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1. Introduction

Multiple outcomes, both continuous and discrete are routinely gathered on subjects in longitu-
dinal studies. In another paper (Komárek and Komárková 2011a), we described a model-based
statistical method for clustering (classification) of subjects into groups with apriori unknown
characteristics on basis of repeated measurements of recorded values of longitudinal outcomes.
The methodology is based on modelling the evolution of each longitudinal outcome using the
classical generalized linear mixed model (GLMM) where we capture possible dependence be-
tween the values of different outcomes by specifying a joint distribution of all random effects
involved in the GLMM for each response. The basis for subsequent clustering is provided by
assuming a heteroscedastic mixture of multivariate normal distributions in the random effects
distribution where each mixture component corresponds to one cluster in subsequent classifi-
cation. Mainly for computational reasons, the inference is based on a Bayesian specification
of the model and simulation based Markov chain Monte Carlo (MCMC) methodology.
To allow for practical usage of the proposed methods, we considerably extended the R (R
Development Core Team 2011) package mixAK (Komárek 2009) which is available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=mixAK. The
current paper builds upon previous methodological work Komárek and Komárková (2011a)
and its web supplement Komárek and Komárková (2011b) and primarily supplements stan-
dard help pages of functions from the package mixAK related to the methods described in
Komárek and Komárková (2011a,b) by a step-by-step R analysis of one of the examples
shown therein. Consequently, only a moderate modification of the code described in this
paper should suffice to analyze similar datasets.

http://CRAN.R-project.org/package=mixAK
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We conclude Introduction by pointing out that the package mixAK exploits some routines
from the following R contributed packages: colorspace (Ihaka et al. 2009), lme4 (Bates et al.
2011), mnormt (Genz and Azzalini 2011), coda (Plummer et al. 2006), snow (Tierney et al.
2011), snowfall (Knaus 2010), which must be installed prior to or together with the package
mixAK.

2. Data

Clustering capabilities of the mixAK package will be illustrated on the analysis of the data
from a Mayo Clinic trial on 312 patients with primary biliary cirrhosis (PBC) conducted
in 1974–1984 (Dickson et al. 1989). The data are available at http://lib.stat.cmu.edu/
datasets/pbcseq and as PBCseq also inside the mixAK package.

R> library("mixAK")

R> data(PBCseq, package="mixAK")

It is a longitudinal dataset with one row per visit. There are 1 to 16 visits per patient
(modus 4, median 5) and a median follow-up of 2 300 days. At each visit, measurements
of several disease related markers were taken and are recorded in corresponding columns of
the data.frame PBCseq. On top of that, information concerning the disease progression free
survival status where disease progression is defined as either death related to PBC or liver
transplantation is available. In our illustration, we will try to find groups of similar patients
with respect to the longitudinal evolution of three markers:

1. logarithmic serum bilirubin (variable lbili);

2. platelet counts (variable platelet);

3. dichotomous presence of blood vessel malformations (variable spiders).

Due to the fact that some or all of these markers are strongly related to the disease progression
we included in the analysis only those patients who were known to be alive and without liver
transplantation at a pre-specified time point of 910 days of follow-up where 910 days were
chosen to be able to compare our results to another analysis of the same dataset (Müller
2005). Further, only longitudinal measurements obtained by that time point will enter our
clustering procedure. This mimics a situation from clinical practice when one tries to identify
groups of similar individuals in a cohort of patients using all information gathered by a specific
moment. Interestingly, it will be shown that found groups are indeed strongly related to the
residual progression free survival time beyond 910 days and hence our clutering methodology
could also be viewed as a clinical diagnostic procedure.

The following code employs the variable alive (number of days that patient is known to be
alive) and creates a data.frame which contains only subset of patients known to be alive
at 910 days of follow-up, longitudinal measurements by that time point and variables: id
(identification number of patient), day, months (time from start of follow-up in days and
months, respectively), fu.days (total number of follow-up days), delta.ltx.death (dichoto-
mous variable being equal to 0 if the patient was alive and without liver transplantation at
time of fu.days and being equal to 1 if the patient died due to PBC related complications or

http://lib.stat.cmu.edu/datasets/pbcseq
http://lib.stat.cmu.edu/datasets/pbcseq
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had to undergo liver transplantation at time of fu.days), lbili, platelet, spiders (values
of longitudinal markers which we will use for clustering).

R> idTake <- subset(PBCseq, day == 0 & alive >= 910)[, "id"]

R> pbc01 <- subset(PBCseq, id %in% idTake & day <= 910,

+ select=c("id", "day", "month", "fu.days", "delta.ltx.death",

+ "lbili", "platelet", "spiders"))

R> rownames(pbc01) <- 1:nrow(pbc01)

R> head(pbc01)

id day month fu.days delta.ltx.death lbili platelet spiders
1 2 0 0.000000 5169 0 0.09531018 221 1
2 2 182 5.979466 5169 0 -0.22314355 188 1
3 2 365 11.991786 5169 0 0.00000000 161 1
4 2 768 25.232033 5169 0 0.64185389 122 1
5 3 0 0.000000 1012 1 0.33647224 151 0
6 3 176 5.782341 1012 1 0.09531018 160 1

R> tail(pbc01)

id day month fu.days delta.ltx.death lbili platelet spiders
913 311 187 6.143737 1508 0 0.4054651 382 NA
914 311 397 13.043121 1508 0 0.6418539 408 0
915 312 0 0.000000 1457 0 1.8562980 200 1
916 312 206 6.767967 1457 0 1.7047481 189 0
917 312 390 12.813142 1457 0 2.0014800 148 0
918 312 775 25.462012 1457 0 2.7911651 138 1

The resulting data.frame pbc01 contains data from N = 260 patients and 1 to 5 (modus
and median 4) observations of each marker per patient.

3. Descriptive analysis

Standard capabilities of a variety of R packages can be used to perform a descriptive analysis
of the longitudinal data at hand. On top of that, two procedures are available in package
mixAK to extract and plot longitudinal profiles of considered markers of individual patients.
They include the following functions:

� getProfiles() which creates a list of data.frames (one data.frame per patient) with
selected variables;

� plotProfiles() which creates a spaghetti graph with observed longitudinal profiles
per patient.
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We extract the longitudinal profiles of variables lbili, platelet, spiders from the data.frame
pbc01 where patients are identified by a variable id and the time is given by a variable month.
Subsequently, we print the data for the first patient in the dataset.

R> ip <- getProfiles(t = "month",

+ y = c("lbili", "platelet", "spiders"), id = "id", data = pbc01)

R> print(ip[[1]])

month lbili platelet spiders
1 0.000000 0.09531018 221 1
2 5.979466 -0.22314355 188 1
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Figure 1: Observed longitudinal profiles of considered markers.
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3 11.991786 0.00000000 161 1
4 25.232033 0.64185389 122 1

We use colors from the Hue-Chroma-Luminance (HCL) based palette (Zeileis et al. 2009)
and draw gradually the spaghetti graphs of observed values of variables lbili, platelet,
spiders, see Figure 1.

R> COL <- rainbow_hcl(3, start = 30, end = 210)

R> XLIM <- c(0, 910) / (365.25 / 12)

R> #

R> layout(autolayout(3))

R> plotProfiles(ip = ip, data = pbc01, var = "lbili", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL[1],

+ auto.layout = FALSE, main = "Log(bilirubin)")

R> plotProfiles(ip = ip, data = pbc01, var = "platelet", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL[2],

+ auto.layout = FALSE, main = "Platelet count")

R> plotProfiles(ip = ip, data = pbc01, var = "spiders", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL[3],

+ auto.layout = FALSE, main = "Blood vessel malform.")

4. Model

It is now our intention to use all observed values of logarithmic bilirubin, platelet count and
dichotomous presence of blood vessel malformations shown on Figure 1 to classify patients
into a pre-specified number of groups (clusters). Model which serves as a basis for clustering
procedure is described in full generality in Komárek and Komárková (2011a, Sec. 2). In this
place, we concentrate on its specific form which will be used for our particular application. Let
Y i,1 = (Yi,1,1, . . . , Yi,1,ni,1)>, Y i,2 = (Yi,2,1, . . . , Yi,2,ni,2)>, Y i,3 = (Yi,3,1, . . . , Yi,3,ni,3)>, i =
1, . . . , N denote random vectors leading to the longitudinal profiles of logarithmic bilirubin,
platelet counts and dichotomous presence of blood vessel malformations, respectively of the
ith patient. Further, let Y i = (Y >i,1,Y

>
i,2,Y

>
i,3)> be a random vector of all longitudinal

measurements on the ith patient, and finally, let Y = (Y >1 , . . . ,Y
>
N )> be a random vector

corresponding to observed values of all outcomes on all patients. The observed counterparts
of corresponding upper case random variables and vectors will be denoted by lower case
letters yi,r,j ,yi,r,yi,y, i = 1, . . . , N , r = 1, 2, 3, j = 1, . . . , ni,r. Note that double subscript
in ni,r reflects the fact that not all considered longitudinal markers must be available at each
patient’s visit as it is, for example, the case for patient with id 311 at his/her visit at day 187
(see output from tail(pbc01) on page 3).

We start by modelling the evolution of each marker over time using a standard generalized
linear mixed model (GLMM) where the mean values of components of Y i, i = 1, . . . , N are
assumed to depend on known covariates (time ti,r,j from start of follow-up in months in which
the value yi,r,j was recorded), unknown regression coefficient α = α3 (fixed effect) and also on
patient specific random regression coefficients bi = (b>i,1, b

>
i,2, b

>
i,3)> (random effects), where

bi,1 = (bi,1,1, bi,1,2)>, bi,2 = (bi,2,1, bi,2,2)>. Gaussian distribution with residual variance σ2
1
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is assumed for the logarithmic bilirubin (Yi,1,j), Poisson distribution with the mean entering
using a canonical log link function the corresponding GLMM is assumed for platelet counts
(Yi,2,j), Bernoulli distribution with the mean which enters using a canonical logit link function
the corresponding GLMM is assumed for dichotomous presence of blood vessel malformations
(Yi,3,j). The mean structures of considered GLMM’s are as follows

E(Yi,1,j | bi,1) = bi,1,1 + bi,1,2 ti,1,j ,

log
{
E(Yi,2,j | bi,2)

}
= bi,2,1 + bi,2,2 ti,2,j ,

logit
{
P(Yi,3,j = 1 | bi,3, α3)

}
= bi,3 + α3 ti,3,j ,

 (1)

i = 1, . . . , N , j = 1, . . . , ni,r, r = 1, 2, 3 and the vector of GLMM related unknown parameters
is ψ = (σ2

1, α3)>. Further, let B = (b1, . . . , bN ) denote the matrix containing all subject
specific random effect vectors in its columns.

The random effect vectors b1, . . . , bN are assumed to be i.i.d. with a mixture density

p(bi |θ) = |S|−1
K∑
k=1

wk ϕ
(
S−1(bi − s)

∣∣µk, Dk

)
=

K∑
k=1

wk ϕ(bi | s+ Sµk, SDkS
>), (2)

i = 1, . . . , N , where K is pre-specified number of mixture components (K = 2 will be used in
our illustration), ϕ(· |µ, D) is a density of the (multivariate) normal distribution with mean
µ and a covariance matrix D and θ =

(
w>, µ>1 , . . . ,µ

>
K , vec(D1), . . . , vec(DK)

)> is a vector
of unknown mixture parameters with w = (w1, . . . , wK)>. Finally, s is a 5 × 1 fixed shift
vector and S a 5×5 fixed diagonal scale matrix included in the model mainly due to possibility
of improving numerical stability of the MCMC algorithm which is used for inference. Note
that in subsequent clustering, each mixture component in expression (2) corresponds to one
cluster and the mixture model (2) can also be specified hierarchically as

p(bi |θ, ui = k) = |S|−1ϕ
(
S−1(bi − s)

∣∣µk, Dk

)
, i = 1, . . . , N,

P(ui = k |θ) = wk, i = 1, . . . , N, k = 1, . . . ,K,

}
(3)

where u = (u1, . . . , uN )> is a vector of latent component allocations.

Mainly for computational reasons, the model is specified also from a Bayesian point of view.
The joint prior distribution for model parameters is specified in a hierarchical way using the
following factorization

p(ψ, θ, B, u) = p(B |θ, u) × p(u |θ) × p(θ) × p(ψ), (4)

where p(B |θ, u) × p(u |θ) =
∏N
i=1

{
|S|−1ϕ

(
S−1(bi − s)

∣∣µui
, Dui

)
× wui

}
follows from

hierarchically specified mixture model (3). Further, specification of the mixture related part
p(θ) pursues the classical proposal of Richardson and Green (1997), and specification of
the GLMM related part p(ψ) follows classically used priors in this context, see Komárek
and Komárková (2011b, Sec. A) for more details and also discussion on possible choices for
additional hyperparameters to achieve weakly informative prior distribution.

5. Posterior Markov chain Monte Carlo simulation
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The clustering and in general the whole inference is based on a sample from the posterior
distribution p(ψ, θ, B, u |y) which is derived using the Bayes theorem from the prior dis-
tribution (4) and the likelihood based on the multivariate GLMM model (1). We obtain the
posterior sample

SM =
{(
ψ(m), θ(m), B(m), u(m)

)
: m = 1, . . . ,M

}
(5)

using the Markov chain Monte Carlo methodology, see Komárek and Komárková (2011b,
Sec. B) for details. Further, it is necessary to point out that the posterior distribution is in-
variant towards K! possible label switching of mixture components which is a crucial difficulty
as our main goal is clustering which requires unique identification of mixture components. One
possibility on how to resolve this complication is to use a suitable relabelling algorithm (see
Stephens 2000) which we adapted to be used in a context of our model.

Package mixAK contains the following routines which are primarily related to sampling from
the posterior distribution and whose use will be illustrated in this Section.

� GLMM_MCMC() is the main function which runs the MCMC algorithm, stores the sample
SM from the posterior distribution of model parameters and calculates basic posterior
summary statistics. It returns a list which contains some information concerning the
model and specific choices of hyperparameters of the prior distribution, the sample SM ,
and several other quantities calculated from these sampled values of model parameters.
The class of the resulting object is set to GLMM_MCMC. Several methods which we shall
introduce in a sequel are available for objects of this class to handle or visualize the
results.

� NMixRelabel() is a generic function with a method for objects of class GLMM_MCMC which
applies the relabelling algorithm and returns appropriately modified input object.

5.1. Running MCMC simulation

We run the MCMC algorithm for 1 000 burn-in and 10 000 subsequent iterations with 1:100
thinning to obtain a sample S10 000 from the posterior distribution based on model (1). To
calculate the penalized expected deviance (PED) which may be used for model comparison
[SECTION ON IT TO BE ADDED], two MCMC chains are generated, by default sequentially.
On multicore processors this task might be parallelized by setting the parallel argument to
TRUE. Indicated computational time was achieved on Intel Core 2 Duo 3 GHz CPU with 3.25
GB RAM running on Linux Debian OS.

R> set.seed(20042007)

R> mod <- GLMM_MCMC(y = pbc01[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = pbc01[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = pbc01[, "month"]),

+ z = list(lbili = pbc01[, "month"],

+ platelet = pbc01[, "month"],
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+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ prior.b = list(Kmax = 2),

+ nMCMC = c(burn = 1000, keep = 10000, thin = 100, info = 1000),

+ PED = TRUE, parallel = FALSE)

Chain number 1
==============
MCMC sampling started on Fri Dec 16 14:47:24 2011.
Burn-in iteration 1000
Iteration 11000
MCMC sampling finished on Fri Dec 16 15:59:15 2011.

Chain number 2
==============
MCMC sampling started on Fri Dec 16 15:59:16 2011.
Burn-in iteration 1000
Iteration 11000
MCMC sampling finished on Fri Dec 16 17:13:34 2011.

Computation of penalized expected deviance started on Fri Dec 16 17:13:53 2011.
Computation of penalized expected deviance finished on Fri Dec 16 17:15:48 2011.

Note that the data.frame specified in a y argument may contain missing values which is
primarily useful to indicate that a value of a particular marker was not obtained at specific
visit. The mean structure of a multivariate GLMM (1) is indicated by arguments x (fixed
effects except intercept), z (random effects except intercept) and random.intercept. Note
that we assume a hierarchically centered GLMM (Gelfand et al. 1995) where the population
effect of covariates included in the definition of random effects is given by the mean of these
random effects. Hence the marker specific parts of the lists in x and z arguments may not
contain the same variables. The keyword "empty" is used to indicate that there are no fixed
or random effects, respectively in a model for a specific marker. Finally, intercept is always
included in the model and the fact whether it is random or fixed in indicated by argument
random.intercept. The only obligatory part of the prior distribution which has to be speci-
fied by the user is the number of mixture components given as a Kmax component of the list in
the prior.b argument. All other values of prior hyperparameters are automatically selected
to achieve weakly informative prior distribution using the guidelines described in Komárek
and Komárková (2011b, Sec. A). Furthermore, reasonable values of the shift vector s, the
scale matrix S and initial values of model parameters to start the MCMC were automatically
chosen by the GLMM_MCMC routine as well. To achieve this, GLMM from each row of expres-
sion (1) with a classical one-component normal distribution assumed for random effects is
separately estimated using the method of maximum-likelihood (ML) by the mean of lmer or
glmer function from the R package lme4. In a sequel, let α0

ML, β0
ML =

(
β0
ML,1, . . . , β

0
ML,5

)>,

d0
ML =

(
dML,1, . . . , dML,5

)>, σ0
ML,1 be vectors of lmer/glmer ML estimates of fixed effects,

means of random effects, standard deviations of random effects, and residual standard devi-
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ation (from a Gaussian model for logarithmic bilirubin), respectively. Further, let B0
ML be

a matrix with lmer/glmer based empirical Bayes estimates of random effects.

In majority of the reminder of this Section, we examine components of the resulting object
related to the prior distribution and initial values for the MCMC simulation. Further, we
show how to specify user-defined values of prior hyperparameters, shift vector s, scale matrix
S and initial values for all model parameters and random hyperparameters. The object mod
is a list with two main components mod[[1]] and mod[[2]] holding the sampled chains,
their initial values, posterior summary statistics based on that chain etc. and some additional
components derived from both sampled chains. Objects mod[[1]] and mod[[2]] are again
lists with informations pertaining to the first and second sampled chain, respectively.

5.2. Shift vector and scale matrix

First, we examine particular values of the shift vector s and a diagonal of the scale matrix S
which, by default, are given as s = β0

ML, S = diag(d0
ML) (these are the same for chain 1 and

2).

R> print(mod[[1]]$scale.b)

$shift
[1] 0.315158108 0.007654708 5.526209768 -0.006634000 -2.749539170

$scale
(Intercept) z1 (Intercept) z1 (Intercept)
0.86449212 0.02007624 0.34860152 0.01565365 3.22849129

R> print(mod[[2]]$scale.b)

$shift
[1] 0.315158108 0.007654708 5.526209768 -0.006634000 -2.749539170

$scale
(Intercept) z1 (Intercept) z1 (Intercept)
0.86449212 0.02007624 0.34860152 0.01565365 3.22849129

That is,

s =
(
s1, . . . , s5

)> .=
(
0.315, 0.00765, 5.53, −0.00663, −2.75

)>
,

S = diag
(
S1, . . . , S5

) .= diag
(
0.864, 0.02008, 0.35, 0.01565, 3.23

)
.

The user is able to set his/her own values of the shift vector and a scale matrix by using the
scale.b argument in the GLMM_MCMC function call. For example, setting s to vector of zeros
and S to a unit matrix is achieved by
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scale.b = list(shift = rep(0, 5),

scale = rep(1, 5))

5.3. Prior distribution for mixture related parameters

We continue in exploration of the resulting object mod by checking the particular values of
the hyperparameters of the prior distribution for mixture related parameter vector θ which
are stored in the prior.b component.

R> print(mod[[1]]$prior.b)

$Kmax $priorK
[1] 2 [1] "fixed"

$priormuQ $lambda
[1] "independentC" [1] 0

$delta $xi
[1] 1 m1 m2 m3 m4 m5

j1 0 0 0 0 0
j2 0 0 0 0 0

$ce $D
c1 c2 m1 m2 m3 m4 m5
0 0 j1.1 36 0 0 0 0

j1.2 0 36 0 0 0
j1.3 0 0 36 0 0
j1.4 0 0 0 36 0
j1.5 0 0 0 0 36
j2.1 36 0 0 0 0
j2.2 0 36 0 0 0
j2.3 0 0 36 0 0
j2.4 0 0 0 36 0
j2.5 0 0 0 0 36

$zeta $g
[1] 6 [1] 0.2 0.2 0.2 0.2 0.2

$h
(Intercept) z1 (Intercept) z1 (Intercept)
0.2777778 0.2777778 0.2777778 0.2777778 0.2777778

The same would be seen if we print this for the second sampled chain.

R> print(mod[[2]]$prior.b)
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Some parts of this list, namely priorK, lambda, and ce are redundant in this situation and
are included in the object only for compatibility with other related functions from the mixAK
package. Component priormuQ informs us that a semiconjugate independent Normal and
Wishart prior, see Komárek and Komárková (2011b, Subsec. A.3) is assumed for mixture
means and inverted covariance matrices. Alternatively, a natural-conjugate Normal-Wishart
prior (see Komárek 2009, Sec. 2.2) can be considered. Component delta indicates a value of
the parameter δ in the Dirichlet prior assumed for mixture weights. That is, in our application,
apriori

(w1, w2) ∼ D(1, 1).

Further, the mixture means µ1 and µ2 are apriori normally distributed, i.e., µk ∼ N (ξb, Cb),
k = 1, 2. The value of ξb (repeated K = 2-times) is shown in the rows of matrix xi, and the
value of Cb (again repeated K = 2-times), is shown in the blocks of matrix D, i.e.,

µk ∼ N
(
(0, . . . , 0)>, diag(36, . . . , 36)

)
, k = 1, 2.

Finally, the inverted mixture covariance matrices D1 and D2 are apriori Wishart distributed,
i.e., Dk ∼ W(ζb, Ξb), where Ξb = diag(γb,1, . . . , γb,5) and γ−1

b,l ∼ G(gb,l, hb,l), l = 1, . . . , 5. The
value of ζb is reflected by the value of zeta, the values of gb,l and hb,l are shown by components
g and h, respectively. That is, for our application,

D−1
k ∼ W

(
6, diag(γb,1, . . . , γb,5)

)
, k = 1, 2,

γ−1
b,l ∼ G(0.2, 0.2777778), l = 1, . . . , 5.

The user gets a full control over the choice of the hyperparameters by replacing the prior.b
= list(Kmax = 2) statement in the GLMM_MCMC function call by

prior.b = list(Kmax = 2, priormuQ = "independentC",

delta = 1, xi = rep(0, 5), D = diag(rep(36, 5)),

zeta = 6, g = rep(0.2, 5), h = rep(0.2777778, 5))

5.4. Prior distribution for fixed effects

Model (1) contains a single fixed effect α = α3 which is the slope from the logit model
for presence of blood vessel malformations. A normal prior distribution N (ξα, Cα) with
a diagonal covariance matrix Cα is assumed for (generally a vector) α. We check particular
values of ξα, Cα.

R> print(mod[[1]]$prior.alpha)

$mean $var
alpha1.mean alpha1.var

0 10000

That is, apriori α3 ∼ N (0, 10 000). Note that alpha1 in the output indicates that it cor-
responds to the first component of in general a vector of fixed effects α. Nevertheless, for
notational clarity, subscript 3 was used for α in model (1) to indicate that it pertains to the
third marker. The values of the prior mean ξα and a diagonal of the prior covariance matrix
Cα might be set by inclusion of the prior.alpha argument in the GLMM_MCMC function call.
For example, the N (0, 10 000) prior for α3 is also achieved by using
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prior.alpha = list(mean = 0, var = 10000)

The same information can be seen if we print this for the second sampled chain.

R> print(mod[[2]]$prior.alpha)

5.5. Prior distribution for dispersion parameters

Finally, model (1) contains a single dispersion parameter which is the residual variance σ2
1

from the Gaussian model for logarithmic bilirubin (Yi,1,j). It is apriori assumed that σ−2
1 ∼

G(ζφ,1/2, γ−1
φ,1/2) where γ−1

φ,1 is random with a G(gφ,1, hφ,1) hyperprior. We examine particular
values of ζφ,1, gφ,1, hφ,1 selected by the GLMM_MCMC routine using the guidelines given in
Komárek and Komárková (2011b, Sec. A).

R> print(mod[[1]]$prior.eps)

$zeta $g $h
zeta1 g1 h1

2 0.2 2.755851

The same information can be seen if we print this for the second sampled chain.

R> print(mod[[2]]$prior.eps)

That is, ζφ,1 = 2, gφ,1 = 0.2, hφ,1 = 2.755851. The same values can be explicitely chosen by
the user by adding the argument prior.eps in the GLMM_MCMC function call as

prior.eps = list(zeta = 2, g = 0.2, h = 2.755851)

5.6. Initial values

To start the MCMC simulation, initial values for the model parameters θ, ψ, for latent
quantities which are a matrix of random effects B and a vector of component allocation u
and also for random hyperparameters γb,1, . . . , γb,5 and γφ,1 must be given. Reasonable initial
values were automatically selected by the function GLMM_MCMC and are stored as init.b,
init.alpha and init.eps components of the resulting object mod. The component init.b
contains the initial values for mixture related parameters θ and also for random effects B and
component allocations u (the output was shortened).

R> print(mod[[1]]$init.b)

$b
b1 b2 b3 b4 b5

1 -0.045833040 1.739426e-02 5.378129 -2.262848e-02 1.8360865
2 0.241232664 1.119751e-02 5.050482 -1.639513e-02 -0.4899194
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3 0.489765757 1.828415e-02 5.365383 4.223745e-03 1.8387236
4 0.881059232 2.078636e-02 4.885222 -1.673188e-02 -0.5046516
5 -0.210395893 4.070156e-03 5.695454 -3.190762e-04 -3.7510091
...

$K $w $mu $Sigma
[1] 2 w1 w2 m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

0.5 0.5 j1 -1 -1 -1 -1 -1 j1.1 1 0 0 0 0
j2 1 1 1 1 1 j1.2 0 1 0 0 0

j1.3 0 0 1 0 0
j1.4 0 0 0 1 0
j1.5 0 0 0 0 1
j2.1 1 0 0 0 0
j2.2 0 1 0 0 0
j2.3 0 0 1 0 0
j2.4 0 0 0 1 0
j2.5 0 0 0 0 1

$Li
Li1.1.1 Li1.2.1 Li1.3.1 Li1.4.1 Li1.5.1 Li1.2.2 Li1.3.2 Li1.4.2 Li1.5.2

1 0 0 0 0 1 0 0 0
Li1.3.3 Li1.4.3 Li1.5.3 Li1.4.4 Li1.5.4 Li1.5.5 Li2.1.1 Li2.2.1 Li2.3.1

1 0 0 1 0 1 1 0 0
Li2.4.1 Li2.5.1 Li2.2.2 Li2.3.2 Li2.4.2 Li2.5.2 Li2.3.3 Li2.4.3 Li2.5.3

0 0 1 0 0 0 1 0 0
Li2.4.4 Li2.5.4 Li2.5.5

1 0 1

$gammaInv
gammaInv1 gammaInv2 gammaInv3 gammaInv4 gammaInv5

6 6 6 6 6

$r
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
2 1 1 1 1 1 1 1 1 1 1 2 1 1 1
...

Different initial values for the second sampled chain can be seen by invoking

R> print(mod[[2]]$init.b)

First, mod[[*]]$init.b$b is a matrix B> with initial values of individual random effects in
rows, by default, equal to empirical Bayes estimates B0>

ML obtained from initial lmer/glmer
fits of GLMM’s (1) for chain 1 and [ADD EXPLANATION FOR CHAIN 2]. Second,
mod[[*]]$init.b$K stores the information on the number of mixture components. Third,
mod[[*]]$init.b$w gives the initial values of mixture weight which are, by default, equal
all to 1/K for chain 1 and [ADD EXPLANATION FOR CHAIN 2]. The initial value for
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mixture means are shown in rows of a matrix mod[[*]]$init.b$mu. By default, for chain
1, initials for components of µ1, . . . ,µK are chosen equidistantly on intervals starting at
β0

ML,l−sl

Sl
− 3

d0ML,l

Sl
+ δl and ending at

β0
ML,l−sl

Sl
+ 3

d0ML,l

Sl
− δl, where δl =

6d0ML,l

(K+1)Sl
, l=1,. . . ,5.

[ADD EXPLANATION FOR CHAIN 2]. The initial values for mixture covariance matri-
ces D1 and D2 are shown as blocks of mod[[*]]$init.b$Sigma. By default, for chain 1,
initial values are Dk = diag

(
(d0
ML,1/S1)2, . . . , (d0

ML,5/S5)2
)
, k=1,2 which in our case leads

to D1 = D2 = I5. Further, mod$init.b$Li shows lower triangles of Cholesky factors of
inverted initial covariance matrices D−1

1 , D−1
2 stacked in a vector. [ADD EXPLANATION

FOR CHAIN 2]. Furthermore, mod[[*]]$init.b$gammaInv are initial values for hyperpa-
rameters γ−1

b,1 , . . . , γ
−1
b,5 , by default equal for chain 1 to ζb

(
d0
ML,l/Sl

)2, l = 1, . . . , 5. [ADD
EXPLANATION FOR CHAIN 2]. Finally, mod[[*]]$init.b$r is a vector of initial values
of component allocations u. For each subject i, i = 1, . . . , N , the initial value of ui for chain
1 is by default equal to g(i) for which p

(
bi
∣∣θ, ui = g(i)

)
, see expression (3), is maximal at

initial values of remaining parameters. [ADD EXPLANATION FOR CHAIN 2].

Further, mod[[*]]$init.alpha contains intial values for a vector of fixed effects α, by default
equal to α0

ML from the initial lmer/glmer fit for chain 1. [ADD EXPLANATION FOR
CHAIN 2].

R> print(mod[[1]]$init.alpha)

alpha1
0.02560626

That is, in our application, the inital value for chain 1 was α = α3 = 0.02560626.

Finally, mod[[*]]$init.eps keeps the initial values for parameters related to the GLMM
dispersion parameters. The initial value of the residual standard deviation σ1 from the model
for logarithmic bilirubin is for chain 1 by default equal to σ0

ML,1, the initial value of random
hyperparameter γ−1

φ,1 is for chain 1 by default equal to ζφ,1 (σ0
ML,1)2. [ADD EXPLANATION

FOR CHAIN 2].

R> print(mod[[1]]$init.eps)

$sigma $gammaInv
sigma1 gammaInv1

0.3174833 0.2015913

In this case, initially for chain 1, σ1 = 0.3174833, γ−1
φ,1 = 0.2015913.

The user is able to define his/her own initial values for all or a subset of model parame-
ters by defining the lists with the same structure as mod[[1]]$init.b, mod[[2]]$init.b,
mod[[1]]$init.alpha, mod[[2]]$init.alpha, mod[[1]]$init.eps, mod[[2]]$init.eps,
and using these lists as additional arguments init.b, init2.b1, init.alpha, init2.alpha,
init.eps, init2.eps in the call to GLMM_MCMC function. At the same time, the user does

1Only either Sigma or Li component is sufficient to specify the initial values for mixture covariance matrices.
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not have to specify the initial values for all sets of parameters as missing components are
initialized using the default procedures described above.
Additionally, the objects mod[[1]] and mod[[2]] contains components state.first.b, state.last.b,
state.first.alpha, state.last.alpha, state.first.eps, state.last.eps which have
the same structure as corresponding init.* components.2 The state.first.* compo-
nents contain the values of the chain at the first saved (after burn-in) MCMC iteration,
the state.last.* components contain the last saved values of the chain. All of them can
be directly supplied as corresponding init.* arguments to the GLMM_MCMC function when one
wishes to re-start the MCMC simulation either from the end of the original burn-in period
or from the end of currently finished MCMC simulation. To illustrate this and also explicit
specification of hyperparameters of the prior distribution, shift vector s and scale matrix S,
we generate a sample of 1 000 values, again with 1:100 thinning, starting from the last MCMC
iteration saved in the mod.

R> set.seed(20042007)

R> mod02 <- GLMM_MCMC(y = pbc01[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = pbc01[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = pbc01[, "month"]),

+ z = list(lbili = pbc01[, "month"],

+ platelet = pbc01[, "month"],

+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ scale.b = list(shift = c(0.315158108, 0.007654708, 5.526209768,

+ -0.006634000, -2.749539170),

+ scale = c(0.86449212, 0.02007624, 0.34860152,

+ 0.01565365, 3.22849129)),

+ prior.b = list(Kmax = 2, priormuQ = "independentC",

+ delta = 1, xi = rep(0, 5), D = diag(rep(36, 5)),

+ zeta = 6, g = rep(0.2, 5), h = rep(0.2777778, 5)),

+ prior.alpha = list(mean = 0, var = 10000),

+ prior.eps = list(zeta = 2, g = 0.2, h = 2.755851),

+ init.b = mod[[1]]$state.last.b,

+ init2.b = mod[[2]]$state.last.b,

+ init.alpha = mod[[1]]$state.last.alpha,

+ init2.alpha = mod[[2]]$state.last.alpha,

+ init.eps = mod[[1]]$state.last.eps,

+ init2.eps = mod[[2]]$state.last.eps,

+ nMCMC = c(burn = 0, keep = 1000, thin = 100, info = 1000),

+ PED = TRUE, parallel = FALSE)

5.7. Posterior samples

2The state.first.b and state.last.b components contain additionally element Q which are lower triangles
of inverted mixture covariance matrices stacked in a vector.



16 R package mixAK for Clustering Based on Multivariate Longitudinal Data

Posterior samples of model parameters θ, ψ, random hyperparameters and some additional
derived quantities are kept in the resulting object mod as a series of components. All of them
are matrices where each row corresponds to one MCMC iteration and each column to one
parameter or element of a vector parameter. With respect to mixture related parameters,
we find the component w_b (mixture weights w), for which we print the first three sampled
values of chain 1.

R> print(mod[[1]]$w_b[1:3,])

w1 w2
[1,] 0.5861780 0.4138220
[2,] 0.5760271 0.4239729
[3,] 0.6140991 0.3859009

Similarly, we find the component mu_b with sampled mixture means µ1,µ2 (the first three
sampled values of chain 1 are printed).

R> print(mod[[1]]$mu_b[1:3,])

mu.1.1 mu.1.2 mu.1.3 mu.1.4 mu.1.5 mu.2.1
[1,] -0.5757105 -0.14819857 0.10030886 0.01287247 -0.6078800 0.9933894
[2,] -0.6963823 -0.14882040 0.10367778 0.12907884 -0.5953020 1.1181582
[3,] -0.5663048 -0.09290386 0.05253764 -0.06194500 -0.3588196 1.1579885

mu.2.2 mu.2.3 mu.2.4 mu.2.5
[1,] 0.2363280 -0.1436500 -0.27251015 0.6956592
[2,] 0.1045462 -0.1662364 -0.05900691 0.5829094
[3,] 0.1956312 -0.1845504 0.08468051 0.4105315

The first five columns contain the values of µ1, the remaining five columns contain the values
of µ2. Further, the component Sigma_b contains sampled values of lower triangles of mixture
covariance matrices D1,D2, see the first three sampled values of chain 1:

R> print(mod[[1]]$Sigma_b[1:3,])

Sigma1.1.1 Sigma1.2.1 Sigma1.3.1 Sigma1.4.1 Sigma1.5.1 Sigma1.2.2
[1,] 0.1483652 0.02725310 -0.12066884 0.006712001 0.09787152 0.1401401
[2,] 0.1897234 -0.02665165 -0.08574339 -0.085695122 0.01485711 0.1675582
[3,] 0.3113878 0.06903808 -0.34222189 -0.100087885 0.40650164 0.1548528

Sigma1.3.2 Sigma1.4.2 Sigma1.5.2 Sigma1.3.3 Sigma1.4.3
[1,] -0.03533349 -0.10356217 0.009842313 0.8480862 0.02543108
[2,] 0.05805863 -0.03786570 0.178521511 0.7892866 -0.21511899
[3,] -0.07138611 -0.05850689 0.194395314 1.3587504 0.16404291

Sigma1.5.3 Sigma1.4.4 Sigma1.5.4 Sigma1.5.5 Sigma2.1.1 Sigma2.2.1
[1,] 0.009172017 0.4433576 0.25815239 1.493001 0.6246352 -0.3877369
[2,] 0.284246759 0.7382875 -0.10912226 1.169762 0.7320425 -0.3345317
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[3,] -0.618696188 0.6534640 -0.06728697 1.774370 0.8968992 -0.2011429
Sigma2.3.1 Sigma2.4.1 Sigma2.5.1 Sigma2.2.2 Sigma2.3.2 Sigma2.4.2

[1,] 0.2444709 0.00820094 0.03761508 3.103192 0.16108994 0.7715097
[2,] 0.2603831 -0.38925799 0.08142149 2.137363 0.02972364 0.5766868
[3,] -0.1523893 -0.51109311 0.10041998 2.328876 -0.14525281 0.1847445

Sigma2.5.2 Sigma2.3.3 Sigma2.4.3 Sigma2.5.3 Sigma2.4.4 Sigma2.5.4
[1,] 0.15420589 1.631642 0.02649452 0.07681108 2.458052 -0.09860401
[2,] -0.05666061 1.339500 -0.28396256 -0.10200859 2.477405 -0.12539592
[3,] 0.29375832 1.101824 -0.31911426 -0.19380199 2.358011 -0.11308685

Sigma2.5.5
[1,] 0.7350301
[2,] 0.4446280
[3,] 0.3946266

The first 15 columns comprise the lower triangles of sampled matrices D1, the remaining 15
columns comprise the lower triangles of sampled matrices D2. Similarly, components Q_b
and Li_b contain sampled values of lower triangles of inverted mixture covariance matrices
D−1

1 ,D−1
2 and their Cholesky decompositions, respectively.

All above mentioned mixture related parameters are saved as sampled, i.e., without apply-
ing any relabelling algorithm. Nevertheless, during the MCMC simulation provided by the
GLMM_MCMC function, initial relabelling based on ordering of the first margins of the mix-
ture means was applied and the resulting relabelling is reflected in components order_b and
rank_b which are also present in the objects mod[[1]] and mod[[2]]. Both of them are
M ×K matrices. Let om,k, m = 1, . . . ,M, k = 1, . . . ,K be the elements of matrix order_b
and rm,k m = 1, . . . ,M, k = 1, . . . ,K the elements of matrix rank_b. After relabelling, com-
ponent number κ, κ ∈ {1, . . . ,K} at iteration m is given by the om,κth component in the
original sample, or vice versa, component number ι in the original sample equals to the rm,ιth
component in the relabeled sample.

Further, the objecs mod[[1]] and mod[[2]] contain the following components holding the
sampled values of model parameters: alpha (fixed effects α = α3), sigma_eps (residual stan-
dard deviation σ1). Further, samples for random hyperparameters are saved in components
gammaInv_b (γb,1, . . . , γb,5) and gammaInv_eps (γφ,1).

Additionally, samples for some derived model quantities are stored in the objects mod[[1]]
and mod[[2]]. First, we check the component mixture_b (only first three rows from chain 1
are printed).

R> print(mod[[1]]$mixture_b[1:3,])

b.Mean.1 b.Mean.2 b.Mean.3 b.Mean.4 b.Mean.5 b.SD.1
1 0.3787999 0.007874080 5.525984 -0.008281157 -2.970519 0.8393546
2 0.3782087 0.006823555 5.522459 -0.005861718 -3.058739 0.9563330
3 0.4008306 0.008024956 5.512630 -0.006717936 -2.949468 0.9634055

b.Corr.2.1 b.Corr.3.1 b.Corr.4.1 b.Corr.5.1 b.SD.2 b.Corr.3.2
1 0.001635467 -0.05901592 -0.09161347 0.4646133 0.02377304 0.01798102
2 -0.040225348 -0.05194083 -0.22092440 0.4661432 0.02025990 0.02850830
3 0.073691987 -0.29097023 -0.15546775 0.4600577 0.02021169 -0.10221657
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b.Corr.4.2 b.Corr.5.2 b.SD.3 b.Corr.4.3 b.Corr.5.3 b.SD.4
1 0.17200261 0.1279722 0.3797639 0.03446715 -0.02908926 0.01782619
2 0.17166193 0.1371638 0.3555658 -0.18662511 0.03830124 0.01907091
3 0.03929654 0.2410830 0.3933058 -0.02367496 -0.37540904 0.01795976

b.Corr.5.4 b.SD.5
1 0.01411600 4.072918
2 -0.12741539 3.538619
3 -0.04316814 3.795634

It is a sample for overall means (columns b.Mean.*)

β = (β1,1, β1,2, β2,1, β2,2, β3)> = E
(
b
∣∣θ) = s+ S

K∑
k=1

wkµk (6)

of random effects, see also Komárek and Komárková (2011a, Eq. (3)) and standard deviations
(columns b.SD.*) and correlations coefficients (columns b.Corr.*.*) derived from the overall
covariance matrix

D = VAR
(
b
∣∣θ) = S

[ K∑
k=1

wk

{
Dk +

(
µk −

K∑
j=1

wjµj
)(
µk −

K∑
j=1

wjµj
)′}]

S′ (7)

of random effects, see also Komárek and Komárková (2011a, Eq. (4)). Further, we print the
first ten values of the component Deviance.

R> print(mod[[1]]$Deviance[1:10])

[1] 14081.78 14092.04 14096.07 14080.28 14092.15 14080.67 14096.09
[8] 14088.80 14103.54 14099.09

This is a sample of observed data deviances, that is sample for D(ψ, θ) = −2 log
{
L(ψ, θ)

}
where L(ψ, θ) = p(y |ψ, θ) is the observed data (frequentist) likelihood of the GLMM (1)
with the normal mixture (2) in the random effects distribution. As it is explained in full
generality in Komárek and Komárková (2011a, Sec. 2.5),

L(ψ, θ) =
N∏
i=1

{ K∑
k=1

wk Li,k(ψ, θ)
}
, (8)

with

Li,k(ψ, θ) =
∫ { 3∏

r=1

ni,r∏
j=1

p(yi,r,j |ψ, bi,r)
}
p(bi |θ, ui = k)dbi, i = 1, . . . , N, k = 1, . . . ,K,

(9)
where

p(yi,1,j |ψ, bi,1) =
1

σ1

√
2π

exp
{
−(yi,1,j − λi,1,j)2

2σ2
1

}
, λi,1,j = bi,1,1 + bi,1,2ti,1,j , (10)

p(yi,2,j |ψ, bi,2) =
λ
yi,2,j

i,2,j exp(−λi,2,j)
yi,2,j !

, λi,2,j = exp(bi,2,1 + bi,2,2ti,2,j), (11)

p(yi,3,j |ψ, bi,3) = λi,3,j (1− λi,3,j), λi,3,j =
exp(α3 + bi,3ti,3,j)

1 + exp(α3 + bi,3ti,2,j)
(12)
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are likelihood contributions given by the Gaussian, Poisson with a log-link and Bernoulli
with a logit-link generalized linear models for the three markers, respectively. Note that
the integral in (9) cannot be evaluated analytically and function GLMM_MCMC uses Laplace
approximation to calculate numerically its value. Similarly, component Cond.Deviance is
a vector of sampled values of the deviances based on the conditional (given random effects
and component allocations) likelihood

LBayes(ψ, θ, B, u) = p(y |ψ, θ, B, u) = p(y |ψ, B) =
N∏
i=1

3∏
r=1

ni,r∏
j=1

p(yi,r,j |ψ, bi,r). (13)

Note that β, D as well as the observed data and conditional deviances are invariant towards
label switching.

5.8. Re-labelling of the posterior sample

As was pointed out at the beginning of this Section, application of a suitable relabelling algo-
rithm is necessary for successful use of the results for clustering purposes. Simple relabelling
based on ordering of components of mixture means (as currently reflected in the order_b and
rank_b components of the object mod) is often unsatisfactory (Stephens 2000) and utilization
of a more sophisticated procedure is recommended. Hence we apply the Stephens’ relabelling
algorithm on the chains stored in mod. At the same time, by setting keep.comp.prob = TRUE
we generate posterior samples for individual probabilities

pi,k(ψ, θ) = P(ui = k |ψ, θ, y), i = 1, . . . , N, k = 1, . . . ,K, (14)

that subject i belongs to the kth group (where k refers to a new labeling of the components),
see Komárek and Komárková (2011a, Sec. 2.5) for theoretical details.

R> mod[[1]] <- NMixRelabel(mod[[1]], type = "stephens", keep.comp.prob = TRUE)

R> mod[[2]] <- NMixRelabel(mod[[2]], type = "stephens", keep.comp.prob = TRUE)

Objects mod[[1]] and mod[[2]] have the same structure as before with exception that all
results which are not invariant towards label switching (components order_b, rank_b and also
not yet mentioned components poster.mean.w_b, poster.mean.mu_b, poster.mean.Sigma_b,
poster.mean.Q_b, poster.mean.Li_b, poster.comp.prob1, poster.comp.prob2, poster.comp.prob3,
comp.prob2, comp.prob3, quant.comp.prob2),quant.comp.prob3) were (re-)calculated to
reflect the new labelling of the mixture components.

6. Basic convergence diagnostics

Classical tools for convergence diagnostics, e.g., R package coda can be used to evaluate
the convergence of the performed MCMC simulation by applying the appropriate methods
to posterior samples described in Section 5.7 or their derivatives. On top of that, package
mixAK offers the following routine which simplifies production of some of the output useful
for convergence diagnostics.

� tracePlots() is a generic function with a method for objects of class GLMM_MCMC which
produces traceplots of selected model parameters.
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In this Section, we illustrate the use of this and also some of coda routines on exploration of
the properties of generated Markov chain stored in the object mod.

6.1. Traceplots

A basic tool to reveal convergence problems are traceplots of important model parameters
or other quantities derived from these parameters. We start by drawing a traceplot of the
observed data deviances D(ψ, θ), see Figure 2.

R> tracePlots(mod[[1]], param = "Deviance")

Similarly, the traceplots of the conditional deviances, fixed effect α3 and the residual standard
deviations σ1 from the Gaussian model for logarithmic bilirubin, respectively, are obtained
using the following commands (output not shown).

R> tracePlots(mod[[1]], param = "Cond.Deviance")

R> tracePlots(mod[[1]], param = "alpha")

R> tracePlots(mod[[1]], param = "sigma_eps")

Further, we can draw traceplots for the overall means β (Eq. (6)) of random effects (output
not shown).

R> COL <- rep(rainbow_hcl(3, start = 30, end = 210), c(2, 2, 1))

R> tracePlots(mod[[1]], param = "Eb", col = COL)
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Figure 2: Traceplot of the observed data deviance D(ψ, θ).
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Traceplots of standard deviations and correlation coefficients derived from the overall covari-
ance matrix D (Eq. (7)) are drawn using the commands (output not shown).

R> tracePlots(mod[[1]], param = "SDb")

R> tracePlots(mod[[1]], param = "Corb")

Additionally, traceplots of sampled (as such before applying any re-labelling algorithm) mix-
ture weights w1, w2, components of mixture means µ1,µ2 and standard deviations from mix-
ture covariance matrices D1,D2 can be drawn using the following sequence of commands
(output not shown).

R> tracePlots(mod[[1]], param = "w_b")

R> tracePlots(mod[[1]], param = "mu_b")

R> tracePlots(mod[[1]], param = "sd_b")

Traceplots of these quantities after current re-labelling (reflected by order_b and rank_b
components of the object mod) are drawn by setting the relabel argument to TRUE (output
not shown).

R> tracePlots(mod[[1]], param = "w_b", relabel = TRUE)

R> tracePlots(mod[[1]], param = "mu_b", relabel = TRUE)

R> tracePlots(mod[[1]], param = "sd_b", relabel = TRUE)

Finally, we can draw the traceplots of the hyperparameters γb,1, . . . , γb,5, γφ,1.

R> tracePlots(mod[[1]], param = "gammaInv_b")

R> tracePlots(mod[[1]], param = "gammaInv_eps")

6.2. Autocorrelations

Another tool which is often used to explore the properties of the generated Markov chain
are plots of estimated autocorrelation functions based on sampled values. We draw it for
the observed data deviance using the autocorr.plot function from the coda package, see
Figure 3.

R> autocorr.plot(mod[[1]]$Deviance, lag.max = 20, col = "blue4",

+ auto.layout = FALSE, lwd = 2)

Similarly estimated autocorrelation functions for the conditional deviance, fixed effect α3

and the residual standard deviations σ1 from the Gaussian model for logarithmic bilirubin,
respectively, are drawn using the following command (output not shown).

R> autocorr.plot(mod[[1]]$Cond.Deviance, col = "blue4", auto.layout = FALSE, lwd = 2)

R> autocorr.plot(mod[[1]]$alpha, col = "blue4", auto.layout = FALSE, lwd = 2)

R> autocorr.plot(mod[[1]]$sigma_eps, col = "blue4", auto.layout = FALSE, lwd = 2)

Further, we draw autocorrelation plots for the overall means β (Eq. (6)) of random effects,
see Figure 4,
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R> layout(autolayout(5))

R> name.Eb <- paste("b.Mean.", 1:5, sep = "")

R> autocorr.plot(mod[[1]]$mixture_b[, name.Eb], lag.max = 20, col = "blue4",

+ auto.layout = FALSE, lwd = 2)

Autocorrelation plots for standard deviations and correlation coefficients derived from the
overall covariance matrix D (Eq. (7)) are drawn using the commands (output not shown).

R> layout(autolayout(5))

R> name.SDb <- paste("b.SD.", 1:5, sep = "")

R> autocorr.plot(mod[[1]]$mixture_b[, name.SDb], lag.max = 20, col = "blue4",

+ auto.layout = FALSE, lwd = 2)

R> #

R> layout(autolayout(10))

R> name.Corb <- paste("b.Corr.", c(2:5, 3:5, 4:5, 5), ".", rep(1:4, 4:1), sep = "")

R> autocorr.plot(mod[[1]]$mixture_b[, name.Corb], lag.max = 20, col = "blue4",

+ auto.layout = FALSE, lwd = 2)

Similarly, autocorrelation plots for other model parameters or their derivatives might be
created and examined.

7. Posterior summary for classical GLMM parameters

To summarize the estimated models, we calculate posterior summary statistics and credible
intervals for model parameters which are classically estimated in the context of generalized
mixed models. These are: fixed effects α = α3 and means β of random effects which together
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Figure 3: Estimated autocorrelation based on sampled values of the observed data deviance
D(ψ, θ).
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quantify the population effect of included covariates on the response variables. Additionally,
following parameters are usually of interest: residual standard deviation σ1 from a Gaussian
model for logarithmic bilirubin which quantifies the within-patient variability of log-bilirubin
measurement, overall standard deviations and covariances or correlations for random effects
(derived from the overall covariance matrix D). Finally, as basis for possible model com-
parison, we calculate posterior summary statistics and credible intervals for observed data
deviance D(ψ, θ). Note that all mentioned quantities are invariant towards label switching.
Apart from standard capabilities for calculation of posterior summary statistics provided by
the R package coda, we introduce the following routines from the package mixAK.

� print() method for objects of class GLMM_MCMC and GLMM_MCMClist which outputs
posterior summary statistics in a synoptic form for important model parameters;

� fitted() method for objects of class GLMM_MCMC which takes suitable posterior summary
statistics (mean, median, . . . ) of fixed effects α and means of random effects β and
calculates estimated longitudinal profiles of the response variables for required values of
covariates.
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Figure 4: Estimated autocorrelation based on sampled values of the overall means β of random
effects.
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7.1. Basic posterior summary statistics

Posterior summary statistics for above mentioned quantities has in fact already been calcu-
lated by the function GLMM_MCMC and are stored as components summ.Deviance (posterior
summary statistics for observed data deviance D(ψ, θ)), summ.alpha (posterior summary
statistics for the fixed effect α3), summ.sigma_eps (posterior summary statistics for the reisual
standard deviation σ1), summ.b.Mean (posterior summary statistics for the overall means β
of random effects), summ.b.SDCorr (posterior summary statistics for standard deviations and
correlation coefficients derived from the overall covariance matrix D of random effects) of the
objects mod[[1]] and mod[[2]]. To inspect their values in a synoptic form, we simply print
this object.

R> print(mod)

Generalized linear mixed model for 3 responses estimated using MCMC
====================================================================

Penalized expected deviance:
----------------------------

D.expect p(opt) PED wp(opt) wPED
14088.17659 74.86202 14163.03861 74.82185 14162.99844

Deviance posterior summary statistics:
-----------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu. Median 3rd Qu.
Chain 1 14088.24 10.38671 14055.23 14069.74 14080.93 14087.57 14094.68
Chain 2 14088.13 10.43965 14053.97 14069.43 14080.64 14087.56 14094.84

97.5% Max.
Chain 1 14110.43 14133.33
Chain 2 14110.11 14133.84

Posterior summary statistics for fixed effects:
-----------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu.
Chain 1 0.02802721 0.01297156 -0.01948352 0.002757211 0.01913345
Chain 2 0.02804690 0.01272354 -0.02387802 0.003474781 0.01939963

Median 3rd Qu. 97.5% Max.
Chain 1 0.02793498 0.03676435 0.05353450 0.07345849
Chain 2 0.02785970 0.03645750 0.05328103 0.08187126

Distribution of random effects is a normal mixture with 2 components
---------------------------------------------------------------------
Posterior summary statistics for moments of mixture for random effects:
-----------------------------------------------------------------------
Means:

b.Mean.1(Chain 1) b.Mean.1(Chain 2) b.Mean.2(Chain 1)
Mean 0.31489792 0.31483865 0.0078279034
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Std.Dev. 0.05687024 0.05597357 0.0018522622
Min. 0.13094232 0.13605722 0.0002825657
2.5% 0.20447151 0.20836454 0.0041760466
1st Qu. 0.27678609 0.27615643 0.0065920026
Median 0.31362019 0.31412212 0.0078315437
3rd Qu. 0.35270103 0.35253912 0.0090696223
97.5% 0.42976080 0.42490433 0.0114618416
Max. 0.53598711 0.55464820 0.0146877128

b.Mean.2(Chain 2) b.Mean.3(Chain 1) b.Mean.3(Chain 2)
Mean 0.007857248 5.52671528 5.52641864
Std.Dev. 0.001857585 0.02248193 0.02228574
Min. 0.001119513 5.43271613 5.44289074
2.5% 0.004196234 5.48262040 5.48276209
1st Qu. 0.006596830 5.51157562 5.51142614
Median 0.007858602 5.52691500 5.52686759
3rd Qu. 0.009117601 5.54215278 5.54134516
97.5% 0.011439556 5.56970657 5.56945832
Max. 0.015453538 5.60588162 5.61606899

b.Mean.4(Chain 1) b.Mean.4(Chain 2) b.Mean.5(Chain 1)
Mean -0.006743481 -0.006725579 -2.9099164
Std.Dev. 0.001142145 0.001148100 0.4837242
Min. -0.011276667 -0.011261919 -6.2960729
2.5% -0.009007707 -0.009001230 -3.9862596
1st Qu. -0.007501477 -0.007493934 -3.1936515
Median -0.006741291 -0.006691344 -2.8669268
3rd Qu. -0.005978643 -0.005964303 -2.5827107
97.5% -0.004530282 -0.004545705 -2.0797337
Max. -0.001866809 -0.002575189 -1.3219925

b.Mean.5(Chain 2)
Mean -2.9128661
Std.Dev. 0.4818729
Min. -5.4510756
2.5% -3.9726817
1st Qu. -3.2082227
Median -2.8699729
3rd Qu. -2.5764604
97.5% -2.0773479
Max. -1.2870739

Standard deviations and correlations:
b.SD.1(Chain 1) b.SD.1(Chain 2) b.Corr.2.1(Chain 1)

Mean 0.87285780 0.87328133 0.05320370
Std.Dev. 0.04207569 0.04141777 0.10426096
Min. 0.72686885 0.74465734 -0.30851066
2.5% 0.79516600 0.79464956 -0.14807928
1st Qu. 0.84411543 0.84525032 -0.01795145
Median 0.87179539 0.87249338 0.05239554
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3rd Qu. 0.89979655 0.90106743 0.12417160
97.5% 0.96023795 0.95723099 0.25812419
Max. 1.07996690 1.05838571 0.41603786

b.Corr.2.1(Chain 2) b.Corr.3.1(Chain 1) b.Corr.3.1(Chain 2)
Mean 0.05207174 -0.142838516 -0.143313561
Std.Dev. 0.10467047 0.067977177 0.067105878
Min. -0.31695608 -0.373075788 -0.397533788
2.5% -0.15125358 -0.272947476 -0.271622624
1st Qu. -0.01949973 -0.189190541 -0.188843819
Median 0.05151273 -0.144149854 -0.144063051
3rd Qu. 0.12383354 -0.097379269 -0.099920253
97.5% 0.25427501 -0.006152941 -0.006905992
Max. 0.41597032 0.129552173 0.121025440

b.Corr.4.1(Chain 1) b.Corr.4.1(Chain 2) b.Corr.5.1(Chain 1)
Mean -0.13708932 -0.13550821 0.46312431
Std.Dev. 0.07782893 0.07942440 0.05798145
Min. -0.41670243 -0.43247042 0.22292257
2.5% -0.28651724 -0.28865178 0.34389954
1st Qu. -0.19086906 -0.18967973 0.42553874
Median -0.13693761 -0.13650056 0.46588228
3rd Qu. -0.08438715 -0.08198412 0.50315361
97.5% 0.01888570 0.02257741 0.56872715
Max. 0.15615509 0.15883911 0.64496926

b.Corr.5.1(Chain 2) b.SD.2(Chain 1) b.SD.2(Chain 2)
Mean 0.46478317 0.020918387 0.020956291
Std.Dev. 0.05744724 0.002127909 0.002112694
Min. 0.21339113 0.014037551 0.014387420
2.5% 0.34362569 0.017009248 0.017051074
1st Qu. 0.42784281 0.019456613 0.019474136
Median 0.46710445 0.020856295 0.020888393
3rd Qu. 0.50490995 0.022291240 0.022296540
97.5% 0.56803538 0.025329177 0.025347837
Max. 0.66261318 0.030568269 0.031046699

b.Corr.3.2(Chain 1) b.Corr.3.2(Chain 2) b.Corr.4.2(Chain 1)
Mean -0.04280737 -0.04383702 0.14932874
Std.Dev. 0.09500748 0.09572310 0.11382894
Min. -0.41578682 -0.38643160 -0.28403120
2.5% -0.22758520 -0.22794970 -0.07374712
1st Qu. -0.10822543 -0.10901274 0.07318174
Median -0.04253305 -0.04392804 0.15021131
3rd Qu. 0.02120721 0.02102476 0.22732288
97.5% 0.14187156 0.14431148 0.36519397
Max. 0.30962567 0.29076441 0.52143640

b.Corr.4.2(Chain 2) b.Corr.5.2(Chain 1) b.Corr.5.2(Chain 2)
Mean 0.15207423 0.15149850 0.14930534
Std.Dev. 0.11343550 0.09068398 0.09083737
Min. -0.28631731 -0.16628504 -0.20083219
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2.5% -0.07606826 -0.02781551 -0.03339873
1st Qu. 0.07617147 0.09038612 0.08838740
Median 0.15235753 0.15299775 0.15083670
3rd Qu. 0.23010557 0.21292217 0.21103394
97.5% 0.36649227 0.32897319 0.32306742
Max. 0.49808310 0.47947288 0.46728347

b.SD.3(Chain 1) b.SD.3(Chain 2) b.Corr.4.3(Chain 1)
Mean 0.35583754 0.35598259 -0.02753763
Std.Dev. 0.01722565 0.01739245 0.07568116
Min. 0.30063618 0.30032625 -0.29115409
2.5% 0.32473220 0.32368052 -0.17488882
1st Qu. 0.34379368 0.34398055 -0.07874264
Median 0.35517847 0.35520398 -0.02791579
3rd Qu. 0.36716734 0.36727140 0.02416662
97.5% 0.39158665 0.39176453 0.11912364
Max. 0.43988038 0.42895442 0.29629638

b.Corr.4.3(Chain 2) b.Corr.5.3(Chain 1) b.Corr.5.3(Chain 2)
Mean -0.02696777 -0.154670092 -0.157034629
Std.Dev. 0.07616620 0.076003624 0.076484634
Min. -0.30434988 -0.430529201 -0.437465243
2.5% -0.17474226 -0.303829014 -0.303246351
1st Qu. -0.07871611 -0.206177049 -0.208922411
Median -0.02730403 -0.155820096 -0.158272914
3rd Qu. 0.02538218 -0.104245026 -0.106170909
97.5% 0.12131703 -0.003745955 -0.003836278
Max. 0.24275115 0.165235821 0.209343426

b.SD.4(Chain 1) b.SD.4(Chain 2) b.Corr.5.4(Chain 1)
Mean 0.016856072 0.016843050 -0.03654043
Std.Dev. 0.001241295 0.001216541 0.07436306
Min. 0.013394196 0.012920786 -0.33892160
2.5% 0.014648156 0.014673664 -0.18178889
1st Qu. 0.015995317 0.015990534 -0.08670039
Median 0.016760537 0.016755136 -0.03758897
3rd Qu. 0.017623768 0.017612455 0.01402791
97.5% 0.019499373 0.019442777 0.10962380
Max. 0.022903996 0.022245987 0.22707359

b.Corr.5.4(Chain 2) b.SD.5(Chain 1) b.SD.5(Chain 2)
Mean -0.03533042 3.8518958 3.8565687
Std.Dev. 0.07469032 0.6244691 0.6218358
Min. -0.30518029 1.9793088 2.1842750
2.5% -0.18116576 2.8424281 2.8317176
1st Qu. -0.08555959 3.4169164 3.4169778
Median -0.03567030 3.7785541 3.7859030
3rd Qu. 0.01496213 4.2097690 4.2207021
97.5% 0.11170572 5.2937428 5.2740559
Max. 0.24529186 7.9353658 7.1513505
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Posterior summary statistics for standard deviations
of residuals of continuous responses:
----------------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu. Median
Chain 1 0.3143806 0.01010008 0.2787472 0.2951569 0.3074424 0.3142047
Chain 2 0.3141542 0.01013398 0.2792843 0.2948743 0.3071814 0.3139059

3rd Qu. 97.5% Max.
Chain 1 0.3211925 0.3347104 0.3570582
Chain 2 0.3207388 0.3349294 0.3540355

For each parameter, we have posterior mean, posterior standard deviation and posterior 0%,
2.5%, 25%, 50%, 75%, 97.5% and 100% quantiles (separately for chain 1 and 2). Among other
things, we directly see 95% equal-tail credible intervals.

7.2. Extended posterior summary statistics

To get the posterior summary including estimates of Monte Carlo errors in the estimation
of the posterior means, one may use the summary procedure from the coda package applied
directly to matrices of sampled values. In the following code, we create a matrix containing
sampled values of means β of random effects and a fixed effect α3 and calculate the posterior
summary using the coda package.

R> Regr <- cbind(mod[[1]]$mixture_b[, name.Eb],

+ mod[[1]]$alpha)

R> colnames(Regr) <- paste(rep(c("lbili", "platelet", "spiders"), each = 2),

+ ":", rep(c("Intcpt", "Slope"), 3), sep="")

R> Regr <- mcmc(Regr)

R> summary(Regr)

Iterations = 1:10000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
lbili:Intcpt 0.314898 0.056870 5.687e-04 5.174e-04
lbili:Slope 0.007828 0.001852 1.852e-05 1.820e-05
platelet:Intcpt 5.526715 0.022482 2.248e-04 1.983e-04
platelet:Slope -0.006743 0.001142 1.142e-05 1.037e-05
spiders:Intcpt -2.909916 0.483724 4.837e-03 4.694e-03
spiders:Slope 0.028027 0.012972 1.297e-04 1.168e-04

2. Quantiles for each variable:
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2.5% 25% 50% 75% 97.5%
lbili:Intcpt 0.204472 0.276786 0.313620 0.352701 0.42976
lbili:Slope 0.004176 0.006592 0.007832 0.009070 0.01146
platelet:Intcpt 5.482620 5.511576 5.526915 5.542153 5.56971
platelet:Slope -0.009008 -0.007501 -0.006741 -0.005979 -0.00453
spiders:Intcpt -3.986260 -3.193651 -2.866927 -2.582711 -2.07973
spiders:Slope 0.002757 0.019133 0.027935 0.036764 0.05353

Above results were also reported in Komárek and Komárková (2011b, Table C.1). Similarly,
we can calculate posterior summary statistics for the residual standard deviation σ1, standard
deviations and correlations derived from the overall covariance matrix D of random effects
to get results reported in Komárek and Komárková (2011b, Tables C.1 and C.2), output not
shown here.

R> sigma1 <- mcmc(mod[[1]]$sigma_eps)

R> summary(sigma1)

R> #

R> SDb <- mcmc(mod[[1]]$mixture_b[, name.SDb])

R> summary(SDb)

R> #

R> Corb <- mcmc(mod[[1]]$mixture_b[, name.Corb])

R> summary(Corb)

7.3. Highest posterior density intervals

Alternative to equal-tail credible intervals are the highest posterior density (HPD) credible
intervals reported in Komárek and Komárková (2011b, Table C.1). These can be calculated
by the mean of the HPDinterval function from the coda package applied to above created
objects Regr, sigma1, SDb, Corb. Output is shown only for the means of random effects β
and the fixed effect α3 stored in the object Regr.

R> HPDinterval(Regr)

lower upper
lbili:Intcpt 0.206373622 0.430927560
lbili:Slope 0.004282489 0.011531590
platelet:Intcpt 5.482363696 5.569401950
platelet:Slope -0.009019218 -0.004555172
spiders:Intcpt -3.854407935 -1.976333749
spiders:Slope 0.002593894 0.053156233
attr(,"Probability")
[1] 0.95

R> HPDinterval(sigma1)

R> HPDinterval(SDb)

R> HPDinterval(Corb)
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7.4. Estimated posterior densities

Further, we estimate posterior densities for GLMM model parameters using the densplot
function from the coda package. First, we draw estimated posterior densities for the overall
means β of random effects and the fixed effect α3, all stored in the object Regr, see Figure 5.

R> COL <- rep(rainbow_hcl(3, start = 30, end = 210), each = 2)

R> par(mfcol = c(2, 3))

R> for (i in 1:6){

+ densplot(Regr[, i], show.obs = FALSE, col = COL[i], lwd = 2)

+ title(main = colnames(Regr)[i])
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Figure 5: Estimated posterior densities of the overall means β of random effects and the fixed
effect α3.
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+ }

Similarly, estimated posterior densities for other GLMM related parameters can be drawn.

7.5. Estimated longitudinal profiles

We use suitable posterior summary statistics α̂ = α̂3 for fixed effects α and analogous pos-
terior summary statistics β̂ =

(
β̂1,1, β̂1,2, β̂2,1, β̂2,2, β̂3

)> for the overall means β of random
effects and calculate estimated longitudinal profiles of analyzed markers. The following code
takes tpred,1 = 0, tpred,2 = 0.3, . . . , tpred,101 = 30 and calculates the values of
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Figure 6: Observed longitudinal profiles of considered markers together with estimated lon-
gitudinal profiles based on posterior means (in blue) and posterior medians (in red) of fixed
effects α and means of random effects β.
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1. β̂1,1 + β̂1,2tpred,j , j = 1, . . . , 101 (estimated longitudinal profile for logarithmic bilirubin);

2. exp
(
β̂2,1 + β̂2,2tpred,j

)
, j = 1, . . . , 101 (estimated longitudinal profile for platelet count);

3. logit−1
(
β̂3 + α̂3tpred,j

)
, j = 1, . . . , 101 (estimated longitudinal profile for presence of

blood vessel malformations).

Object fitMean is based on posterior means in place of α̂ and β̂, object fitMean is based on
posterior medians in place of α̂ and β̂.

R> tpred <- seq(0, 30, by = 0.3)

R> fitMean <- fitted(mod[[1]], x = list("empty", "empty", tpred),

+ z = list(tpred, tpred, "empty"),

+ statistic = "mean", overall = TRUE)

R> fitMed <- fitted(mod[[1]], x = list("empty", "empty", tpred),

+ z = list(tpred, tpred, "empty"),

+ statistic = "median", overall = TRUE)

Both fitMean and fitMed are lists of length three (number of longitudinal markers). Each
list component is a 101 × 1 matrix with calculated estimated longitudinal profiles for one
marker. For instance, first 10 values of the estimated longitudinal profile for platelet count
based on posterior means of regression coefficients are as follows.

R> print(fitMean[[2]][1:10,])

[1] 251.3170 250.8091 250.3023 249.7964 249.2916 248.7877 248.2849
[8] 247.7831 247.2824 246.7826

Subsequently, we plot observed longitudinal profiles (see the code on page 5) together with
estimated longitudinal profiles, see Figure 6.

R> COL <- sequential_hcl(12, power = 2.2)[7]

R> COLmean <- "blue"

R> COLmed <- "red"

R> XLIM <- c(0, 910) / (365.25 / 12)

R> layout(autolayout(3))

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "lbili", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Log(bilirubin)")

R> lines(tpred, fitMean[[1]][,1], col = COLmean, lwd = 2)

R> lines(tpred, fitMed[[1]][,1], col = COLmed, lwd = 2)

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "platelet", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Platelet count")

R> lines(tpred, fitMean[[2]][,1], col = COLmean, lwd = 2)
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R> lines(tpred, fitMed[[2]][,1], col = COLmed, lwd = 2)

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "spiders", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Blood vessel malform.")

R> lines(tpred, fitMean[[3]][,1], col = COLmean, lwd = 2)

R> lines(tpred, fitMed[[3]][,1], col = COLmed, lwd = 2)

7.6. Posterior means of individual random effects

For situations when one is interested in inference on individuals, suitable estimates of individ-
ual values of random effects might be needed. Within Bayesian framework, posterior means
of individidual random effects, i.e., values of E(bi |y), i = 1, . . . , N may serve this purpose.
When using the mixAK package, MCMC based estimates b̂i = M−1

∑M
m=1 b

(m)
i of E(bi |y),

i = 1, . . . , N , are available in the poster.mean.profile of the object mod obtained by run-
ning the GLMM_MCMC routine. It is a matrix with N rows and values of b̂i in its initial columns.
We extract them and print first 10 values.

R> bhat <- mod[[1]]$poster.mean.profile[, 1:mod[[1]]$dimb]

R> print(bhat[1:10,])

b1 b2 b3 b4 b5
1 0.01941317 0.013573928 5.370993 -0.022027877 2.4033087
2 0.25963476 0.009724842 5.045187 -0.016060771 -0.5045080
3 0.50083022 0.015408244 5.365412 0.004046026 2.7069998
4 0.87940689 0.021633816 4.881798 -0.016878592 -0.2418984
5 -0.25366522 0.004090812 5.706338 -0.001027675 -5.7065666
6 -0.07411346 0.003195730 5.349503 -0.006966620 -5.8347617
7 -0.68313577 0.006880460 5.900706 0.001604459 -6.4214860
8 1.32774590 0.042383755 5.554436 -0.001197036 -1.3364364
9 0.26097685 0.010561914 5.611316 -0.003852797 -1.8181445
10 -0.27814326 0.007823518 5.524950 -0.004782997 -0.7026804

8. Residual plots

Model checking with respect to the assumed relationship (1) between the mean response and
covariates is classically performed by a suitable residual analysis. To allow this, the resulting
object mod contains a component called poster.mean.y which is a list (in our case of length
3) with a data.frame for each response marker. We print the first three rows of each of them.

R> print(mod[[1]]$poster.mean.y$lbili[1:3,])

id observed fitted stres eta.fixed eta.random
1 1 0.09531018 0.01941317 0.2438135 0 0.01941317
2 1 -0.22314355 0.10057802 -1.0288467 0 0.10057802
3 1 0.00000000 0.18218883 -0.5784067 0 0.18218883
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R> print(mod[[1]]$poster.mean.y$platelet[1:3,])

id observed fitted stres eta.fixed eta.random
1 1 221 215.3776 0.4040622 0 5.370993
2 1 188 188.6808 -0.0388953 0 5.239278
3 1 161 165.2801 -0.3228092 0 5.106840

R> print(mod[[1]]$poster.mean.y$spiders[1:3,])
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Figure 7: Plots of posterior means of standardized residuals against posterior means of fitted
values.
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id observed fitted stres eta.fixed eta.random
1 1 1 0.8403518 0.4119686 0.0000000 2.403309
2 1 1 0.8580191 0.3783572 0.1675878 2.403309
3 1 1 0.8740891 0.3478410 0.3360963 2.403309

Each data.frame contains identification of the subject (column id, taken from the id argu-
ment of the original GLMM_MCMC function call), observed response values (column observed),
posterior means of model based fitted values (column fitted) which are based on sampled
values of λi,1,j , λi,2,j , λi,3,j , respectively (see Eq. (10)–(12)) Further, we have a column stres
containing posterior means of model based standardized residuals ei,r,j where

ei,1,j =
yi,1,j − λi,1,j

σ1
, ei,2,j =

yi,2,j − λi,2,j√
λi,2,j

, ei,3,j =
yi,3,j − λi,3,j√
λi,3,j(1− λi,3,j)

,

i = 1, . . . , N , j = 1, . . . , ni,r, r = 1, 2, 3. Finally, columns eta.fixed and eta.random contain
posterior means of fixed effects and random effects related parts of the linear predictors (right-
hand sides of expressions in Eq. (1)). We use these objects to draw basic residual plots of
posterior means of standardized residuals against posterior means of fitted values accompanied
by the lowess (Cleveland 1979) line, see Figure 7.

R> COL <- rainbow_hcl(3, start = 30, end = 210)

R> MAIN <- c("Log(bilirubin)", "Platelet count", "Blood vessel malform.")

R> layout(autolayout(3))

R> for (i in 1:3){

+ plot(mod[[1]]$poster.mean.y[[i]]$fitted, mod[[1]]$poster.mean.y[[i]]$stres,

+ xlab = "Fitted", ylab = "Standard. residuals", col = COL[i])

+ lines(lowess(mod[[1]]$poster.mean.y[[i]]$fitted, mod[[1]]$poster.mean.y[[i]]$stres),

+ col = "red4")

+ title(main = MAIN[i])

+ }

9. Estimated distribution of random effects

Before we proceed to the main objective of our approach which is clustering, we explore
how much the actual distribution (2) of random effects which serves as a basis for clustering
differs from conventional one-component normal distribution and how much the data support
our assumption of having at least two groups of patients. Within the Bayesian framework,
basically two approaches exist to estimate the density of random effects. The first one leads
to the plug-in estimate of the random effects density given by

p̃(b) = p
(
b
∣∣ θ̂), (15)

where θ̂ is a suitable estimate, e.g., the posterior mean, of mixture parameters. Nevertheless,
it is clear that p̃(b) is not invariant towards label switching and hence it is not always a good
estimate of the random effect density. Alternatively, we may consider posterior predictive
density

pPP (b) =
∫
p(b |θ) p(θ |y) dθ,
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and its MCMC estimated counterpart

p̂(b) =
1
M

M∑
m=1

p(b |θ(m)),

which are both invariant against label switching. Its disadvantage when clustering is of
interest, though, is the fact that we cannot extract weights, means or covariance matrices
that specify the mixture components since the random effect density is now considered as one
functional parameter which is directly estimated. In any case, agreement between p̃(b) and
p̂(b) indicates a successful relabelling of the Markov chain and into some extent guarantees
meaningfulness of subsequent clustering procedure.

In package mixAK, several routines are available to calculate plug-in and posterior predictive
densities of random effects and to calculate related quantities. First,

� NMixSummComp() is a generic function with a method for objects of class GLMM_MCMC
which prints posterior means of mixture weights w, shifted and scaled mixture means
s + Sµk, k = 1, . . . ,K and scaled mixture covariance matrices SDk, k = 1, . . . ,K
calculated under relabelling reflected in the order_b and rank_b components of this
object.

Second, a series of generic functions with a method for objects of class GLMM_MCMC is imple-
mented to calculate the values of the plug-in or posterior predictive estimate of the random
effect density or related cdf evaluated in a specific grid of b values. For plug-in estimates we
have routines

� NMixPlugDensMarg() which calculates estimates of all univariate marginal densities;

� NMixPlugDensJoint2() which calculate estimates of all joint bivariate marginal densi-
ties;

� NMixPlugCondDensMarg() which calculates estimates of all univariate conditional den-
sities given a specified margin;

� NMixPlugCondDensJoint2() which calculates estimates of all bivariate conditional den-
sities given a specified margin.

For posterior predictive estimates the following functions are available.

� NMixPredDensMarg() which calculates estimates of all univariate marginal densities;

� NMixPredDensJoint2() which calculate estimates of all joint bivariate marginal densi-
ties;

� NMixPredCDFMarg() which calculates estimates of all univariate marginal cdf’s;

� NMixPredCondDensMarg() which calculates estimates of all univariate conditional den-
sities given a specified margin;

� NMixPredCondDensJoint2() which calculates estimates of all bivariate conditional den-
sities given a specified margin.
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For results created by each of above mentioned functions a specific plot method exists to
visualize calculated density of cdf.

9.1. Posterior means of mixture parameters

First, we check posterior means of mixture parameters calculated after relabelling which is
reflected in the order_b and rank_b components of the object mod. The posterior means of
mixture weights w, mixture means µ1,µ2 and mixture covariance matrices D1,D2 are stored
as components poster.mean.w_b, poster.mean.mu_b, poster.mean.Sigma_b, respectively
and we can directly print them out.

R> print(mod[[1]]$poster.mean.w_b)

w1 w2
0.5976874 0.4023126

R> print(mod[[1]]$poster.mean.mu_b)

m1 m2 m3 m4 m5
j1 -0.6059869 -0.1571325 0.1441811 0.06146376 -0.4890238
j2 0.9105904 0.2568817 -0.1947171 -0.10519656 0.5930209

Posterior mean of µ1 is found in the first row of the matrix above, posterior mean of µ2 in
the second row of the matrix above.

R> print(mod[[1]]$poster.mean.Sigma_b)

$j1
[,1] [,2] [,3] [,4] [,5]

[1,] 0.24459564 0.00644807 -0.12355838 -0.02873796 0.20088303
[2,] 0.00644807 0.17360912 0.01483741 -0.06008096 0.05197403
[3,] -0.12355838 0.01483741 0.78491511 -0.02316504 -0.04598325
[4,] -0.02873796 -0.06008096 -0.02316504 0.45322903 0.02377058
[5,] 0.20088303 0.05197403 -0.04598325 0.02377058 1.55189552

$j2
[,1] [,2] [,3] [,4] [,5]

[1,] 0.8057164 -0.25230233 0.12184208 -0.18518042 0.11486954
[2,] -0.2523023 2.36936449 -0.05926528 0.56948008 0.13339433
[3,] 0.1218421 -0.05926528 1.30335249 -0.07748660 -0.16362231
[4,] -0.1851804 0.56948008 -0.07748660 2.20520552 -0.04737602
[5,] 0.1148695 0.13339433 -0.16362231 -0.04737602 0.56102968
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Similarly, there are additional components poster.mean.Q_b and poster.mean.Li_b at-
tached to the objects mod[[1]] and mod[[2]] which provide posterior means of inverted
mixture covariance matrices D−1

1 ,D−1
2 and posterior means of their Cholesky decomposi-

tions, respectively.

With respect to interpretation, posterior summary statistics for shifted and scaled mixture
means, that is, for s+Sµk, k = 1, . . . ,K and for scaled mixture covariance matrices, that is,
for SDk, k = 1, . . . ,K, are more important as they directly correspond to the data at hand.
To get these, we may use the NMixSummComp function which additionally prints standard
deviations and correlation matrices calculated from the posterior means of scaled mixture
covariance matrices SDk, k = 1, . . . ,K.

R> NMixSummComp(mod[[1]])

Component 1
Weight: 0.5976874
Mean: -0.2087128 0.004500078 5.576472 -0.005671868 -4.328348

Covariance matrix:
m1 m2 m3 m4 m5

m1 0.1827977252 1.119111e-04 -0.0372359555 -3.888952e-04 0.560665583
m2 0.0001119111 6.997409e-05 0.0001038412 -1.888143e-05 0.003368747
m3 -0.0372359555 1.038412e-04 0.0953852528 -1.264089e-04 -0.051752172
m4 -0.0003888952 -1.888143e-05 -0.0001264089 1.110577e-04 0.001201310
m5 0.5606655826 3.368747e-03 -0.0517521718 1.201310e-03 16.175649169

Standard deviations: 0.4275485 0.008365051 0.308845 0.01053839 4.021896

Correlation matrix:
m1 m2 m3 m4 m5

m1 1.00000000 0.03129097 -0.28199181 -0.08631231 0.32605258
m2 0.03129097 1.00000000 0.04019393 -0.21418634 0.10013108
m3 -0.28199181 0.04019393 1.00000000 -0.03883853 -0.04166363
m4 -0.08631231 -0.21418634 -0.03883853 1.00000000 0.02834325
m5 0.32605258 0.10013108 -0.04166363 0.02834325 1.00000000

---------------------------------------------

Component 2
Weight: 0.4023126
Mean: 1.102356 0.01281193 5.458331 -0.00828071 -0.8349765

Covariance matrix:
m1 m2 m3 m4 m5

m1 0.602149424 -0.0043788961 0.0367187258 -0.0025059457 0.320601486
m2 -0.004378896 0.0009549851 -0.0004147744 0.0001789684 0.008646082
m3 0.036718726 -0.0004147744 0.1583873282 -0.0004228355 -0.184149866
m4 -0.002505946 0.0001789684 -0.0004228355 0.0005403563 -0.002394274
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m5 0.320601486 0.0086460821 -0.1841498657 -0.0023942737 5.847699884
Standard deviations: 0.7759829 0.03090283 0.3979791 0.02324556 2.418202

Correlation matrix:
m1 m2 m3 m4 m5

m1 1.0000000 -0.18260565 0.11889819 -0.13892469 0.17085231
m2 -0.1826057 1.00000000 -0.03372511 0.24913690 0.11569871
m3 0.1188982 -0.03372511 1.00000000 -0.04570578 -0.19134568
m4 -0.1389247 0.24913690 -0.04570578 1.00000000 -0.04259329
m5 0.1708523 0.11569871 -0.19134568 -0.04259329 1.00000000

---------------------------------------------

Above calculated results are also shown in Komárek and Komárková (2011b, Table C.3).

9.2. Univariate marginal densities

Second, we calculate and plot the univariate marginal densities of random effects derived
from both the plug-in estimate p̃(b) and the estimated posterior predictive density p̂(b). We
calculate the values of margins of p̃(b) and p̂(b) evaluated in automatically selected grid
(calculated using the information on posterior means of β, expression (6) and components of
D, expression (7)) of b values and store them in objects plugdm and pdm, respectively.

R> plugdm <- list()

R> plugdm[[1]] <- NMixPlugDensMarg(mod[[1]])

R> plugdm[[2]] <- NMixPlugDensMarg(mod[[2]])

R> pdm <- list()

R> pdm[[1]] <- NMixPredDensMarg(mod[[1]])

R> pdm[[2]] <- NMixPredDensMarg(mod[[2]])

We can use the plot method and create basic plots of calculated estimated marginal densities,
separately for chain 1 and 2 (output not shown).

R> plot(plugdm[[1]])

R> plot(plugdm[[2]])

R> plot(pdm[[1]])

R> plot(pdm[[2]])

Main calculated results are stored as x and dens elements of objects plugdm[[*]] and
pdm[[*]], respectively and we may use them to create our own plots. Figure 8 shows that
the plug-in estimates closely correspond to the estimated posterior predictive densities of
individual margins of random effects which indicates meaningfulness of posterior means of
mixture weights, means and components of covariance matrices shown in Section 9.1. Addi-
tionally, it is clear that one-component normal distribution would be unsatisfactory to model
the distribution of random effects in this application.

R> layout(autolayout(mod[[1]]$dimb))

R> blab <- c("Intcpt (lbili)", "Slope (lbili)", "Intcpt (platelet)",



40 R package mixAK for Clustering Based on Multivariate Longitudinal Data

+ "Slope (platelet)", "Intcpt (spiders)")

R> for (i in 1:mod[[1]]$dimb){

+ plot(plugdm[[1]]$x[[i]], plugdm[[1]]$dens[[i]], type = "l",

+ xlab = "b", ylab = "Density", col = "red", main = blab[i],

+ ylim = c(0, max(pdm[[1]]$dens[[i]])))

+ lines(pdm[[1]]$x[[i]], pdm[[1]]$dens[[i]], col = "darkblue")

+ }

The values in which the densities are evaluated and subsequently plotted can be changed
by the user by specifying the grid argument in NMixPlugDensMarg and NMixPredDensMarg
functions.

R> bgrid <- list(b1 = seq(-2.73, 3.37, length = 50),

+ b2 = seq(-0.07, 0.08, length = 50),

+ b3 = seq(4.28, 6.77, length = 50),

+ b4 = seq(-0.06, 0.05, length = 50),
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Figure 8: Estimated univariate marginal posterior predictive densities of random effects (in
blue) and corresponding plug-in estimates (in red).
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+ b5 = seq(-16.05, 10.34, length = 50))

R> plugdm <- list()

R> plugdm[[1]] <- NMixPlugDensMarg(mod[[1]], grid = bgrid)

R> plugdm[[2]] <- NMixPlugDensMarg(mod[[2]], grid = bgrid)

R> pdm <- list()

R> pdm[[1]] <- NMixPredDensMarg(mod[[1]], grid = bgrid)

R> pdm[[2]] <- NMixPredDensMarg(mod[[2]], grid = bgrid)

9.3. Joint bivariate densities

Similarly to estimates of univariate marginal densities of random effects, analogous estimates
of pairwise joint bivariate marginal densities can easily be calculated using the functions
NMixPlugDensJoint2 and NMixPredDensJoint2, respectively. We calculate their values eval-
uated in automatically created grid of b values and store them in objects plugdj01 and pdj01,
respectively. Subsequently, we produce their basic image plots (output not shown).

R> plugdj <- list()

R> plugdj[[1]] <- NMixPlugDensJoint2(mod[[1]])

R> plugdj[[2]] <- NMixPlugDensJoint2(mod[[2]])

R> pdj <- list()

R> pdj[[1]] <- NMixPredDensJoint2(mod[[1]])

R> pdj[[2]] <- NMixPredDensJoint2(mod[[2]])

R> plot(plugdj[[1]])

R> plot(plugdj[[2]])

R> plot(pdj[[1]])

R> plot(pdj[[2]])

Figure 9 shows image and contour plots of estimated pairwise joint bivariate marginal posterior
predictive densities of random effects which was created by using results stored as x and dens
components of the object pdj01.

R> layout(matrix(c(1:9, 0, 10, 0), ncol = 3, byrow = TRUE))

R> for (i in 1:(mod[[1]]$dimb - 1)){

+ for (j in (i+1):mod[[1]]$dimb){

+ image(pdj[[1]]$x[[i]], pdj[[1]]$x[[j]], pdj[[1]]$dens[[paste(i, "-", j, sep = "")]],

+ col = rev(heat_hcl(33, c = c(80, 30), l = c(30, 90), power = c(1/5, 1.3))),

+ xlab = blab[i], ylab = blab[j])

+ contour(pdj[[1]]$x[[i]], pdj[[1]]$x[[j]], pdj[[1]]$dens[[paste(i, "-", j, sep = "")]],

+ col = "brown", add = TRUE)

+ }

+ }

Even for estimates of joint bivariate marginal densities of random effects, the user may specify
the grid of b values in which the densities are evaluated.

R> pdj[[1]] <- NMixPredDensJoint2(mod[[1]], grid = bgrid)

R> pdj[[2]] <- NMixPredDensJoint2(mod[[2]], grid = bgrid)

R> plugdj[[1]] <- NMixPlugDensJoint2(mod[[1]], grid = bgrid)

R> plugdj[[2]] <- NMixPlugDensJoint2(mod[[2]], grid = bgrid)
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Figure 9: Estimated pairwise joint bivariate marginal posterior predictive densities of random
effects.
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10. Clustering

10.1. Posterior distribution of component probabilities

It is explained in Komárek and Komárková (2011a, Sec. 2.5) that clustering, i.e., classifica-
tion into groups represented by mixture components, is based on posterior distribution of
component probabilities

pi,k(ψ, θ) = P(ui = k |ψ, θ, y) = P(ui = k |ψ, θ, yi) =
Li,k(ψ, θ)wk∑K
l=1 Li,l(ψ, θ)wl

,

i = 1, . . . , N, k = 1, . . . ,K, (16)

where Li,k(ψ, θ) is given by (9). In particular, we are interested in corresponding posterior
means

πi,k = P(ui = k |y) =
∫
pi,k(ψ, θ) p(ψ, θ |y) d(ψ,θ), i = 1, . . . , N, k = 1, . . . ,K, (17)

estimated from the MCMC simulation as

π̂i,k = M−1
M∑
m=1

pi,k
(
ψ(m), θ(m)

)
, i = 1, . . . , N, k = 1, . . . ,K, (18)

or alternatively in posterior medians estimated from the MCMC simulation as

π̃i,k = sample median
m=1,...,M

pi,k
(
ψ(m), θ(m)

)
, i = 1, . . . , N, k = 1, . . . ,K. (19)

Additionally, it is useful to quantify the variability of the posterior distribution of each
pi,k(ψ, θ) which can be done by reporting corresponding credible intervals.

Upon running NMixRelabel routine (see Section 5.8), objects mod[[1]] and mod[[2]] contain
components poster.comp.prob3, quant.comp.prob3 and comp.prob3 which serve as basis
for reporting or calculation of posterior means, posterior medians or credible intervals for com-
ponent probabilities pi,k(ψ, θ), i = 1, . . . , N, k = 1, . . . ,K. Note that the labels of components
pertain to the result of a particular relabelling routine invoked by the NMixRelabel routine
and also correspond to posterior means of mixture parameters provided by the NMixSummComp
routine (see Section 9.1).

First, poster.comp.prob3 is N ×K matrix which contains the values of estimated posterior
means π̂i,k, i = 1, . . . , N, k = 1, . . . ,K.

R> print(mod[[1]]$poster.comp.prob3[1:5,])

[,1] [,2]
[1,] 0.7170372 0.28296276
[2,] 0.5803136 0.41968644
[3,] 0.5305126 0.46948738
[4,] 0.1325851 0.86741491
[5,] 0.9883736 0.01162644
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Second, quant.comp.prob3 is a list with N ×K matrices as its components.

R> names(mod[[1]]$quant.comp.prob3)

[1] "2.5%" "50%" "97.5%"

R> print(mod[[1]]$quant.comp.prob3[["50%"]][1:5,])

[,1] [,2]
[1,] 0.8266722 0.173327823
[2,] 0.6231642 0.376835802
[3,] 0.5674317 0.432568268
[4,] 0.0428354 0.957164597
[5,] 0.9902083 0.009791726

Each matrix provides p100% posterior quantiles of pi,k(ψ, θ) for selected values of p. By
default, 2.5%, 50%, and 97.5% are provided. Quantiles for other values of p can be calcu-
lated by running the NMixRelabel function with appropriately modified value of its prob
argument. Due to the fact that the posterior distribution of each pi,k(ψ, θ) is usually
skewed (see Figure 10), Komárek and Komárková (2011a, Sec. 2.5) preferred to use pos-
terior medians (π̃i,k, mod$quant.comp.prob3[["50%"]]) rather than posterior means (π̂i,k,
mod$poster.comp.prob3) for classification. Note that objects mod$quant.comp.prob3[["2.5%"]]
and mod$quant.comp.prob3[["97.5%"]] directly provide lower and upper limits for 95%
equal-tail credible intervals for pi,k(ψ, θ). The whole posterior distribution of each pi,k(ψ, θ),
i = 1, . . . , N, k = 1, . . . ,K can be explored by processing the comp.prob3 component of object
mod.

R> print(mod[[1]]$comp.prob3[1:5, 1:10])

P(1,1) P(1,2) P(2,1) P(2,2) P(3,1) P(3,2)
[1,] 0.6458363 0.35416371 0.7162301 0.28376989 0.51795020 0.4820498
[2,] 0.8258937 0.17410632 0.4011532 0.59884680 0.17718107 0.8228189
[3,] 0.9792811 0.02071886 0.9640948 0.03590523 0.84568169 0.1543183
[4,] 0.3911205 0.60887949 0.4283078 0.57169223 0.37407874 0.6259213
[5,] 0.5422908 0.45770924 0.6198451 0.38015488 0.01935869 0.9806413

P(4,1) P(4,2) P(5,1) P(5,2)
[1,] 0.041307093 0.9586929 0.9979254 0.002074617
[2,] 0.005138986 0.9948610 0.9951290 0.004871005
[3,] 0.631041614 0.3689584 0.9803490 0.019650991
[4,] 0.038126937 0.9618731 0.9899264 0.010073608
[5,] 0.037846162 0.9621538 0.9800216 0.019978446
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It is M ×N ·K matrix with sampled values of p1,1

(
ψ(m), θ(m)

)
, . . . , p1,K

(
ψ(m), θ(m)

)
, . . . ,

pN,1
(
ψ(m), θ(m)

)
, . . . , pN,K

(
ψ(m), θ(m)

)
in rows.

To show skewness of the posterior distributions of component probabilities pi,k(ψ, θ) and also
varying variability, we take appropriate columns from mod$comp.prob3 and draw histograms
of sampled values of pi,1(ψ, θ) for three selected patients (different from those shown on
Figure 3 in Komárek and Komárková 2011a), see Figure 10.

R> IDS <- unique(pbc01$id)

R> K <- mod[[1]]$prior.b$Kmax

R> N <- ncol(mod[[1]]$comp.prob3) / K

R> ID <- c(3, 7, 51)

R> par(mfrow = c(1, 3))

R> for (id in ID){

+ i <- (1:N)[IDS == id]

+ hist(mod[[1]]$comp.prob3[, (i - 1) * K + 1], xlim = c(0, 1), prob = TRUE,

+ xlab = expression(paste("P(u=1|", psi, ", ", theta, ", y)", sep = "")),

+ col = heat_hcl(12, c = c(80, 30), l = c(30, 90), power = c(1/5, 2))[12],

+ main = paste("ID", id))

+ }

Additionally, highest posterior density (HPD) credible intervals of component probabilities
pi,k(ψ, θ) can easily be calculated using the HPDinterval routine from the coda package
which allows to evaluate uncertainty in classification of individual patients.
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Figure 10: Histograms of sampled values of component probabilities pi,1(ψ, θ) for three se-
lected patients.
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R> prob3HPD <- HPDinterval(mcmc(mod[[1]]$comp.prob3))

R> rownames(prob3HPD) <- paste("ID", rep(IDS, each = K), ", k = ", 1:K, ":", sep = "")

R> print(prob3HPD[1:6,])

lower upper
ID2, k = 1: 0.1116547364 0.9997078
ID2, k = 2: 0.0002921897 0.8883453
ID3, k = 1: 0.0805366250 0.9884059
ID3, k = 2: 0.0115940575 0.9194634
ID4, k = 1: 0.0187111309 0.9447680
ID4, k = 2: 0.0552320442 0.9812889

We check posterior means, medians and HPD credible intervals of component probabilities
pi,1(ψ, θ) for patients selected for Figure 10.

R> Row <- (1:N)[IDS %in% ID]

R> Mean <- mod[[1]]$poster.comp.prob3[Row, 1]

R> Median <- mod[[1]]$quant.comp.prob3[["50%"]][Row, 1]

R> HPD <- prob3HPD[(Row - 1) * K + 1,]

R> Pshow <- data.frame(Mean = Mean, Median = Median,

+ HPD.lower = HPD[, 1], HPD.upper = HPD[, 2])

R> print(Pshow)

Mean Median HPD.lower HPD.upper
ID3, k = 1: 0.5803136 0.6231642 0.08053663 0.9884059
ID7, k = 1: 0.9793557 0.9837618 0.94798459 0.9991267
ID51, k = 1: 0.7227904 0.7692293 0.31930466 0.9951896

Objects mod[[1]] and mod[[2]] additionally contain related components called poster.comp.prob1,
poster.comp.prob2, quant.comp.prob2 and comp.prob2. First, the structure of compo-
nents poster.comp.prob1, poster.comp.prob2 is the same as structure of the component
poster.comp.prob3. They all contain estimated values of πi,k = P(ui = k |y), i = 1, . . . , N ,
k = 1, . . . ,K, nevertheless, calculated in different ways stemming from different representation
of P(ui = k |y), i.e.,

P(ui = k |y) = E
{
I(ui = k)

∣∣y} (20)

=
∫

P(ui = k |ψ, θ, bi, yi) p(ψ, θ bi |y) d(ψ, θ, bi), (21)

i = 1, . . . , N , k = 1, . . . ,K. Using the MCMC sample SM from the joint posterior distribution
p(ψ, θ, B, u |y), expression (5), the quantities (20) are estimated as M−1

∑M
m=1 I

(
u

(m)
i =

k
)

(poster.comp.prob1). Similarly, quantities (21) are estimated as M−1
∑M

m=1 P
(
ui =

k
∣∣ψ(m), θ(m), b

(m)
i , yi

)
(poster.comp.prob2). Component quant.comp.prob2 then con-

tains posterior quantiles of P
(
ui = k

∣∣ψ, θ, bi, yi), i = 1, . . . , N , k = 1, . . . ,K. Finally,
component comp.prob2 contains the sampled values of P

(
ui = k

∣∣ψ(m), θ(m), b
(m)
i , yi

)
,

m = 1, . . . ,M , i = 1, . . . , N , k = 1, . . . ,K.
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10.2. Classification

As it is described in Komárek and Komárková (2011a, Sec. 2.5), classification which does not
take any uncertainty into account can be based on posterior means or medians of component
probabilities pi,k(ψ, θ) when the ith patient is classified into group g(i) for which π̂i,g(i) =
maxk=1,...,K π̂i,k or π̃i,g(i) = maxk=1,...,K π̃i,k. We perform and compare classification based on
the maximal value of the posterior means and medians of component probabilities pi,k(ψ, θ).

R> groupMean <- apply(mod[[1]]$poster.comp.prob3, 1, which.max)

R> pMean <- apply(mod[[1]]$poster.comp.prob3, 1, max)

R> groupMed <- apply(mod[[1]]$quant.comp.prob3[["50%"]], 1, which.max)

R> pMed <- apply(mod[[1]]$quant.comp.prob3[["50%"]], 1, max)

R> classif <- data.frame(id = IDS, groupMean = groupMean, pMean = pMean,

+ groupMed = groupMed, pMed = pMed)

R> print(classif[1:10,])

id groupMean pMean groupMed pMed
1 2 1 0.7170372 1 0.8266722
2 3 1 0.5803136 1 0.6231642
3 4 1 0.5305126 1 0.5674317
4 5 2 0.8674149 2 0.9571646
5 6 1 0.9883736 1 0.9902083
6 7 1 0.9793557 1 0.9837618
7 8 1 0.9905819 1 0.9950506
8 9 2 0.9997391 2 0.9999553
9 11 1 0.8065861 1 0.8320792
10 13 1 0.9546147 1 0.9651490

As might be expected, classification based on posterior means and medians differ only in
situation of two patients where all posterior characteristics of component probabilities are
close to 0.5 for both groups.

R> classif[groupMean != groupMed, ]

[1] id groupMean pMean groupMed pMed
<0 rows> (or 0-length row.names)

Proportions of patients classified in this way correspond indeed to posterior means of mixture
weights reported in Section 9.1.

R> table(groupMean)

groupMean
1 2

167 93
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R> round(prop.table(table(groupMean)) * 100, 2)

groupMean
1 2

64.23 35.77

R> table(groupMed)

groupMed
1 2

167 93

R> round(prop.table(table(groupMed)) * 100, 2)

groupMed
1 2

64.23 35.77

Uncertainty in classification might be taken into account by incorporation of the credible
interval in the classification rule. For example, we ultimately classify the i th patient into
group g(i) only if the lower limit of the 95% HPD interval for pi,g(i)(ψ, θ) exceeds a certain
threshold, let say 0.9. To perform this classification, we utilize previously calculated HPD
intervals stored in the object prob3HPD. First, we create a N × K matrix prob3HPDlower
containing the lower limits of the 95% HPD intervals for pi,k(ψ, θ), i = 1, . . . , N , k = 1, . . . ,K.

R> prob3HPDlower <- matrix(prob3HPD[, "lower"], ncol = 2, byrow = TRUE)

R> print(prob3HPDlower[1:5,])

[,1] [,2]
[1,] 1.116547e-01 0.0002921897
[2,] 8.053663e-02 0.0115940575
[3,] 1.871113e-02 0.0552320442
[4,] 5.445502e-08 0.3987641045
[5,] 9.722607e-01 0.0006975426

Subsequently, we perform classification where as group 3 we denote unclassified patients for
whom none of the lower limits of the 95% HPD intervals exceeds the threshold of 0.9.

R> groupHPD <- apply(prob3HPDlower, 1, which.max)

R> pHPD <- apply(prob3HPDlower, 1, max)

R> groupHPD[pHPD < 0.9] <- 3

R> classif$groupHPD <- groupHPD

R> classif$pHPD <- pHPD

R> print(classif[1:10,])
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id groupMean pMean groupMed pMed groupHPD pHPD
1 2 1 0.7170372 1 0.8266722 3 0.11165474
2 3 1 0.5803136 1 0.6231642 3 0.08053663
3 4 1 0.5305126 1 0.5674317 3 0.05523204
4 5 2 0.8674149 2 0.9571646 3 0.39876410
5 6 1 0.9883736 1 0.9902083 1 0.97226073
6 7 1 0.9793557 1 0.9837618 1 0.94798459
7 8 1 0.9905819 1 0.9950506 1 0.96622386
8 9 2 0.9997391 2 0.9999553 2 0.99889095
9 11 1 0.8065861 1 0.8320792 3 0.57972232
10 13 1 0.9546147 1 0.9651490 3 0.87942996

We obtain the following proportions of classified and unclassified patients.

R> table(groupHPD)

groupHPD
1 2 3
78 55 127

R> round(prop.table(table(groupHPD)) * 100, 2)

groupHPD
1 2 3

30.00 21.15 48.85

10.3. Classification and values of individual random effects

On this place, we underline the fact that the classification (clustering) of individual patients is
based on the mixture model for the latent values of individual random effects. Hence obtained
classification should be reflected also on individual values of random effects or their estimates
provided by their posterior means. Figure 11 shows estimated pairwise joint bivariate marginal
posterior predictive densities of random effects supplemented by posterior means of individual
random effects (saved in the object bhat, see the R code on page 33) where colors distinguish
classification of individual patients according to the rule based on the lower limits of the HPD
credible intervals for component probabilities.

R> COL <- c("darkgreen", "red4", "lightblue")

R> #

R> layout(matrix(c(1:9, 0, 10, 0), ncol = 3, byrow = TRUE))

R> for (i in 1:(mod[[1]]$dimb - 1)){

+ for (j in (i+1):mod[[1]]$dimb){

+ image(pdj[[1]]$x[[i]], pdj[[1]]$x[[j]], pdj[[1]]$dens[[paste(i, "-", j, sep = "")]],

+ col = rev(heat_hcl(33, c = c(80, 30), l = c(30, 90), power = c(1/5, 1.3))),
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Figure 11: Estimated pairwise joint bivariate marginal posterior predictive densities of random
effects supplemented by posterior means of individual random effects where colors distinguish
classification of individual patients according to the rule based on the lower limits of the HPD
credible intervals for component probabilities (group 1: green, group 2: red, unclassified:
lightblue).
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+ xlab = blab[i], ylab = blab[j])

+ points(bhat[, i], bhat[, j], pch = 1, col = COL[groupHPD])

+ }

+ }

10.4. Classification and observed longitudinal profiles

In Section 7.5, we used posterior means α̂ = α̂3 of fixed effects and posterior means β̂ of
the overall means β of random effects to calculate estimated longitudinal profiles of analyzed
markers. As we pointed out in Section 10.1, the groups into which we classify patients
correspond to components of the normal mixture in the distribution of random effects which
are, upon successful relabelling, characterized by posterior means of mixture parameters (see
Section 9.1). In particular, let µ̂k, k = 1, . . . ,K denote posterior means of mixture means
and

µ̂∗k =
(
µ̂∗k,1,1, µ̂

∗
k,1,2, µ̂

∗
k,2,1, µ̂

∗
k,2,2, µ̂

∗
k,3

)> = s+ Sµ̂k, k = 1, . . . ,K,

their shifted and scaled counterparts (reported also by the NMixSummComp routine). Subse-
quently, we may calculate group-specific estimated longitudinal profiles of each marker which
for a grid tpred,j , j = 1, . . . , J of time values would be calculated as

1. µ̂∗k,1,1 + µ̂∗k,1,2tpred,j , j = 1, . . . , J , k = 1, . . . ,K (estimated group-specific longitudinal
profiles for logarithmic bilirubin);

2. exp
(
µ̂∗k,2,1 + µ̂∗k,2,2tpred,j

)
, j = 1, . . . , J , k = 1, . . . ,K (estimated group-specific longitu-

dinal profile for platelet count);

3. logit−1
(
µ̂∗3 + α̂3tpred,j

)
, j = 1, . . . , J , k = 1, . . . ,K (estimated group-specific longitudinal

profile for presence of blood vessel malformations).

Calculation of these group-specific estimated longitudinal profiles is provided by the fitted
routine introduced in Section 7.5 if we set the value of its overall argument to FALSE (default
value).

R> tpred <- seq(0, 30, by = 0.3)

R> fitGroup <- fitted(mod[[1]], x = list("empty", "empty", tpred),

+ z = list(tpred, tpred, "empty"),

+ overall = FALSE)

Object fitGroup is again a list with three components (one for each longitudinal marker).
Each list component is a 101×2 matrix with calculated group-specific estimated longitudinal
profiles in columns. For illustration, we print the first 10 values from each group for the second
marker – platelet counts.

R> print(fitGroup[[2]][1:10,])

[,1] [,2]
[1,] 264.1380 234.7054
[2,] 263.6889 234.1231
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[3,] 263.2406 233.5422
[4,] 262.7930 232.9627
[5,] 262.3463 232.3847
[6,] 261.9003 231.8081
[7,] 261.4550 231.2330
[8,] 261.0105 230.6593
[9,] 260.5667 230.0870
[10,] 260.1237 229.5161

In a sequel, we plot observed longitudinal profiles overlaid by group-specific estimated lon-
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Figure 12: Observed longitudinal profiles of considered markers together with group-specific
estimated longitudinal profiles (group 1: green, group 2: red).
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gitudinal profiles. At the same time, we use different colors for observed profiles according
to classification based on posterior medians of component probabilities (saved in the vari-
able groupMed). First, we add classification information (variables groupMean, groupMed,
groupHPD) as new factor variables to the original data.frame pbc01. Note that all three
classification variables must be appropriately recycled.

R> TAB <- table(pbc01$id)

R> pbc01$groupMean <- factor(rep(groupMean, TAB))

R> pbc01$groupMed <- factor(rep(groupMed, TAB))

R> pbc01$groupHPD <- factor(rep(groupHPD, TAB))

Second, in the same was as on page 4, we extract individual profiles of considered markers
and store them in the object ip. Nevertheless, besides the marker valus, we keep also the
information concerning the classification in the object ip.

R> ip <- getProfiles(t = "month",

+ y = c("lbili", "platelet", "spiders", "groupMean", "groupMed", "groupHPD"),

+ id = "id", data = pbc01)

R> print(ip[[1]])

month lbili platelet spiders groupMean groupMed groupHPD
1 0.000000 0.09531018 221 1 1 1 3
2 5.979466 -0.22314355 188 1 1 1 3
3 11.991786 0.00000000 161 1 1 1 3
4 25.232033 0.64185389 122 1 1 1 3

Finally, we use the function plotProfiles and by providing two-component color vector we
use the group-specific color for each observed longitudinal profile where the group is deter-
mined by variable specified in the gvar argument (which should refer to a factor variable).
Plot is then supplemented in a standard way by previsously calculated group-specific esti-
mated longitudinal profiles, see Figure 12.

R> #COL <- rainbow_hcl(2, start = 85, end = 40)

R> COL <- terrain_hcl(12, c = c(65, 0), l = c(45, 90), power = c(0.5, 1.5))[c(5, 9)]

R> names(COL) <- levels(pbc01$groupMed)

R> fitCOL <- c("darkgreen", "red4")

R> XLIM <- c(0, 910) / (365.25 / 12)

R> layout(autolayout(3))

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "lbili",

+ gvar = "groupMed", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Log(bilirubin)")

R> lines(tpred, fitGroup[[1]][,1], col = fitCOL[1], lwd = 2)

R> lines(tpred, fitGroup[[1]][,2], col = fitCOL[2], lwd = 2)

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "platelet",
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+ gvar = "groupMed", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Platelet count")

R> lines(tpred, fitGroup[[2]][,1], col = fitCOL[1], lwd = 2)

R> lines(tpred, fitGroup[[2]][,2], col = fitCOL[2], lwd = 2)

R> #

R> plotProfiles(ip = ip, data = pbc01, var = "spiders",

+ gvar = "groupMed", tvar = "month",

+ xlim = XLIM, xlab = "Time (months)", col = COL,

+ auto.layout = FALSE, main = "Blood vessel malform.")

R> lines(tpred, fitGroup[[3]][,1], col = fitCOL[1], lwd = 2)

R> lines(tpred, fitGroup[[3]][,2], col = fitCOL[2], lwd = 2)

11. Selection of a number of mixture components

As it is explained in Komárek and Komárková (2011a, Sec. 2.6), selection of a number of
mixture components and hence of an optimal number of clusters might be based on the
posterior distribution of observed data deviances D(ψ, θ) = −2 log

{
L(ψ, θ)

}
where L(ψ, θ)

is given by (8), using the methodology proposed by Aitkin, Liu, and Chadwick (2009) and
further elaborated in Chapters 7 and 8 of Aitkin (2010).

Alternatively, penalized expected deviance (Plummer 2008, PED) might be used. [ADD
MORE EXPLANATION.]

As we showed in Section 5.7, posterior sample of observed data deviances is automatically
saved as component Deviance of the object which results from the MCMC simulation invoked
by the call to GLMM_MCMC function. In this Section, we use this sample to compare posterior
distributions of observed data deviances of models with different numbers (K = 1, 2, 3, 4) of
mixture components. For some of the tasks in this Section, function

� summaryDiff() which calculates posterior summary statistics for the difference between
the two quantities,

from package mixAK will be used. In a sequel, let DK(ψ, θ) denote the observed data
deviance in a model with K mixture components. Further, let PK2,K1(y) = P

{
DK2(ψ, θ)−

DK1(ψ, θ) < 0
∣∣y} be the posterior probability that model with K2 mixture components is

better than model with K1 mixture components.

First, we run the MCMC simulation of the same length and with the same prior distributions
as in Section 5.1 for models with K = 1, 2, 3, 4 mixture components in the distribution of ran-
dom effects. We separately store posterior samples of observed data deviances (from chain 1)
in a list devs and calculated values of the penalized expected deviances in a data.frame
PED.

R> devs <- mods <- list()

R> for (K in 1:4){

+ cat("Calculating K = ", K, "\n========================\n", sep="")

+
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+ if (K == 2){

+ mods[[K]] <- mod

+ }else{

+ set.seed(20042007)

+ mods[[K]] <- GLMM_MCMC(y = pbc01[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = pbc01[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = pbc01[, "month"]),

+ z = list(lbili = pbc01[, "month"],

+ platelet = pbc01[, "month"],

+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ prior.b = list(Kmax = K),

+ nMCMC = c(burn = 1000, keep = 10000, thin = 100, info = 1000),

+ PED = TRUE, parallel = FALSE)

+ }

+

+ devs[[K]] <- mods[[K]]$Deviance1 ### deviance from the first chain

+
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Figure 13: Posterior cumulative distribution functions of observed data deviances for models
with K = 1, 2, 3, 4.
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+ if (K == 1){

+ PED <- as.data.frame(matrix(mods[[K]]$PED, nrow=1))

+ colnames(PED) <- names(mods[[K]]$PED)

+ }else PED <- rbind(PED, mods[[K]]$PED)

+ }

Calculated penalized expected deviances for the four models (column PED):

R> print(PED)

D.expect p(opt) PED wp(opt) wPED
1 14241.80 36.06845 14277.87 36.35170 14278.16
2 14088.32 75.80047 14164.12 75.99216 14164.32
3 14057.08 126.01605 14183.09 126.53383 14183.61
4 17244.38 5160.76117 22405.14 2926.41360 20170.79

We calculate posterior summary statistics for the difference between the observed data de-
viance from models with K = 2 and K = 1.

R> summaryDiff(devs[[2]], devs[[1]])

$summary
Mean 2.5% 50% 97.5%

-153.6042 -177.2704 -153.9062 -128.8956

$Pcut
P(diff < -4.39) P(diff < 0)

1 1

For example, we conclude from the output that the posterior median for D2(ψ, θ)−D1(ψ, θ)
is −153.91 and posterior probability P2,1(y) that model with K = 2 is better than model with
K = 1 is practically equal to 1. The output further reports posterior probability P

{
D2(ψ, θ)−

D1(ψ, θ) < −2 log(9) .= −4.39
∣∣y}, where the value of −2 log(9) is chosen according to the

guidelines given in Aitkin et al. (2009, Sec. 4). They argue that if this posterior probability is
high (0.9 or more like in our case), we have quite strong evidence in favor of model with K = 2
over model with K = 1. Similarly, we compare model with K = 3 to model with K = 2 and
find out that model a three-component model might be favorable to a two-component model
with P3,2(y) = 0.9848 and P

{
D3(ψ, θ)−D2(ψ, θ) < −2 log(9)

∣∣y} = 0.9700.

R> summaryDiff(devs[[3]], devs[[2]])

$summary
Mean 2.5% 50% 97.5%

-31.08387 -58.22722 -31.27067 -3.22487

$Pcut
P(diff < -4.39) P(diff < 0)

0.9700 0.9848
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For completeness, we compare also a four-component model to both three- and two-component
models and find out that the four-component model is by no means favorable neither to a two-
component nor to a three-component model.

R> summaryDiff(devs[[4]], devs[[3]])

$summary
Mean 2.5% 50% 97.5%

1654.37019 -57.04976 -16.08968 5335.57157

$Pcut
P(diff < -4.39) P(diff < 0)

0.5976 0.6192

R> summaryDiff(devs[[4]], devs[[2]])

$summary
Mean 2.5% 50% 97.5%

1623.28632 -88.22094 -46.66565 5304.30897

$Pcut
P(diff < -4.39) P(diff < 0)

0.6552 0.6559

Overall comparison of the posterior distributions of deviances under competing models is
provided by comparison of posterior cumulative distribution functions (cdf’s) of deviances
which are plotted on Figure 13.

R> COL <- terrain_hcl(4, c = c(65, 15), l = c(45, 80), power = c(0.5, 1.5))

R> plot(c(14000, 14275), c(0, 1), type="n",

+ xlab="Deviance", ylab="Posterior CDF")

R> for (K in 1:4){

+ medDEV <- median(devs[[K]])

+ ECDF <- ecdf(devs[[K]])

+ plot(ECDF, col=COL[K], lwd=2, add=TRUE)

+ text(medDEV+0.5, 0.5, labels=K)

+ }
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This document was prepared using Sweave (Leisch 2002).
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