the Pi
kands' dependen
e fun
tion.This is simply done with the pi
kdep fun
tion.> pi
kdep(Mlog)The horizontal line 
orresponds to independen
e while the other ones 
orresponds to perfe
tdependen
e. Please note that by 
onstru
tion, the mixed and asymetri
 mixed models 
an notmodel perfe
t dependen
e variables.3.3.3 Markov Chains for Ex
eedan
esThe 
lassi
al way to perform an analysis of peaks over a threshold is to �t the GPD to 
lustermaxima. However, there is a waste of data as only the 
luster maxima is 
onsidered. On the12




ontrary, if we �t the GPD to all ex
eedan
es, standard errors are underestimated as we 
onsiderindependen
e for dependent observations. Here is where Markov Chains 
an help us. The mainidea is to model the dependen
e stru
ture using a Markov Chains while the joint distribution isobviously a multivariate extreme value distribution. This idea was �rst introdu
es by Smith et al.(1997).In the remainder of this se
tion, we will only fo
us with �rst order Markov Chains. Thus, thelikelihood for all ex
eedan
es is:
L(y1, . . . , yn; θ, ψ) =

∏n
i=2 f(yi−1, yi; θ, ψ)
∏n−1

i=2 f(yi; θ)
(3.12)where f(yi−1, yi; θ, ψ) is the joint density, f(yi; θ) is the marginal density, θ is the marginal GPDparameters and ψ is the dependen
e parameter. The marginals are modelled using a GPD, whilethe joint distribution is a bivariate extreme value distribution.For our appli
ation, we use the simm
 fun
tion whi
h simulate a �rst order Markov 
hain withextreme value dependen
e stru
ture.> ## First simulate a first order Markov Chain with> ## uniform(0,1) marge.> m
 <- simm
(1000, alpha = 0.5, model = "log")> ## Transform it to a GPD> m
 <- qgpd(m
, 2, 1, 0.15)> fitm
gpd(m
, 2, "log")Call: fitm
gpd(data = m
, threshold = 2, model = "log")Estimator: MLEDependen
e Model and Strenght:Model : Logisti
lim_u Pr[ X_1 > u | X_2 > u℄ = 0.571Devian
e: 1448.343AIC: 1454.343Threshold: 2Number Above: 998Proportion Above: 1Estimatess
ale shape alpha0.9453 0.1682 0.5146Standard Error Type:Standard Errorss
ale shape alpha0.09219 0.04742 0.02237Asymptoti
 Varian
e Covarian
es
ale shape alphas
ale 0.0084994 -0.0018018 -0.0010052shape -0.0018018 0.0022488 -0.0004062alpha -0.0010052 -0.0004062 0.000500513



Optimization InformationConvergen
e: su

essfulFun
tion Evaluations: 72Gradient Evaluations: 133.4 Con�den
e IntervalsOn
e a statisti
al model is �tted, it is usual to gives 
on�den
e intervals. Currently, onlymle, pwmu, pwmb, moments estimators 
an 
omputed 
on�den
e intervals. Moreover, for methodmle, �standard� and �pro�le� 
on�den
e intervals are available.If we want 
on�den
e intervals for the s
ale parameters:> x <- rgpd(100, 1, 2, 0.25)> mle <- fitgpd(x, 1, method = "mle")> mom <- fitgpd(x, 1, method = "moments")> pwmb <- fitgpd(x, 1, method = "pwmb")> pwmu <- fitgpd(x, 1, method = "pwmu")> gpd.fis
ale(mle, 
onf = 0.9)> gpd.fis
ale(mom, 
onf = 0.9)> gpd.fis
ale(pwmu, 
onf = 0.9)> gpd.fis
ale(pwmb, 
onf = 0.9)For shape parameter 
on�den
e intervals, simply use fun
tion gpd.fishape instead of gpd.fis
ale.Note that the � stands for �Fisher Information�.Thus, if we want pro�le 
on�den
e intervals, we must use fun
tions gpd.pfs
ale and gpd.pfshape.The pf stands for �pro�le�. These fun
tions are only available with a model �tted with MLE.> gpd.pfs
ale(mle, range = 
(1, 2.5), 
onf = 0.9)> gpd.pfshape(mle, range = 
(-0.1, 0.6), 
onf = 0.95)Con�den
e interval for quantiles - or return levels - are also available. This is a
hieved using:(a) the Delta method or (b) pro�le likelihood.> gpd.firl(pwmu, prob = 0.95)> gpd.pfrl(mle, prob = 0.95, range = 
(4.8, 15))The pro�le 
on�den
e interval fun
tions both returns the 
on�den
e interval and plot the pro�lelog-likelihood fun
tion. Figure 6 depi
ts the graphi
 window returned by fun
tion gpd.pfrl forthe return level asso
iated to non ex
eeden
e probability 0.95.3.5 Model Che
kingTo 
he
k the �tted model, users must 
all fun
tion plot whi
h has a method for the uvpot, bvpotand m
pot 
lasses. For example, this is a generi
 fun
tion whi
h 
alls fun
tions: pp.gpd (probabil-ity/probability plot), qq.gpd (quantile/quantile plot), dens.gpd (density plot) and retlev.gpd(return level plot) for the uvpot 
lass.Here is a basi
 illustration of the fun
tion plot.14
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Figure 6: Pro�le log-likelihood fun
tion for a given return level> x <- rgpd(200, 10, 0.5, -0.2)> fitted <- fitgpd(x, 10, method = "mle")> par(mfrow=
(2,2))> plot(fitted, npy = 1)Figure 7 displays the graphi
 windows obtained with the latter exe
ution.If one is interested in only a probability/probability plot, there is two options. We 
an 
allfun
tion pp.gpd or equivalently plotgpd with the whi
h option. The �whi
h� option sele
twhi
h graph you want to plot. That is:
• whi
h = 1 for a probability/probability plot;
• whi
h = 2 for a quantile/quantile plot;
• whi
h = 3 for a density plot;
• whi
h = 4 for a return level plot;Note that �whi
h� 
an be a ve
tor like 
(1,3) or 1:3.Thus, the following instru
tion gives the same graphi
.> plot(fitted, whi
h = 1)> pp.gpd(fitted)If a return level plot is asked (4 ∈ whi
h), a value for npy is needed. �npy� 
orresponds to themean number of events per year. This is required to de�ne the �return period�. If missing, thedefault value (i.e. 1) will be 
hosen. 15
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Figure 7: Che
king plots from fun
tion plotgpd3.6 De
lustering Te
hniquesIn opposition to blo
k maxima, a peak over threshold 
an be problemati
 when dealing withtime series. Indeed, as often time series are strongly auto-
orrelated, sele
t naively events abovea threshold may lead to dependent events.The fun
tion 
lust tries to identify peaks over a threshold while meeting independen
e 
riteria.For this purpose, this fun
tion needs at least two arguments: the threshold u and a time 
onditionfor independen
e tim.
ond. Clusters are identify as follow:1. The �rst ex
eeden
e initiates the �rst 
luster;2. The �rst observation under the threshold u �ends� the 
luster unless tim.
ond does nothold;3. The next ex
eeden
e whi
h hold tim.
ond initiates a new 
luster;4. The pro
ess is iterated as needed.Here is an appli
ation on �ood dis
harges for river Ardière at Beaujeu. A preliminary studyshows that two �ood events 
an be 
onsidered independent if they do not lie within a 8 dayswindow. Note that unit to de�ne tim.
ond must be the same than the data analyzed.> data(ardieres)> 
lust(ardieres, u = 2, tim.
ond = 8 / 365)16
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Figure 8: The identi�ed 
lusters. Data Ardières, u = 2, tim.
ond = 8Several options 
an be passed to the �
lust� fun
tion. By default, it will return a list with theidenti�ed 
lusters. Usually, we want only 
luster maxima, this is a
hieved by passing option
lust.max = TRUE. Users 
an also ask for a graphi
 representation of 
lusters by passing optionplot = TRUE - see Figure 8.> 
lustMax <- 
lust(ardieres, u = 2, tim.
ond = 8 / 365,+ 
lust.max = TRUE, plot = TRUE, xlim = 
(1971.1, 1972.9))3.7 Mis
ellaneous fun
tions3.7.1 Return periods: rp2prob and prob2rpThe fun
tions rp2prob and prob2rp are useful to 
onvert return periods to non ex
eeden
eprobabilities and vi
e versa. It needs either a return period either a non ex
eeden
e probability.Moreover, the mean number of events per year �npy� must be spe
i�ed.> rp2prob(50, 1.8)npy retper prob1 1.8 50 0.9888889> prob2rp(0.6, 2.2)npy retper prob1 2.2 1.136364 0.6 17
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Figure 9: Instantaneous �ood dis
harges and averaged dis
haged over duration 3 days. Dataardieres3.7.2 Unbiased Sample L-Moments: samlmuThe fun
tion samlmu 
omputes the unbiased sample L-Moments.> x <- runif(50)> samlmu(x, nmom = 5)l_1 l_2 t_3 t_4 t_50.53337554 0.16743489 -0.04026843 0.01243610 0.013864573.7.3 Mobile average window on time series: ts2tsdThe fun
tion ts2tsd 
omputes an �average� time series tsd from the initial time series ts. Thisis a
hieved by using a mobile average window of length d on the initial time series.> data(ardieres)> tsd <- ts2tsd(ardieres, 3 / 365)> plot(ardieres, type = "l", 
ol = "blue")> lines(tsd, 
ol = "green")The latter exe
ution is depi
ted in Figure 9.
18



4 A Con
rete Statisti
al Analysis of Peaks Over a ThresholdIn this se
tion, we provide a full and detailed analysis of peaks over a threshold for the riverArdières at Beaujeu. Figure 9 depi
ts instantaneous �ood dis
harges - blue line.As this is a time series, we must sele
ts independent events above a threshold. First, we �x arelatively low threshold to �extra
t� more events. Thus, some of them are not extreme but regularevents. This is ne
essary to sele
t a reasonable threshold for the asymptoti
 approximation by aGPD - see se
tion 2.> summary(ardieres)time obsMin. :1970 Min. : 0.0221st Qu.:1981 1st Qu.: 0.236Median :1991 Median : 0.542Mean :1989 Mean : 1.0243rd Qu.:1997 3rd Qu.: 1.230Max. :2004 Max. :44.200NA's : 1.000> events0 <- 
lust(ardieres, u = 1.5, tim.
ond = 8/365,+ 
lust.max = TRUE)> par(mfrow=
(2,2))> mrlplot(events0[,"obs"℄)> abline( v = 6, 
ol = "green")> diplot(events0)> abline( v = 6, 
ol = "green")> t
plot(events0[,"obs"℄)From Figure 10, a threshold value of 6m3/s should be reasonable. The Mean residual life plot- top left panel- indi
ates that a threshold around 10m3/s should be adequate. However, thesele
ted threshold must be low enough to have enough events above it to redu
e varian
e whilenot too low as it in
rease the bias3.Thus, we 
an now �re-extra
t� events above the threshold 6m3/s, obtaining obje
t events1. Thisis ne
essary as sometimes events1 is not equal to observations of events0 greater than 6m3/s.We 
an now de�ne the mean number of events per year �npy�. Note that an estimation of theextremal index is available.> events1 <- 
lust(ardieres, u = 6, tim.
ond = 8/365,+ 
lust.max = TRUE)> npy <- length(events1[,"obs"℄) / (diff(range(ardieres[,"time"℄,na.rm = TRUE)) - diff(ardieres[
(20945,20947),"time"℄))> ##Be
ause there is a gap !!!> print(npy)[1℄ 1.677934> attributes(events1)$exi[1℄ 0.1225383Let's �t the GPD.3As the asymptoti
 approximation by a GPD is not a

urate anymore.19
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Figure 10: Threshold sele
tion for river Ardières at Beaujeu.> mle <- fitgpd(events1[,"obs"℄, thresh = 6, method = "mle")Estimator: MLEVarying Threshold: FALSEThreshold: 6Number Above: 56Proportion Above: 1Estimatess
ale shape3.8285 0.1579Standard Error Type: ObservedStandard Errorss
ale shape0.7224 0.1349Asymptoti
 Varian
e Covarian
es
ale shapes
ale 0.52180 -0.05714shape -0.05714 0.01819Optimization Information 20
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Figure 11: Graphi
 diagnosti
s for river Ardières at BeaujeuConvergen
e: su

essfulFun
tion Evaluations: 36Gradient Evaluations: 9The result of fun
tion �tgpd gives the name of the estimator, if a varying threshold was used, thethreshold value, the number and the proportion of observations above the threshold, parameterestimates, standard error estimates and type, the asymptoti
 varian
e-
ovarian
e matrix and
onvergen
e diagnosti
.Figure 11 shows graphi
 diagnosti
s for the �tted model. It 
an be seen that the �tted model�mle� seems to be appropriate. Suppose we want to know the return level asso
iated to the100-year return period.> ##First 
onvert return period in prob> rp2prob(retper = 100, npy = npy)npy retper prob1 1.677934 100 0.9940403> prob <- rp2prob(retper = 100, npy = npy)[,"prob"℄> qgpd(prob, lo
 = 6, s
ale = mle$param["s
ale"℄,+ shape = mle$param["shape"℄)36.19317To take into a

ount un
ertainties, Figure 12 depi
ts the pro�le 
on�den
e interval for the quan-tile asso
iated to the 100-year return period.> gpd.pfrl(mle, prob, range = 
(25, 90), nrang = 200)21
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Figure 12: Pro�le-likelihood fun
tion for the 100-year return period quantileIf there is some troubles try to put vert.lines = FALSE or 
hangethe range...
onf.inf 
onf.sup25.48995 87.87688Sometimes it is ne
essary to know the estimated return period of a spe
i�ed events. Lets do itwith the larger events in �events1�.> maxEvent <- max(events1[,"obs"℄)> print(maxEvent)[1℄ 44.2> prob <- pgpd(maxEvent, lo
 = 6, s
ale = mle$param["s
ale"℄,+ shape = mle$param["shape"℄)> print(prob)0.997501> prob2rp(prob, npy = npy)npy retper prob1 1.677934 238.4804 0.997501Thus, the largest events that o

urs in June 2000 has approximately a return period of 240 years.Maybe it is a good idea to �t the GPD with the other estimators available in the POT pa
kage.
22



A Dependen
e Models for Bivariate Extreme Value DistributionsA.1 The Logisiti
 modelThe logisiti
 model is de�ned by:
V (x, y) =

(

x−1/α + y−1/α
)α

, 0 < α ≤ 1 (A.1)Independen
e is obtained when α = 1 while total dependen
e for α→ 0.The Pi
kands' dependen
e fun
tion for the logisti
 model is:
A : [0, 1] −→ [0, 1]

w 7−→
[

(1 −w)
1

α + w
1

α

]αA.2 The Asymetri
 Logisti
 modelThe asymetri
 logisti
 model is de�ned by:
V (x, y) =

1 − θ1
x

+
1 − θ2
y

+

[

(

x

θ1

)

−
1

α

+

(

y

θ2

)

−
1

α

]α

,with 0 < α ≤ 1, 0 ≤ θ1, θ2 ≤ 1.Independen
e is obtained when either α = 1, θ1 = 0 or θ2 = 0. Di�erents limits o

ur when θ1and θ2 are �xed and α = 1 → 0.The Pi
kands' dependen
e fun
tion for the asymetri
 logisti
 model is:
A(w) = (1 − θ1) (1 − w) + (1 − θ2)w +

[

(1 − w)
1

α θ
1

α

1 + w
1

α θ
1

α

2

]αA.3 The Negative Logisti
 modelThe negative logisti
 model is de�ned by:
V (x, y) =

1

x
+

1

y
− (xα + yα)−

1

α , α > 0 (A.2)Independen
e is obtained when α→ 0 while total dependen
e when α→ +∞.The Pi
kands' dependen
e fun
tion for the negative logisti
 model is:
A(w) = 1 −

[

(1 −w)−α + w−α
]

−
1

αA.4 The Asymetri
 Negative Logisti
 modelThe asymetri
 negative logisti
 model is de�ned by:
V (x, y) =

1

x
+

1

y
−

[(

x

θ1

)α

+

(

y

θ2

)α]− 1

α

, α > 0, 0 < θ1, θ2 ≤ 1Independen
e is obtained when either α → 0, θ1 → 0 or θ2 → 0. Di�erent limits o

ur when θ1and θ2 are �xed and α→ +∞.The Pi
kands' dependen
e fun
tion for the asymetri
 negative logisti
 model is:
A(w) = 1 −

[

(

1 − w

θ1

)

−α

+

(

w

θ2

)

−α
]

−
1

α23



A.5 The Mixed modelThe mixed model is de�ned by:
V (x, y) =

1

x
+

1

y
−

α

x+ y
, 0 ≤ α ≤ 1Independen
e is obtained when α = 0 while total dependen
e 
ould never be rea
hed.The Pi
kands' dependen
e fun
tion for the mixed model is:

A(w) = 1 − w (1 − w)αA.6 The Asymetri
 Mixed modelThe asymetri
 mixed model is de�ned by:
V (x, y) =

1

x
+

1

y
−

(α+ θ)x+ (α+ 2θ) y

(x+ y)2
, α ≥ 0, α+ 2θ ≤ 1, α+ 3θ ≥ 0Independen
e is obtained when α = θ = 0 while total dependen
e 
ould never be rea
hed.The Pi
kands' dependen
e fun
tion for the asymetri
 mixed model is:

A(w) = θw3 + αw2 − (α+ θ)w + 1Referen
esP. Bortot and S. Coles. The multivariate gaussian tail model: An appli
ation to o
eanographi
data. Journal of the Royal Statisti
al So
iety. Series C: Applied Statisti
s, 49(1):31�49, 2000.S. Coles. An Introdu
tion to Statisti
al Modelling of Extreme Values. Springer Series in Statisti
s.Springers Series in Statisti
s, London, 2001.S. Coles, J. He�ernan, and J. Tawn. Dependen
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ember 1999.C. Cunnane. Note on the poisson assumption in partial duration series model. Water ResourRes, 15(2):489�494, 1979.M. Falk and R.-D. Reiss. On pi
kands 
oordinates in arbitrary dimensions. Journal of Multi-variate Analysis, 92(2):426�453, 2005.R.A. Fisher and L.H. Tippett. Limiting forms of the frequen
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eedings of the Cambridge Philosophi
al So
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