Package 'Minirand'

October 12, 2022
Type Package
Title Minimization Randomization
Version 0.1.3
Date 2020-01-22
Author Man Jin [aut, cre], Adam Polis [aut], Jonathan Hartzel [aut]

Maintainer Man Jin mj2149@gmail.com
Description Randomization schedules are generated in the schemes with $k(k>=2)$ treatment groups and any allocation ratios by minimization algorithms.

License GPL (>=2)
Encoding UTF-8
RoxygenNote 6.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-22 22:30:02 UTC

R topics documented:

blkrandomization . 2
Minirand . 2
randbalance . 4
totimbal . 4

Index

```
blkrandomization Blocked randomization
```


Description

The fuction is used to generate treatment assignments based on blocked randomization.

Usage

blkrandomization(n, blocksize, block)

Arguments

$\mathrm{n} \quad$ numeric number of subjects who will be randomized
blocksize numeric value of block size used for blocked randomization
block vector of treatment blocks used for blocked randomization

Value

trt a sequence of treatment assignments

Examples

blocksize <- 4
block <- c(1, 2, 3, 4) \# treatment 1, 2, 3, 4
n <- 35
blkrandomization(n, blocksize, block)

Minirand \quad Minimization randomization to k treatment groups

Description

The function is used to generate treatment assignment by minimization algorithms.

Usage

```
Minirand(covmat = covmat, j, covwt = covwt, ratio = ratio,
    ntrt = ntrt, trtseq = trtseq, method = "Range", result = res, p)
```


Arguments

covmat	matrix or data frame of covariate factors
j	the jth subject in the randomization sequence
covwt	vector of weights of the covaraite factors
ratio	vector of randomization ratios for each treatment
ntrt	numeric number of treatment groups
trtseq	vector of a sequence of treatment groups
method	the method or algorithm for the minimization randomization
result	the treatment assignments in subjetcs achieved so far
p	the high probability for new assignment

Value

treatment assignment for the jth subject

References

Pocock and Simon (1975), Sequential Treatment Assignment with Balancing for Prognostic Factors in the Controlled Clinical Trial. Biometrics; 103-115.
Jin, Polis, and Hartzel (2019), "Algorithms for minimization randomization and the implementation with an R package". Communications in Statistics-Simulation and Computation; May 2019.

Examples

```
ntrt <- 3
nsample <- 120
trtseq <- c(1, 2, 3)
ratio <- c(2, 2, 1)
c1 <- sample(seq(1, 0), nsample, replace = TRUE, prob = c(0.4, 0.6))
c2 <- sample(seq(1, 0), nsample, replace = TRUE, prob = c(0.3, 0.7))
c3 <- sample(c(2, 1, 0), nsample, replace = TRUE, prob = c(0.33, 0.2, 0.5))
c4 <- sample(seq(1, 0), nsample, replace = TRUE, prob = c(0.33, 0.67))
covmat <- cbind(c1, c2, c3, c4) # generate the matrix of covariate factors for the subjects
# label of the covariates
colnames(covmat) = c("Gender", "Age", "Hypertension", "Use of Antibiotics")
covwt <- c(1/4, 1/4, 1/4, 1/4) #equal weights
res <- rep(100, nsample) # result is the treatment needed from minimization method
#gernerate treatment assignment for the 1st subject
res[1] = sample(trtseq, 1, replace = TRUE, prob = ratio/sum(ratio))
for (j in 2:nsample)
{
# get treatment assignment sequentiall for all subjects
res[j] <- Minirand(covmat=covmat, j, covwt=covwt, ratio=ratio,
ntrt=ntrt, trtseq=trtseq, method="Range", result=res, p = 0.9)
}
trt1 <- res
#Display the number of randomized subjects at covariate factors
balance1 <- randbalance(trt1, covmat, ntrt, trtseq)
```

```
balance1
totimbal(trt = trt1, covmat = covmat, covwt = covwt,
ratio = ratio, ntrt = ntrt, trtseq = trtseq, method = "Range")
```

randbalance \quad Displays the number of randomized subjects at each level for all co-
variate factors.

Description

The fuction to cound the number of randomized subjects at each level for all covariate factors

Usage

randbalance(trt, covmat, ntrt, trtseq)

Arguments

trt treatment sequence for all the randomized subjects
covmat matrix or data frame of covariate factors
ntrt numeric number of treatment groups
trtseq vector of a sequence of treatment groups

Value

the number of randomized subjects at each level for all covariate factors

Description

The function to calculates the total imbalance measured by minimization algorithms

Usage

```
totimbal(trt = trt, covmat = covmat, covwt = covwt, ratio = ratio,
```

 ntrt = ntrt, trtseq = trtseq, method = "Range")

Arguments

trt	treatment sequence for all the randomized subjects
covmat	matrix or data frame of covariate factors
covwt	vector of weights of the covaraite factors
ratio	vector of randomization ratios for each treatment
ntrt	numeric number of treatment groups
trtseq	vector of a sequence of treatment groups
method	the method or algorithm for the minimization randomization

Value

total imbalance

Index

blkrandomization, 2
Minirand, 2
randbalance, 4
totimbal, 4

