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Mental Health Research Networking Center (CIBERSAM)

Aleix Solanes
FIDMAG Germanes Hospitalàries
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Abstract

This introduction to the R package metansue is a (slightly) modified version of a text
submitted to the Journal of Statistical Software.

Published studies sometimes report that a difference or correlation was not statisti-
cally significant but do not report its effect size, or any statistic from which the latter
may be derived. Unfortunately, these studies cannot be excluded from meta-analyses, be-
cause their exclusion would strongly bias the meta-analytic outcome, but can neither be
included as null effect sizes because this strategy is also associated to bias. To overcome
this problem we have previously developed and validated MetaNSUE, a novel method
based on multiple imputations of the missing information. Here we present an updated
R package with several numerical improvements to make the method more robust in ex-
treme scenarios, as well as an easy-to-use Graphical User Interface for non-R users. We
also include examples of its use.

Keywords: Meta-analysis, missing, non-reported, bias, correlation, standardized mean differ-
ence, standardized mean change, GUI, R.

1. Introduction

When conducting a meta-analysis, researchers may find that some studies report that the ef-
fect (e.g., a difference between two groups) was not statistically significant but do not report
the specific value of the outcome, or any statistic from which the outcome may be derived
(e.g., a t-value). These non-statistically-significant unreported effects (NSUE) cannot be ex-
cluded from the meta-analysis but can neither be included assuming them to be null. Note
that they probably correspond to small effect sizes, and thus its exclusion would bias the
meta-analysis upwards. However, they are not probably null, for what including them as null
effect sizes would bias the meta-analysis downwards (Radua, Mataix-Cols, Phillips, El-Hage,
Kronhaus, Cardoner, and Surguladze (2012)).

To correctly include studies with NSUEs into meta-analyses, we developed MetaNSUE, a
novel method based on multiple imputations algorithms (Radua, Schmidt, Borgwardt, Heinz,
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Schlagenhauf, McGuire, and Fusar-Poli (2015)). Briefly, the method consists in obtaining
maximum likelihood estimations (MLE) of the missing outcomes (i.e., the NSUEs), adding
noise to these estimations to multiply impute the NSUEs, conducting a meta-analysis for
each set of imputations, and finally pooling these meta-analyses. Importantly, the bounds of
statistical significance of the NSUEs are taken into account throughout the analyses.

In its empirical validation, we showed that estimations were strongly biased when conduct-
ing a standard meta-analysis without NSUEs, moderately negatively biased when converting
NSUEs to zeros, and nearly unbiased when using MetaNSUE (Radua et al. (2015)). How-
ever, in subsequent uses we have detected that the method may be unstable in two extreme
scenarios, namely in meta-analyses with seldom known data, or when studies use unconven-
tional bounds (e.g., 9.9 < z < 10). Relevantly, these scenarios are indeed common in some
disciplines such as voxel-based neuroimaging.

The aim of this paper is two-fold. First, we detail a series of numerical modifications in the
original implementation of the software to make the MLE substantially more robust in extreme
scenarios. Second, we describe the MetaNSUE package for R as well as its new Graphical
User Interface (GUI), freely available at www.metansue.com, www.sdmproject.com and at
the CRAN repository.

2. Conversion of the raw statistics to effect sizes

Prior to the MLE step, known statistics (e.g., t-values) must be converted to effect sizes using
standard formula (Radua et al. (2012)). The conversion is conducted with simple R functions,
specific for each measure, that return an object of class “nsue”:

� “smc from t” converts one-sample t-values into standard mean changes:

yi = J (dfi) ·
√

1

ni
· ti (1)

where J is the exact form of the Hedge correction factor (Hedges and Olkin (1985)),
dfi are the degrees of freedom, ni is the sample size and ti is the t-value. To note, J
has been numerically improved for the revisited version of the method for large degrees
of freedom using the combination of the R functions “exp” and “lgamma” instead of the
function “gamma”.

� “smd from t” converts two-sample t-values into standard mean differences:

yi = J (dfi) ·

√
1

ni,1
+

1

ni,2
· ti (2)

where ni,1 is the size of the first group, and ni,2 is the size of the second group.

� “z from r” converts r correlation coefficients into z values using the Fisher transform):

yi = atanh(ri) (3)

where ri is the correlation coefficient.

http://www.metansue.com/
http://www.sdmproject.com/
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Statistics in studies with NSUEs must be coded with “NA”, so that the above functions know
that these studies have NSUEs and use the alpha level of the studies to calculate the effect
sizes corresponding to the bounds of non-statistical significance (i.e., the unknown effect-sizes
must be within these bounds; otherwise, they would have reached statistical significance).

The variances of correlations only depend on sample sizes and thus can be straightforwardly
derived:

vi =
1

ni − 3
(4)

Conversely, the variances of standardized mean changes and differences depend on the effect
sizes, which are unknown in NSUE studies. To overcome this problem, the formula of the
variance is expressed as a function of two constants (k1 and k2) that only depend on the
sample sizes (or the degrees of freedom) but allow a subsequent straightforward derivation of
the variances:

vi = k1,i + k2,i · y2i

k1,i =

{
smc : 1

ni
smd : 1

ni,1
+ 1

ni,2

k2,i = 1− dfi − 2

dfi · J(dfi)2

(5)

2.1. Study labels and correlation

Objects of class “nsue” also contain the labels of the studies, which beyond being useful
for associating data to studies (e.g., in a forest plot), are used to indicate which studies
are related (MetaNSUE understands that all studies with the same label are related). The
expected correlation between dependent studies can also be specified.

2.2. Example of use

Before we start with the examples, the metansue package has to be loaded:

> library(metansue)

Then we can run the example:

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> x

'nsue' object description:

- Measure: standardized mean change

- Known measures: 6

- Non-statistically-significant unknown measures: 4

> str(x)
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List of 8

$ measure : chr "smc"

$ y : num [1:10] 0.527 NA NA NA NA ...

$ y_lo : num [1:10] -0.314 -0.449 -0.427 -0.408 -0.475 ...

$ y_up : num [1:10] 0.314 0.449 0.427 0.408 0.475 ...

$ y2var_k1: num [1:10] 0.025 0.05 0.0455 0.0417 0.0556 ...

$ y2var_k2: num [1:10] 0.0134 0.029 0.026 0.0235 0.0328 ...

$ labels : chr [1:10] "study1" "study2" "study3" "study4" ...

$ rm :List of 1

..$ r: num 0.3

- attr(*, "class")= chr "nsue"

2.3. Special case: missing correlations in two-sample pre-post studies

Two-sample pre-post studies can be meta-analyzed with the R functions “smd from t” and
“meta” (see below), i.e., imputing the unknown effect sizes of the between-group comparison
of the pre-post effects. However, an alternative method consists in imputing the unknown
correlations between pre and post measures, and using them, along with the reported means
and standard deviations of the groups at the two time-points, to estimate the unknown effect
sizes of the between-group comparison of the pre-post differences Harrison, Fernandez de la
Cruz, Enander, Radua, and Mataix-Cols (2016). An advantage of this method may be that
imputed data is ensured to follow the pre-post correlations. However, is inapplicable when
means and standard deviations are not fully reported.

To apply this method, user can use the R function “r in smd from t means and sds1”, which
calculates the (Fisher transform of the) pre-post correlation:

vpooled =
df1 · v1 + df2 · v2

df1 + df2

=
df1 · (v1,pre + v1,post − 2 · s1,pre · s1,post · r) + df2 · (v2,pre + v2,post − 2 · s2,pre · s2,post · r)

df1 + df2

r =
df1 · (v1,pre + v1,post − vpooled) + df2 ·

(
v2,pre + v22,post − vpooled

)
2 · (df1 · s1,pre · s1,post + df2 · s2,pre · s2,post)

(6)
where, mj , sj , vj , dfj are the mean, standard deviation, variance and degrees of freedom of
group j, vpooled is the pooled variance (straightforwardly derived from t-values) and r is the
pre-post correlation.

Correlations can be then imputed and meta-analyzed using the R function“meta”. This meta-
analysis is of no interest but we recommend that the user checks, e.g., that correlation values
are plausible.

Finally, imputed correlations may be converted back to between-group comparisons of the
pre-post differences (see (6)) using the R function “r in smd from t means and sds2”. This
function also calls again the last part of the R function “meta”, easily returning the meta-
analysis of interest.

Example of use:

> t <- c(NA, -2.2, -3.0, -2.1, NA, -2.7, -2.6, -2.4, -3.2)
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> n1 <- c(18, 15, 22, 17, 14, 23, 29, 24, 45)

> mean1.pre <- c(49.9, 49.9, 50.2, 49.8, 50.1, 50.0, 49.9, 51.0, 49.8)

> sd1.pre <- c(5.1, 5.2, 6.6, 5.3, 5.5, 3.6, 3.2, 5.9, 5.9)

> mean1.post <- c(65.6, 65.7, 66.0, 65.8, 66.6, 65.9, 66.0, 67.0, 65.9)

> sd1.post <- c(6.1, 7.3, 5.4, 6.1, 4.6, 7.1, 4.6, 2.8, 7.1)

> n2 <- c(18, 18, 23, 18, 16, 23, 27, 23, 45)

> mean2.pre <- c(50.8, 50.2, 50.0, 49.7, 49.8, 50.6, 49.8, 50.9, 49.9)

> sd2.pre <- c(5.2, 5.9, 4.0, 7.5, 5.7, 4.0, 5.8, 5.6, 5.4)

> mean2.post <- c(69.9, 70.3, 70.4, 69.8, 70.2, 70.0, 69.7, 70.8, 69.7)

> sd2.post <- c(5.2, 4.7, 4.5, 3.6, 3.7, 6.1, 4.6, 5.9, 6.2)

> r <- r_in_smd_from_t_means_and_sds1(t, n1, mean1.pre, sd1.pre,

+ mean1.post, sd1.post, n2, mean2.pre, sd2.pre, mean2.post, sd2.post)

> r

'nsue' object description:

- Measure: correlation in standardized mean difference

- Known measures: 7

- Non-statistically-significant unknown measures: 2

> mr <- meta(r)

> mr

Meta-analysis description:

- Measure: correlation in standardized mean difference

- Known measures: 7

- Non-statistically-significant unknown measures: 2

- Imputations: 500

- Model: measure ~ 1

- Hypothesis: (Mean)=0

Residual heterogeneity (tau^2): 0.0269 I^2: 49.98% H^2: 2.06

F-statistic (heterogeneity): 1.66 on 8 and 37816.2 df Pr(>F): 0.1014

Model:

Estimate Std. Error

(Mean) 0.6270 0.0843

One-row hypothesis:

Corr z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.556 7.4395 <.0001 0.432 0.660 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> m <- r_in_smd_from_t_means_and_sds2(mr)

> m
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Meta-analysis description:

- Measure: standardized mean difference

- Known measures: 7

- Non-statistically-significant unknown measures: 2

- Imputations: 500

- Model: measure ~ 1

- Hypothesis: (Mean)=0

Residual heterogeneity (tau^2): 0.0000 I^2: 0.00% H^2: 1.00

F-statistic (heterogeneity): 0.06 on 8 and 657883.4 df Pr(>F): 0.9999

Model:

Estimate Std. Error

(Mean) -0.7221 0.1023

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 -0.7221 -7.0565 <.0001 -0.9227 -0.5216 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3. NSUE meta-analysis

The command “meta” conducts the core steps of the analysis:

a) MLE of the unknown effect-sizes and between-study heterogeneity (Radua et al. (2015))

b) Multiple imputation of these unknown effect sizes based on the MLE (Rubin (1987))

c) Separate meta-analyses for each set of imputations (Viechtbauer (2010))

d) Pooling of the results of the meta-analyses (Li, Meng, Raghunathan, and Rubin (1991))

e) Hypothesis testing using the pooling statistics (Fox (2008))

3.1. Maximum likelihood estimation (MLE)

It must be highlighted that the MLE is conducted with the only aim to provide a basis for the
subsequent multiple imputations of the unknown effects. Numbers resulting from this step
cannot be understood as meta-analytic results, because they do not incorporate the complex
body of variances involved in a meta-analysis. These variances are not only important per se,
but also for the estimation of the effect sizes.

Weight for related studies

As in a general linear model, the researcher could deal with related studies by specifying
the correct factors in the design matrix. However, a simpler and more convenient approach
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in some meta-analyses is to combine each group of related studies into a single “combined
study” with decreased variance (Alegria, Radua, and Rubia (2016)Norman, Carlisi, Lukito,
Hart, Mataix-Cols, Radua, and Rubia (2016)Rubia, Alegria, Cubillo, Smith, Brammer, and
Radua (2014)). To this end, MetaNSUE calculates a MLE weight for each study according
to the following formula (Radua et al. (2015)):

wi =
1

1 + (Ri − 1) · r
(7)

where Ri is the number of studies with the same label as the ith study and r is the expected
correlation specified in the “nsue” object. Note that with this adjustment, the overall weight
of a group of related studies is:

Ri · wi =
Ri

1 + (Ri − 1) · r
(8)

Note that Ri · wi = 1 if rr = 1 (i.e., the related studies are indeed the same), Ri · wi = Ri if
rr = 0 (i.e., the “related” studies are indeed unrelated), and 1 < Ri ·wi < Ri if r lies between
0 and 1.

The log-likelihood

MLE is based on finding the parameters that maximize the likelihood of the data. Specifically,
the likelihood to maximize is the multiplication of the likelihood of each reported effect size
(obtained with the probability density function, pdf) and the likelihood that each unreported
effect size lays within its two effect size bounds (obtained with the probability mass function,
pmf):

L
(
θ; yi, . . . ; v

2
i , . . . ;wi, . . . ; yα/2,j , y1−α/2,j , . . . ; v

2
α/2,j , v

2
1−α/2,j , . . . ;wj , . . .

)
=

N1∏
i=1

pdf
(
yi; v

2
i |θ
)wi · N2∏

j=1

pmf
(
yα/2,j , y1−α/2,j ; v

2
α/2,j , v

2
1−α/2,j |θ

)wj (9)

where θ are the parameters to be estimated, y are effect sizes, v2 their variances, N1 is the
number of reported effect sizes, N2 is the number of studies with NSUEs.

The parameters to estimate include not only the coefficients of interest (usually the intercept,
i.e., the main outcome of a meta-analysis) but also regressors that may be used to better
estimate the effect size of a study. The original version of MetaNSUE also included the
between-study heterogeneity τ2 as a parameter to estimate, but the revisited version conducts
this estimation in a subsequent step due to the modifications described in the next section.

Assuming normality, the pdf is simply:

pdf
(
yi, v

2
i |β
)

=
1

vi
φ

(
yi −Xi · β

vi

)
=

1

vi
· 1√

2π
· exp

(
−1

2
·
(
yi −Xi · β

vi

)2
)

(10)

where Xi is the ith row of the design matrix of the model of covariates, β is the vector of
coefficients of the model of covariates, and φ is the probability density function of the standard
normal distribution.
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The pmf is the difference of the cumulated distribution function evaluated at the upper and
lower effect size bounds:

pmf
(
yα/2,i, y1−α/2,i; v

2
α/2,i, v

2
1−α/2,i|β

)
= Φ

(
y1−α/2,i −Xi · β

v1−α/2,i

)
− Φ

(
yα/2,i −Xi · β

vα/2,i

)
(11)

where Φ is the cumulated distribution function of the standard normal distribution.

In practice it is more convenient to minimize the minus log-likelihood than to directly maxi-
mize the likelihood. Thus, the expression to minimize is the sum of the minus logarithms of
the pdf or pmf of each study.

The minus logarithm of the pdf is again relatively simple:

−log
(
pdf

(
yi, v

2
i |β
))

= log (vi) +
1

2
· log (2π) +

1

2
· (yi −Xi · β)2

v2i

=
1

2
· log (2π) +

1

2
· log

(
v2i
)

+
1

2
· (yi −Xi · β)2

v2i

= (ct.) +
1

2
·

[
log
(
v2i
)

+
(yi −Xi · β)2

v2i

] (12)

Conversely, the logarithm of the pmf may be numerically unstable in an extreme scenario
when the two expressions inside the cumulated distributed are large and close. To overcome
numerical errors, the revisited version of MetaNSUE includes the following transformation:

log (Φ (m)− Φ (n)) = log

(
Φ (m) ·

(
1− Φ (n)

Φ (m)

))
= log (Φ (m)) + log

(
1− Φ (n)

Φ (m)

)
= Φlog (m) + log

(
−
(

Φ (n)

Φ (m)
− 1

))
= Φlog (m) + log

(
−
(

exp

(
log

(
Φ (n)

Φ (m)

))
− 1

))
= Φlog (m) + log (− (exp (log (Φ (n))− log (Φ (m)))− 1))

= Φlog (m) + log (− (exp (Φlog (n)− Φlog (m))− 1))

= Φlog (m) + log (−expm1 (Φlog (n)− Φlog (m)))

(13)

where expm1(x) is equivalent to ex−1 but with increased numerical accuracy. For m = 10 and
n = 9.9, the initial expression wrongly returns −∞, whereas the last, equivalent expression
correctly returns −52.7.

Minimization of the minus log-likelihood is conducted using the R function “optimize” when
there is a single coefficient and with the R function “optim” when there are two or more
coefficients. The latter function requires initial values for the parameters, which in the original
version were simply the mean for the intercept and zeroes for the remaining coefficients. In the
revisited version, these initial values are better estimated with a fixed-effects meta-analysis
(assuming NSUEs to be the mean of their upper and lower bounds).
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Leave-one-out protection

When nearly all studies of a meta-analysis are NSUEs, there is a possibility that the single or
few studies with known measures drive the MLE, potentially leading to a falsely positive meta-
analysis. This situation may be detected in a subsequent leave-one-out jack-knife analysis
when the artifact is clearly produced by a single study. For example, this was the case for
reward feedback in Radua et al. (2015). However, the issue could potentially be unnoticed in
less extreme situations.

To minimize this possibility, the revisited version of MetaNSUE presented in this work includes
a leave-one-out protection within the MLE step, which consists in iteratively discarding the
study that increases the most the MLE effect size. Specifically, the MLE is first estimated
with all studies but the first, then with all studies but the second, then with all studies but
the third, and so on, and only the combination returning the lowest absolute MLE effect size
is kept.

When the number of studies is large, this iteration may have to be repeated several times. In
each iteration, one additional study is discarded. This process is repeated until the probability
that the meta-analysis is falsely positive due to the issue is not higher than 0.05 even in
the worst-case scenario (i.e., when all studies with not-statistically significant effect sizes are
NSUEs). This probability may be estimated as follows. In a meta-analysis with N studies, the
meta-analysis could be falsely positive if there was one falsely positive study and this positive
study made the meta-analysis positive. However, the meta-analysis could also be falsely
positive if there were two falsely positive studies and these two positive studies made the
meta-analysis positive, or if there were three falsely positive studies and these three positive
studies made the meta-analysis positive. In general, the meta-analysis could be falsely positive
if there were k falsely positive studies and these k positive studies made the meta-analysis
positive. Then, the overall probability is the sum of these probabilities:

P =
N∑
k=1

pFP studies (k,N) · pFP meta−analysis (k,N) (14)

where pFPstudies is the probability of having k falsely positive studies, and pFPmeta−analysis is
the probability of having a falsely positive meta-analysis if there are k falsely positive studies.
pFPstudies is simply the probability mass function of the binomial distribution and can be thus
straightforwardly calculated. Conversely, pFPmeta−analysis does not have a simple expression
but with simulations, we found that for α = 0.05 can be approximated as:

pFP meta−analysis (k,N) =

1 + exp

 5.62 ifk = 1

−0.82 + 0.059N ifk = 2

1.27 + 0.13k − 0.0075N ifk > 2



−1

(15)

Each leave-one-out iteration removes one potential falsely positive study, decreasing k, N ,
and the overall probability of having a falsely positive meta-analysis. The strategy to know
the optimal number of studies to discard consists then in repeatedly conducting leave-one-out
iterations until the overall probability of having a falsely positive meta-analysis is not higher
than α = 0.05. If the number of studies is very large, the number is roughly approximated
using a linear simplification.

When the user does not aim to conduct a simple, mean meta-analysis but a meta-regression
or other linear models, studies in the leave-one-out iterations must be discarded according
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to the effect size of the hypothesis of interest, rather than according to the effect size of the
mean. For this reason, the user must specify the hypothesis to contrast before conducting the
MLE, and a new MLE must be conducted for each other new hypothesis.

Estimation of heterogeneity τ 2

Once the coefficients have been estimated, a second MLE step is conducted to estimate the
between-study heterogeneity parameter τ2 using all studies. The likelihood to maximize is
the same as in (9), and we have added the same numerical improvements described in (13).
However, the pdf and pmf described in (10) and (11) are modified to include τ2 (and to use
ei = yi – Xi · β instead of yi):

pdf
(
ei, v

2
i |τ2

)
=

1√
v2i + τ2

φ

 ei√
v2i + τ2


=

1√
v2i + τ2

· 1√
2π
· exp

(
−1

2
· e2i
v2i + τ2

)

−log
(
pdf

(
yi, v

2
i |τ2

))
=

1

2
· log

(
v2i + τ2

)
+

1

2
· log (2π) +

1

2
· e2i
v2i + τ2

=
1

2
· log (2π) +

1

2
· log

(
v2i + τ2

)
+

1

2
· e2i
v2i + τ2

= (ct.) +
1

2
·
[
log
(
v2i + τ2

)
+

e2i
v2i + τ2

]

(16)

pmf
(
eα/2,i, e1−α/2,i; v

2
α/2,i, v

2
1−α/2,i|τ

2
)

= Φ

 e1−α/2,i√
v21−α/2,i + τ2

− Φ

 eα/2,i√
v2α/2,i + τ2

 (17)

3.2. Multiple imputation

The multiplication of X and β returns the expected value of the effect size of each NSUE
study. For example, if β = (3.2, 0.2) and Xi = (1, 2), the expected value of the effect size
for this ith study is 1 × 3.2 + 2 × 0.2 = 3.6. Then, the multiple imputation step consists in
adding Gaussian noise to the expected value in order to have realistic imputations. In the
example, random noise would be added to 3.6 so that imputation 1 could be 3.3, imputation
2 could be 3.7, and etcetera. Note that imputing the NSUE studies using their expected value
without added noise, would erroneously mean assuming that both within-study variability
and between-study heterogeneity are null.

The addition of noise must meet two conditions: a) the noise must be the sum of the variance
of the effect size plus τ2; and b) the noisy imputation must be between the effect size bounds.
The truncated normal distribution accommodates these conditions, and thus each imputation



Anton Albajes-Eizagirre, Aleix Solanes, Joaquim Radua 11

is a random generation of:

pdf (yi|θ) =

1√
v2
i+τ̂

2
· φ
(

yi−ŷi√
v2
i+τ̂

2

)
Φ

(
yi,1−α/2−ŷi√

v2
i+τ̂

2

)
− Φ

(
yi,α/2−ŷi√
v2
i+τ̂

2

) , yi ∈ (yi,α/2, yi,1−α/2) (18)

However, it must be noted that for some measures such as standardized mean differences, the
variance depends on the imputed effect sizes (rather than on the sample size alone). Therefore,
in those imputations in which the noise decreases the effect size, the variance is smaller and
the study receives more weight. Conversely, in those imputations in which the noise increases
the effect size, the variance is larger and the study receives less weight. In order to avoid this
bias, the probability of a given effect size is weighted by the inverse of the weight (i.e., the
variance) that the effect size would receive in a subsequent meta-analysis:

pdf (yi|θ) =

(
v̂2i,yi + τ̂2

)
· 1√

v̂2
i,ŷi

+τ̂2
· φ

(
yi−ŷi√
v̂2
i,ŷi

+τ̂2

)∫
yi,1−α/2

x=yi,α/2

((
v̂2i,x + τ̂2

)
· 1√

v̂2
i,ŷi

+τ̂2
· φ

(
x−ŷi√
v̂2
i,ŷi

+τ̂2

)) , yi ∈ (yα/2, y1−α/2) (19)

In practice, the continuum between the bounds is divided in a number of bins; the probability
of each bin is calculated using the numerator of (19), and a bin is randomly selected according
to its probability.

Also important, the noise for related studies is created accounting for the correlations between
them. Specifically, instead of straightforwardly using the expected values and variances as
in (18) or (19), these are conditioned to the observed and/or to the already imputed related
studies (Radua et al. (2015)). For example, for two related studies, the expected value and
variance of the first study are simply as in (18) or (19), whereas the expected value and
variance of the second study are:

 ŷ∗2,1
...

ŷ∗2,nimp

 =

 y1,1
...

y1,nimp

× γ̂
v̂∗

2

2 = v̂22 − γ̂> × Π̂XX × γ̂

(20)

where y1,j is the jth imputation of the study 1, nimp is the number of imputations, and γ̂
and Π̂XX are the coefficients and covariance matrix of the linear model used to predict the
expected values and variances of the study 2 from the imputations of study 1:

γ̂ = Π̂−1XX × Π̂XY

Π̂XX =
(
v̂21 + τ̂2

)
Π̂XY =

(√
v̂21 + τ̂2

)
·
√
v̂22 + τ̂2 · r

(21)
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3.3. Meta-analysis, pooling and hypothesis testing

After the multiple imputation step, there are several datasets of complete data. For each im-
puted dataset, related studies are combined so that each group of related studies is converted
into a single study. The effect size of this “combined study” is simply the mean effect size of
the corresponding related studies, whereas the variance of the “combined study” is the mean
variance of the corresponding related studies divided by the sum of the weights calculated
in (7). In other words, the variance of the “combined study” is reduced by (Alegria et al.
(2016)Norman et al. (2016)Rubia et al. (2014)):

Ri∑
i=1

wi =

Ri∑
i=

1

1 + (Ri − 1) · r
=

Ri
1 + (Ri − 1) · r

(22)

The resulting datasets can be meta-analyzed using standard formula. As in the “metafor”
package Viechtbauer (2010), MetaNSUE estimates τ2 using restricted-maximum likelihood
(REML) for its statistical advantages (Viechtbauer (2005)), and the covariates included in
the MLE step are also included here in the modeling to allow testing meta-regressions or other
linear models:

β = Λ×X> ×W × Y

Λ =
(
X> ×W ×X

)−1
H2 = 1 +

τ̂2REML

df
· trace (PFE)

I2 = 1− 1

H2
, I2 ≥ 0

Q = Y > × PFE × Y, Q ≥ 0

(23)

where β are the coefficients, Λ is their covariance matrix, H2, I2 and Q are heterogeneity
statistics, and:

W = diag
(

1
/̂
v2i + τ̂2REML

, ...
)

PFE = WFE −WFE ×X ×
(
X> ×WFE ×X

)−1
×X> ×WFE

WFE = diag
(

1
/̂
v2i
, ...
) (24)

After a meta-analysis has been conducted for each imputation dataset, the resulting statistics
are pooled Li et al. (1991) in order to have a single vector of coefficients and a single covariance
matrix:

βpooled = mean (β)

σ2pooled = mean
(
σ2
)

+

(
1 +

1

nimp

)
· var

(
σ2
) (25)

Finally, the hypothesis specified by the user is tested using the pooled statistics:

βH = H × βpooled
σ2H = H × Λpooled ×H>

Z =
βH
σH

(26)
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As commented earlier, if the user wants to test another hypothesis, the process must be
repeated from the MLE step, typing the “meta” command again.

3.4. Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> m <- meta(x)

> m

Meta-analysis description:

- Measure: standardized mean change

- Known measures: 6

- Non-statistically-significant unknown measures: 4

- Imputations: 500

- Model: measure ~ 1

- Hypothesis: (Mean)=0

Residual heterogeneity (tau^2): 0.0016 I^2: 2.63% H^2: 1.04

F-statistic (heterogeneity): 0.30 on 9 and 8677.7 df Pr(>F): 0.9763

Model:

Estimate Std. Error

(Mean) 0.4212 0.0738

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4212 5.7075 <.0001 0.2765 0.5658 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> str(m)

List of 10

$ measure : chr "smc"

$ y2var_k1 : num [1:10] 0.025 0.05 0.0455 0.0417 0.0556 ...

$ y2var_k2 : num [1:10] 0.0134 0.029 0.026 0.0235 0.0328 ...

$ labels : chr [1:10] "study1" "study2" "study3" "study4" ...

$ rm :List of 3

..$ r : num 0.3

..$ M : num [1:10, 1:10] 1 0 0 0 0 0 0 0 0 0 ...

..$ weights: num [1:10] 1 1 1 1 1 1 1 1 1 1

$ known :List of 2

..$ i: int [1:6] 1 6 7 8 9 10
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..$ y: num [1:6] 0.527 0.498 0.407 0.551 0.475 ...

$ unknown :List of 2

..$ i: int [1:4] 2 3 4 5

..$ y: num [1:4, 1:500] 0.3437 0.3824 0.1041 0.0831 0.146 ...

$ model :List of 6

..$ formula: chr "~ 1"

..$ matrix : num [1:10, 1] 1 1 1 1 1 1 1 1 1 1

..$ labels : chr "(Mean)"

..$ coef : num 0.421

..$ cov : num [1, 1] 0.00545

..$ se : num 0.0738

$ heterogeneity:List of 4

..$ tau2: num 0.00161

..$ h2 : num 1.04

..$ i2 : num 0.0263

..$ q :'data.frame': 1 obs. of 4 variables:

.. ..$ f : num 0.295

.. ..$ df1 : int 9

.. ..$ df2 : num 8678

.. ..$ p.value: num 0.976

$ hypothesis :List of 6

..$ text : chr "(Mean)=0"

..$ matrix : num [1, 1] 1

..$ coef : num 0.421

..$ se : num [1, 1] 0.0738

..$ z : num [1, 1] 5.71

..$ p.value: num [1, 1] 1.15e-08

- attr(*, "class")= chr "meta.nsue"

4. Other functions in the package

4.1. forest

This function creates a forest plot of the studies, showing their effect sizes and the 95%
confidence intervals. For studies with NSUE, a light gray shadow shows the interval containing
95% of the imputations. The function also returns the optimal width and height of the plot.

Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> m <- meta(x)

> forest(m)
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Use pdf(filename, width, height) before calling forest to save it.

The optimal width and height of this plot is ~7 x ~4 inches.

See an example of outcome in Figure 4

4.2. funnel

This function creates a funnel plot of the studies, showing the residual effect size of the studies
on the x-axis and their standard errors on the y-axis. For studies with NSUE, a light gray
shadow shows the ellipse containing 95% of the imputations.

Asymmetry in the funnel plot is usually understood as an indication of publication bias, but
this might not be always the case and the researcher should be especially cautious because
there are other causes of asymmetry, such as selective outcome reporting, poor methodological
quality in the smaller studies, or true heterogeneity (i.e., effect size truly depends on study
size).

Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> m <- meta(x)

> funnel(m)

Use pdf(filename) before calling funnel to save it.

See an example of outcome in Figure 4

4.3. leave1out

This function is analogue to “meta” but, instead of meta-analyzing all the studies once, it
meta-analyses all the studies but one n times. This is useful for exploring how each individual
study affects the overall estimate of the rest of the studies.

Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> summary(leave1out(x))

Meta-analysis model: smc ~ 1

Discarded study: study1

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)
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(Mean)=0 0.3962 4.7448 <.0001 0.2325 0.5598 ***

Discarded study: study2

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4405 5.8078 <.0001 0.2919 0.5892 ***

Discarded study: study3

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4391 5.7428 <.0001 0.2892 0.5889 ***

Discarded study: study4

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4447 5.8428 <.0001 0.2955 0.5939 ***

Discarded study: study5

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4352 5.6955 <.0001 0.2855 0.5850 ***

Discarded study: study6

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4075 5.0409 <.0001 0.2491 0.5659 ***

Discarded study: study7

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4184 5.2559 <.0001 0.2624 0.5744 ***

Discarded study: study8

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.3994 4.9297 <.0001 0.2406 0.5581 ***

Discarded study: study9

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4153 5.2563 <.0001 0.2605 0.5702 ***

Discarded study: study10

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.3895 4.9735 <.0001 0.2360 0.5430 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4.4. metabias

This function conducts a meta-regression of the effect sizes of the studies by their standard
errors. This aims to detect asymmetry in the funnel plot indicating potential publication bias,
and consequently the researcher should take the same caution than with funnel plots.

Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> m <- meta(x)

> metabias(m)

'meta.nsue' regression test for funnel plot asymmetry

data: m

z = -0.4166, p-value = 0.677

4.5. subset

This function returns a subset of the studies included in a “nsue” object, according to a logical
condition.

Example of use

> t <- c(3.4, NA, NA, NA, NA, 2.8, 2.1, 3.1, 2.0, 3.4)

> n <- c(40, 20, 22, 24, 18, 30, 25, 30, 16, 22)

> x <- smc_from_t(t, n)

> x

'nsue' object description:

- Measure: standardized mean change

- Known measures: 6

- Non-statistically-significant unknown measures: 4

> sx <- subset(x, n > 20)

> sx

'nsue' object description:

- Measure: standardized mean change

- Known measures: 5

- Non-statistically-significant unknown measures: 2
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5. The GUI

The main window of the GUI shows a table interface, which offers functionalities for entering
and modifying the data. Rows correspond to studies and columns to variables. In a meta-
analysis of one-sample studies, there must be a column called “study” with the labels of the
studies, a column called “n1” with their sample sizes, and a column containing the outcome
statistic (e.g., the t-value of each study). In a meta-analysis of two-sample studies, the column
called “n1” must specify the sizes of the first group (e.g., the patients), and there must be
another column called “n2” with the sample sizes of the second group (e.g., the controls).
Figure 1 displays the main window with the buttons for managing data tables (New, Load
and Save), as well as buttons for adding and deleting studies and/or variables.

Figure 1: Main window of the GUI with an example data table loaded.

After saving the table, the user must press the button “Run MetaNSUE”, at the bottom right
of the main window. A dialog asks then the type of outcome (e.g., a correlation), the name
of the variable specifying the outcome statistic (e.g., “t”), and whether the user wants to
conduct a main analysis or a meta-regression. In case of a main analysis, a second dialog will
ask which additional analyses and/or plots must be conducted. In case of a meta-regression,
the user must select the modulators (and optionally specify a user-defined hypothesis matrix)
(Figure 2).

After pressing the button ’Launch MetaNSUE’, a webpage with the results of the meta-
analysis will be automatically open (see Section 6 for examples).

6. Worked examples
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Figure 2: Dialogs for Mean (left) and Linear Model (right) analyses.

6.1. Main analysis

The file “example1.txt” contains simulated data of the differences in the blood levels of phos-
phate between patients with a given disorder and healthy controls. Within the GUI, press the
button “Load table” and select the file “example1.txt” to load the data, which are organized
in the following columns:

� “study”: specifies a label for each study (here we used the name of the first author and
the year of publication of the study),

� “n1”: specifies the number of patients of each study,

� “n2”: specifies the number of controls of each study,

� “t”: specifies the t statistic of the t-test conducted in each study to compare the blood
levels of phosphate between patients and controls.

Thus, the study in the first row was conducted by Tintin et al on 2004, included 43 patients
and 44 controls, and the t statistic of its t-test was 2.35. The paper of the study in the second
row, conducted by Milu et al on 2013, reports that it did not find statistically significant
differences between patients and controls, but it does not report the actual value of the t
statistic; this is the reason why this is coded as “NA” (Not Available).

To conduct the meta-analysis, press the button “Run MetaNSUE”, select “Standard mean
difference (2-sample)”,“t”and“Main analysis (mean)”, press the button“Next”, select optional
tests and plots, press the button “Next”, and press the button “Launch MetaNSUE”. The GUI
will open the web file displayed in Figure 3.

You can click the plots to use larger, high-resolution pictures, like the ones displayed in Figure
4.

Find below the code to conduct the same analysis within R:

> data <- read.table("example1.txt", header = TRUE)

> y <- smd_from_t(data$t, data$n1, data$n2, labels = data$study)

> m <- meta(y)

> m

Meta-analysis description:

- Measure: standardized mean difference
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Figure 3: Results webpage for a meta-analysis of a 2-sample standard mean differences.

- Known measures: 11

- Non-statistically-significant unknown measures: 4

- Imputations: 500

- Model: measure ~ 1

- Hypothesis: (Mean)=0

Residual heterogeneity (tau^2): 0.0004 I^2: 0.60% H^2: 1.01

F-statistic (heterogeneity): 0.20 on 14 and 9549.7 df Pr(>F): 0.9994

Model:

Estimate Std. Error

(Mean) 0.4568 0.0609

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4568 7.5003 <.0001 0.3374 0.5762 ***
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Figure 4: Forest plot (left) and funnel plot (right).

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary(leave1out(y))

Meta-analysis model: smd ~ 1

Discarded study: tintin_2004

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4529 7.1292 <.0001 0.3284 0.5774 ***

Discarded study: milu_2013

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4685 7.5535 <.0001 0.3469 0.5901 ***

Discarded study: dupond_2005

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4540 7.2451 <.0001 0.3312 0.5768 ***

Discarded study: dupont_2006

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4606 7.2402 <.0001 0.3359 0.5853 ***

Discarded study: haddock_1999

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4345 6.8318 <.0001 0.3098 0.5592 ***
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Discarded study: rastapopoulos_1997

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4729 7.5731 <.0001 0.3505 0.5953 ***

Discarded study: castafiore_2005

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4569 7.1768 <.0001 0.3321 0.5817 ***

Discarded study: tornassol_2002

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4467 7.0348 <.0001 0.3222 0.5711 ***

Discarded study: nestor_2017

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4533 7.2288 <.0001 0.3304 0.5762 ***

Discarded study: xang_2010

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4518 7.1477 <.0001 0.3279 0.5757 ***

Discarded study: llantio_2013

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4399 6.9291 <.0001 0.3155 0.5644 ***

Discarded study: alcazar_2006

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4714 7.6483 <.0001 0.3506 0.5921 ***

Discarded study: figueira_2009

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4797 7.6737 <.0001 0.3572 0.6022 ***

Discarded study: allan_2003

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4497 7.1575 <.0001 0.3266 0.5729 ***

Discarded study: abdallah_1998
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One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4563 7.2237 <.0001 0.3325 0.5801 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> metabias(m)

'meta.nsue' regression test for funnel plot asymmetry

data: m

z = 0.34988, p-value = 0.7264

> forest(m)

Use pdf(filename, width, height) before calling forest to save it.

The optimal width and height of this plot is ~8 x ~6 inches.

> funnel(m)

Use pdf(filename) before calling funnel to save it.

6.2. Meta-regression

The file “example2.txt”also contains simulated data of the differences in the blood levels of
phosphate between patients with a given disorder and healthy controls, plus an additional
column with the mean age of the participants of each study.

To know whether the differences between patients and controls are modulated by the age
of the participants, press the button “Run MetaNSUE”, select “Standard mean difference
(2-sample)”, “t” and “Meta-regression (linear model)”, press the button “Next”, select “age”,
press the button “Next”, and press the button “Launch MetaNSUE”. The GUI will open the
web file displayed in Figure 5.

Find below the code to conduct the same analysis within R:

> data <- read.table("example2.txt", header = TRUE)

> y <- smd_from_t(data$t, data$n1, data$n2, labels = data$study)

> meta(y, ~ data$age)

Meta-analysis description:

- Measure: standardized mean difference

- Known measures: 10

- Non-statistically-significant unknown measures: 5

- Imputations: 500

- Model: measure ~ data$age
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Figure 5: Results webpage for a meta-regression of a 2-sample standard mean differences
using the variable “age” as a modulator.

- Hypothesis: data$age=0

Residual heterogeneity (tau^2): 0.0012 I^2: 1.78% H^2: 1.02

F-statistic (heterogeneity): 0.40 on 13 and 14371.6 df Pr(>F): 0.9700

Model:

Estimate Std. Error

(Intercept) -0.0699 0.3537

data$age 0.0107 0.0061

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

data$age=0 0.0107 1.7509 0.0800 -0.0013 0.0228 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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6.3. Tables without missing data

The files “example1 truth.txt” and “example2 truth.txt” contain the same data, but the
NSUEs have been replaced by the actual t statistics obtained during the simulation of the
studies. The user may repeat the analyses and find that the results are similar to those above,
and identical to the ones obtained with the “metafor” package Viechtbauer (2010).

> data <- read.table("example1_truth.txt", header = TRUE)

> y <- smd_from_t(data$t, data$n1, data$n2, labels = data$study)

> meta(y)

Meta-analysis description:

- Measure: standardized mean difference

- Known measures: 15

- Non-statistically-significant unknown measures: 0

- Imputations: 0

- Model: measure ~ 1

- Hypothesis: (Mean)=0

Residual heterogeneity (tau^2): 0.0000 I^2: 0.00% H^2: 1.00

F-statistic (heterogeneity): 0.52 on 14 and Inf df Pr(>F): 0.9208

Model:

Estimate Std. Error

(Mean) 0.4572 0.0577

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

(Mean)=0 0.4572 7.9228 <.0001 0.3441 0.5703 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> library(metafor)

> n <- nrow(data)

> y <- escalc(measure = "SMD", vtype = "UB",

+ m1i = data$t * sqrt(1 / data$n1 + 1 / data$n2),

+ n1i = data$n1, n2i = data$n2,

+ m2i = rep(0, n), sd1i = rep(1, n), sd2i = rep(1, n))

> rma(y)

Random-Effects Model (k = 15; tau^2 estimator: REML)

tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0187)

tau (square root of estimated tau^2 value): 0

I^2 (total heterogeneity / total variability): 0.00%

H^2 (total variability / sampling variability): 1.00
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Test for Heterogeneity:

Q(df = 14) = 7.3393, p-val = 0.9208

Model Results:

estimate se zval pval ci.lb ci.ub

0.4572 0.0577 7.9228 <.0001 0.3441 0.5703 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> data <- read.table("example2_truth.txt", header = TRUE)

> y <- smd_from_t(data$t, data$n1, data$n2, labels = data$study)

> meta(y, ~ data$age)

Meta-analysis description:

- Measure: standardized mean difference

- Known measures: 15

- Non-statistically-significant unknown measures: 0

- Imputations: 0

- Model: measure ~ data$age

- Hypothesis: data$age=0

Residual heterogeneity (tau^2): 0.0000 I^2: 0.00% H^2: 1.00

F-statistic (heterogeneity): 0.58 on 13 and Inf df Pr(>F): 0.8707

Model:

Estimate Std. Error

(Intercept) -0.0909 0.3223

data$age 0.0112 0.0057

One-row hypothesis:

Estimate z value Pr(>|z|) CI(low) CI(up)

data$age=0 0.0112 1.9717 0.0486 0.0001 0.0223 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> n <- nrow(data)

> y <- escalc(measure = "SMD", vtype = "UB",

+ m1i = data$t * sqrt(1 / data$n1 + 1 / data$n2),

+ n1i = data$n1, n2i = data$n2,

+ m2i = rep(0, n), sd1i = rep(1, n), sd2i = rep(1, n))

> rma(y, mods = data$age)

Mixed-Effects Model (k = 15; tau^2 estimator: REML)
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tau^2 (estimated amount of residual heterogeneity): 0 (SE = 0.0202)

tau (square root of estimated tau^2 value): 0

I^2 (residual heterogeneity / unaccounted variability): 0.00%

H^2 (unaccounted variability / sampling variability): 1.00

R^2 (amount of heterogeneity accounted for): NA%

Test for Residual Heterogeneity:

QE(df = 13) = 7.5656, p-val = 0.8707

Test of Moderators (coefficient(s) 2):

QM(df = 1) = 3.8877, p-val = 0.0486

Model Results:

estimate se zval pval ci.lb ci.ub

intrcpt -0.0909 0.3223 -0.2820 0.7779 -0.7225 0.5407

mods 0.0112 0.0057 1.9717 0.0486 0.0001 0.0223 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

7. Discussion

This paper presents an improved version of MetaNSUE, a novel meta-analytic software that
can include studies that report that the outcome was not statistically significant but do not re-
port the actual outcome. This version includes numerical improvements, making the software
more robust in extreme scenarios, as well as a new, easy-to-use GUI. With these improve-
ments, we hope that both R users and non-R users are able to conduct robust MetaNSUE
meta-analyses rather than, incorrectly, excluding NSUE studies or assuming that they have
a null effect size.
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