Package 'GBOP2'

April 9, 2025

```
Type Package
```

Title Generalized Bayesian Optimal Phase II Design (G-BOP2)

Version 0.1.2

Depends R (>= 4.1.0)

Maintainer Wanni Lei <wanni.lei17@gmail.com>

Description Provides functions for implementing the Generalized Bayesian Optimal Phase II (G-

BOP2) design using various Particle Swarm Optimization (PSO) algorithms, including:

- PSO-Default, based on Kennedy and Eber-

hart (1995) <doi:10.1109/ICNN.1995.488968>, ``Particle Swarm Optimization";

- PSO-

Quantum, based on Sun, Xu, and Feng (2004) <doi:10.1109/ICCIS.2004.1460396>, ``A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization";

- PSO-Dexp, based on Stehlík et al. (2024) <doi:10.1016/j.asoc.2024.111913>, ``A Double Exponential Particle Swarm Optimization with Non-Uniform Variates as Stochastic Tuning and Guaranteed Convergence to a Global Optimum with Sample Applications to Finding Optimal Exact Designs in Biostatistics";

- and PSO-GO.

Imports tidyr, R6, Rcpp, doParallel, foreach, dplyr, stats, globpso, parallel, utils, RcppArmadillo

Suggests knitr, rmarkdown, roxygen2, testthat (>= 3.0.0), R.rsp

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Config/parallel false

Config/testthat/edition 3

VignetteBuilder R.rsp

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Xinying Fang [aut],

Wanni Lei [aut, cre]

Repository CRAN

Date/Publication 2025-04-09 10:20:05 UTC

Contents

	GBOP2_maxP_dualE	2
	GBOP2_maxP_singleE	3
	GBOP2_maxP_TE	5
	GBOP2_minSS_dualE	
	GBOP2_minSS_singleE	8
	GBOP2_minSS_TE	10
	get_cluster	13
	init_cluster	13
	stop_cluster	14
	summary.gbop2	14
Index		16
GB0P2	_maxP_dualE	

Description

This function implements PSOGO to find a power maximizing design with dual boundaries.

Arguments

design	fixed as "optimal", which can not be modified by user
nlooks	number of interim looks
p0	Null hypothesis response rate
p1	Alternative hypothesis response rate
err1	Type I error rate
nParallel	number of pso ensemble
minPower	power
totalPatients	total patients
Nmin_cohort1	minimum number of first cohort
Nmin_increase	minimum number of increase in each cohort
pso_method	"all" for using three distinct pso, otherwise indicate single pso method
seed	seed for pso
nSwarm	nSwarm for pso
maxIter	maxIter for pso

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

Examples

```
# init_cluster(2)
# GBOP2_maxP_dualE(
   nlooks = 1,
   p0 = 0.2,
   p1 = 0.4
   err1 = 0.05,
   minPower = 0.8,
   totalPatients = 26,
   Nmin_cohort1 = 10,
   Nmin_increase = 5,
   pso_method = "default",
   nParallel = 1,
   seed = 1024,
   nSwarm = 64,
   maxIter = 200
#)
# stop_cluster() # Only if init_cluster() was used
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_maxP_singleE

PSOGO: Power maximizing design with single boundary for futility

Description

This function implements PSOGO to find a power maximizing design with single boundary for futility.

Usage

```
GBOP2_maxP_singleE(
  nlooks = 1,
  p0 = 0.2,
  p1 = 0.4,
  err1 = 0.05,
  minPower = 0.8,
  totalPatients = 5,
  Nmin_cohort1 = 1,
  Nmin_increase = 1,
  pso_method = "default",
```

```
nParallel = NULL,
seed = 1024,
nSwarm = 1,
maxIter = 1
)
```

Arguments

nlooks number of interim looks p0 Null hypothesis response rate р1 Alternative hypothesis response rate Type I error rate err1 minPower power totalPatients total number of patients Nmin_cohort1 minimum number of first cohort minimum number of increase in each cohort Nmin_increase "all" for using three distinct pso, otherwise indicate single pso method pso_method nParallel number of pso ensemble Random seed for reproducibility seed nSwarm nSwarm for pso

Details

maxIter

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

maxIter for pso

```
# init_cluster(2)
# GBOP2_maxP_singleE(
# nlooks = 1,
# p0 = 0.2,
# p1 = 0.4,
# err1 = 0.05,
# minPower = 0.8,
# totalPatients = 26,
# Nmin_cohort1 = 10,
# Nmin_increase = 5,
# pso_method = "default",
# nParallel = 1,
```

GBOP2_maxP_TE 5

```
# seed = 1024,
# nSwarm = 64,
# maxIter = 200
# )
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_maxP_TE

PSOGO: Power maximizing design with efficacy and toxicity boundaries

Description

This function implements PSOGO to find a power maximizing design with efficacy and toxicity boundaries.

design	fixed as "optimal", cannot be modified by user
pso_method	method for single PSO, choose from "default", "quantum" or "dexp"
nlooks	number of interim looks
skip_efficacy	default is NULL, indicate skip efficacy as 1 and not skip as 0 in a vector
skip_toxicity	default is NULL, indicate skip toxicity as 1 and not skip as 0 in a vector
totalPatients	number of total patients
Nmin_cohort1	maximum number of patients
Nmin_increase	minimum number of first cohort
p01	H0 for efficacy
p02	H0 for toxicity
p03	H0 for Eff and Tox
p11	H1 for efficacy
p12	H1 for toxicity
p13	H1 for Eff and Tox
err_eff	Type I error rate: Efficacious but toxic
err_tox	Type I error rate: Safe but futile
err_all	Type I error rate: Futile and toxic
power_eff	power: Efficacious but toxic
power_tox	power: Safe but futile
power_all	power: Futile and toxic

6 GBOP2_maxP_TE

```
nSwarm nSwarm in PSO
maxIter maxIter in PSO
nParallel number of PSO ensemble
seed Random seed for reproducibility
```

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
# GBOP2_maxP_TE(
# design = "optimal",
# nlooks = 1,
# skip_efficacy = NULL,
# skip_toxicity = NULL,
# totalPatients = 50,
# Nmin_cohort1 = 10,
# Nmin_increase = 5,
# p01 = 0.15,
# p02 = 0.16,
# p03 = 0.024,
# p11 = 0.4,
# p12 = 0.08,
# p13 = 0.032,
# err_eff = 1,
# err_tox = 1,
# err_all = 0.1,
# power_eff = 0.8,
# power_tox = 0.8,
# power_all = 0.8,
# nParallel = 1,
# seed = 5321,
# pso_method = "default",
# nSwarm = 32,
# maxIter = 100)
# stop_cluster() # Only if init_cluster() was used
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_minSS_dualE

PSOGO: Optimal/Minimax design with dual boundaries

Description

This function implements PSOGO to find an optimal or minimax design with dual boundaries.

Usage

```
GBOP2_minSS_dualE(
  design = "optimal",
  unified.u = unified.u,
 weight = 1,
  nlooks = 1,
  p0 = 0.2,
 p1 = 0.4
  err1 = 0.05,
 minPower = 0.8,
 maxPatients = 5,
 Nmin\_cohort1 = 1,
 Nmin_increase = 1,
  pso_method = "default",
 nParallel = NULL,
  seed = 123,
  nSwarm = 1,
 maxIter = 1
)
```

```
choose from "optimal", "minimax", or "unified"
design
                  specify when design = "unified", u in zero to one
unified.u
weight
                  weight of sample size under null
                  number of interim looks
nlooks
p0
                  Null hypothesis response rate
р1
                  Alternative hypothesis response rate
                  Type I error rate
err1
minPower
                  power
maxPatients
                  maximum number of patients
                  minimum number of first cohort
Nmin_cohort1
Nmin_increase
                  minimum number of increase in each cohort
                  "all" for using three distinct pso, otherwise indicate single pso method
pso_method
nParallel
                  number of pso ensemble
```

```
seed seed for pso
nSwarm nSwarm for pso
maxIter maxIter for pso
```

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
  GBOP2_minSS_dualE(
    design = "optimal",
    unified.u = unified.u,
    nlooks = 1,
    p0 = 0.2,
    p1 = 0.4,
    err1 = 0.05,
    minPower = 0.8,
    weight = 1,
    maxPatients = 25,
    Nmin_cohort1 = 10,
    Nmin_increase = 5,
    pso_method = "default",
    nParallel = 3,
    seed = 123,
    nSwarm = 64,
#
    maxIter = 200
# )
# stop_cluster() # Only if init_cluster() was used
message("Run GBOP2_minSS_dualE() manually for real optimization.")
```

Description

This function implements PSOGO to find an optimal or minimax design with single boundary for futility.

Usage

```
GBOP2_minSS_singleE(
  design = "optimal",
 unified.u = 1,
 weight = 1,
 nlooks = 2,
  p0 = 0.2,
 p1 = 0.4
  err1 = 0.05,
 minPower = 0.8,
 maxPatients = 5,
 Nmin\_cohort1 = 1,
 Nmin_increase = 1,
 pso_method = "default",
  nParallel = NULL,
  seed = 456,
 nSwarm = 1,
 maxIter = 1
)
```

```
design
                  choose from "optimal", "minimax", or "unified"
                  specify when design = "unified", u in zero to one
unified.u
weight
                  weight of sample size under null
                  number of interim looks
nlooks
p0
                  Null hypothesis response rate
                  Alternative hypothesis response rate
p1
                  Type I error rate
err1
minPower
                  power
                  maximum number of patients
maxPatients
Nmin_cohort1
                  minimum number of first cohort
                  minimum number of increase in each cohort
Nmin_increase
                  "all" for using three distinct pso, otherwise indicate single pso method
pso_method
                  number of pso ensemble
nParallel
seed
                  Random seed for reproducibility
nSwarm
                  nSwarm for pso
maxIter
                  maxIter for pso
```

10 GBOP2_minSS_TE

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

Examples

```
# init_cluster(2)
  GBOP2_minSS_singleE(
   design = "optimal",
    unified.u = 1,
    nlooks = 1,
    p0 = 0.2
    p1 = 0.4
    err1 = 0.05,
    minPower = 0.8,
    weight = 1,
    maxPatients = 25,
    Nmin\_cohort1 = 10,
    Nmin_increase = 5,
    pso_method = "default",
    nParallel = 3,
    seed = 1024,
    nSwarm = 64,
     maxIter = 200
# )
# stop_cluster() # Only if init_cluster() was used
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

GBOP2_minSS_TE

PSOGO: Optimal/Minimax design with efficacy and toxicity boundaries

Description

This function implements PSOGO to find an optimal or minimax design with efficacy and toxicity boundaries.

GBOP2_minSS_TE

Usage

```
GBOP2_minSS_TE(
  design = "optimal",
  unified.u = 1,
  nlooks = 1,
  skip_efficacy = NULL,
  skip_toxicity = NULL,
 maxPatients = 5,
 Nmin_cohort1 = 1,
 Nmin_increase = 1,
  p01 = 0.3,
 p02 = 0.4
 p03 = 0.2
 p11 = 0.6,
 p12 = 0.2,
 p13 = 0.15,
 err_eff = 0.1,
 err_tox = 0.1,
 err_all = 0.05,
 power_eff = 0.8,
 power_tox = 0.8,
 power_all = 0.8,
  pso_method = "default",
  nParallel = NULL,
  seed = 5321,
  nSwarm = 1,
 maxIter = 1
)
```

```
choose from "optimal", "minimax", or "unified"
design
unified.u
                  specify when design = "unified", u in zero to one
nlooks
                  number of interim looks
skip_efficacy
                  default is NULL, indicate skip efficacy as 1 and not skip as 0 in a vector
                  default is NULL, indicate skip toxicity as 1 and not skip as 0 in a vector
skip_toxicity
maxPatients
                  maximum number of patients
                  minimum number of first cohort
Nmin_cohort1
                  minimum number of increase in each cohort
Nmin_increase
p01
                  H0 for efficacy
                  H0 for toxicity
p02
                  H0 for Eff and Tox
p03
                  H1 for efficacy
p11
                  H1 for toxicity
p12
```

12 GBOP2_minSS_TE

```
H1 for Eff and Tox
p13
err_eff
                  Type I error rate: Efficacious but toxic
err_tox
                  Type I error rate: Safe but futile
err_all
                  Type I error rate: Futile and toxic
                  power: Efficacious but toxic
power_eff
power_tox
                  power: Safe but futile
                  power: Futile and toxic
power_all
pso_method
                  "all" for using three distinct pso, otherwise indicate single pso method
nParallel
                  number of pso ensemble
seed
                  Random seed for reproducibility
                  nSwarm in PSO
nSwarm
maxIter
                  maxIter in PSO
```

Details

Parallel computing is only used when the user explicitly sets nCore > 1. No more than 2 cores should be used unless the user is aware and permits it. The function defaults to sequential execution. If multiple analyses are planned, consider using init_cluster(nCore) and stop_cluster() manually to control the backend.

Value

A list on design parameters and operating characteristics

```
# init_cluster(2)
 GBOP2_minSS_TE(
   design = "optimal",
#
    unified.u = 1,
    nlooks = 1,
    skip_efficacy = NULL,
#
    skip_toxicity = NULL,
    maxPatients = 25,
    Nmin\_cohort1 = 10,
    Nmin_increase = 5,
    p01 = 0.3
    p02 = 0.4,
    p03 = 0.2,
    p11 = 0.6,
    p12 = 0.2
    p13 = 0.15,
#
    err_eff = 0.1,
    err_tox = 0.1,
#
#
    err_all = 0.05,
#
    power_eff = 0.8,
    power_tox = 0.8,
    power_all = 0.8,
```

get_cluster 13

```
# pso_method = "default",
# nParallel = 3,
# seed = 5321,
# nSwarm = 32,
# maxIter = 100
# )
# stop_cluster() # Only if init_cluster() was used
#
message("Run GBOP2_minSS_singleE() manually for real optimization.")
```

get_cluster

Get current cluster

Description

Returns the current parallel cluster object, if initialized.

Usage

```
get_cluster()
```

Value

A cluster object or NULL.

init_cluster

Initialize parallel cluster

Description

Creates and registers a parallel backend using the specified number of cores. Falls back to sequential execution if nCore <= 1.

Usage

```
init_cluster(nCore = 2)
```

Arguments

nCore

Number of cores to use (default is 2).

summary.gbop2

stop_cluster

Stop and clean up the cluster

Description

Stops the currently running parallel cluster and reverts to sequential execution.

Usage

```
stop_cluster()
```

summary.gbop2

Summary function Summary function for gbop2 objects

Description

Summary function Summary function for gbop2 objects

Usage

```
## S3 method for class 'gbop2'
summary(object, ...)
```

Arguments

```
object GBOP2_maxP_dualE GBOP2_maxP_singleE GBOP2_maxP_TE GBOP2_minSS_dualE GBOP2_minSS_singleE GBOP2_minSS_TE
... ignored arguments
```

Value

A summary table

```
design <- GBOP2_minSS_singleE(
  design = "optimal",
  unified.u = 1,
  nlooks = 1,
  p0 = 0.2,
  p1 = 0.4,
  err1 = 0.05,
  minPower = 0.8,
  weight = 1,
  maxPatients = 25,
  Nmin_cohort1 = 10,</pre>
```

summary.gbop2 15

```
Nmin_increase = 5,
pso_method = "default",
nParallel = 1,
seed = 1024,
nSwarm = 64,
maxIter = 200
)
summary(design)
```

Index

```
GBOP2_maxP_dualE, 2
GBOP2_maxP_singleE, 3
GBOP2_maxP_TE, 5
GBOP2_minSS_dualE, 7
GBOP2_minSS_singleE, 8
GBOP2_minSS_TE, 10
get_cluster, 13
init_cluster, 13
stop_cluster, 14
summary.gbop2, 14
```