Package 'PSAboot'

October 23, 2023
Type Package
Title Bootstrapping for Propensity Score Analysis
Version 1.3.8
Date 2023-10-23
Maintainer Jason Bryer < jason@bryer.org>
Description It is often advantageous to test a hypothesis more than once in the context of propensity score analysis (Rosenbaum, 2012) doi:10.1093/biomet/ass032. The functions in this package facilitate bootstrapping for propensity score analysis (PSA). By default, bootstrapping using two classification tree methods (using 'rpart' and 'ctree' functions), two matching methods (using 'Matching' and 'MatchIt' packages), and stratification with logistic regression. A framework is described for users to implement additional propensity score methods. Visualizations are emphasized for diagnosing balance; exploring the correlation relationships between bootstrap samples and methods; and to summarize results.

License GPL
URL https://github.com/jbryer/PSAboot
BugReports https://github.com/jbryer/PSAboot/issues
Depends ggplot2, graphics, PSAgraphics, R (>= 3.0)
Imports ggthemes, Matching, MatchIt, modeltools, parallel, party, psych, reshape2, rpart, stats, TriMatch, utils
Suggests knitr, rmarkdown
VignetteBuilder knitr
Encoding UTF-8
LazyLoad yes
RoxygenNote 7.2.3
NeedsCompilation no
Author Jason Bryer [aut, cre] (https://orcid.org/0000-0002-2454-0402)
Repository CRAN
Date/Publication 2023-10-23 19:20:02 UTC

R topics documented:

PSAboot-package 2
as.data.frame.PSAbootSummary 3
balance 3
balance.matching 4
boot.ctree 5
boot.matching 5
boot.matchit 6
boot.rpart 7
boot.strata 8
boot.weighting 8
boxplot.PSAboot 9
boxplot.PSAboot.balance 10
calculate_ps_weights 11
getPSAbootMethods 12
hist.PSAboot 12
matrixplot 13
pisa.psa.cols 13
pisalux 13
pisausa 15
plot.PSAboot 17
plot.PSAboot.balance 18
print.PSAboot 19
print.PSAboot.balance 19
print.PSAbootSummary 20
psa.strata 20
PSAboot 21
q25 23
q75 23
summary.PSAboot 24
Index 25
PSAboot-package Bootstrapping for Propensity Score Analysis

Description

Bootstrapping procedures for Propensity Score Analysis.

Description

Convert the results of PSAboot summary to a data frame.

Usage

\#\# S3 method for class 'PSAbootSummary'
as.data.frame (x, row.names $=$ NULL, optional $=$ FALSE, ...)

Arguments

X
results of summary. PSAboot
row.names row names.
optional unused.
... unused.

Value

a data.frame.
balance
Returns a summary of the balance for all bootstrap samples.

Description

This method provides some crude overall measures of balance.

Usage

balance(psaboot, na.rm = TRUE, pool.fun = mean)

Arguments

psaboot results from PSAboot.
na.rm should NAs be removed. NAs generally occur when there is insufficient sample for a particular covariate or an unused level.
pool.fun a function specifying how the effect sizes across all covariates should be combined. Possible values include mean (default), q25, q75, median, max, or any function that takes a vector of numeric values.

Value

a list with three elements:
unadjusted named numeric vector with unadjusted effect size before adjustment for each covariate complete a matrix with adjusted effect size for each covariate (columns) for each method (rows).
pooled a matrix with mean adjusted effect size for all covariates for each method (columns) and each bootstrap sample (rows).
balances a list with an $\mathrm{M} x \mathrm{n}$ covariates matrix for each method.

Examples

```
library(PSAboot)
data(pisa.psa.cols)
data(pisausa)
bm.usa <- PSAboot(Tr = as.integer(pisausa$PUBPRIV) - 1,
    Y = pisausa$Math,
    X = pisausa[,pisa.psa.cols],
    control.ratio = 5,M = 100, seed = 2112)
bm.usa.bal <- balance(bm.usa)
```

balance.matching Returns balance for each covariate from propensity score matching.

Description

This function is function is primarily used by [PSAboot::balance()] and probably does not need to be called directly.

Usage

balance.matching(index.treated, index.control, covs)

Arguments

index. treated a vector with the index of treated rows in covs.
index.control a vector with the index of control rows in covs.
covs data frame or matrix of covariates. Factors should already be recoded. See cv.trans.psa

Value

a named vector with one element per covariate.
boot.ctree
Stratification using classification trees for bootstrapping.

Description

Stratification using classification trees for bootstrapping.

Usage

boot.ctree(Tr, Y, X, X.trans, formu, minStrata = 5, ...)

Arguments

Tr vector indicating treatment assignment.
$Y \quad$ vector of outcome.
$X \quad$ matrix or data frame of covariates.
X.trans a data frame of X with factors recoded. See cv.trans.psa
formu the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
minStrata minimum number of treatment or control units within a strata to include that strata.
... other parameters passed from PSAboot

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis

```
boot.matching Matching package implementation for bootstrapping.
```


Description

Matching package implementation for bootstrapping.

Usage

boot.matching(Tr, Y, X, X.trans, formu, estimand = "ATE", ...)

Arguments

Tr	vector indicating treatment assignment.
Y	vector of outcome.
X	matrix or data frame of covariates.
X.trans	a data frame of X with factors recoded. See cv. trans.psa
formu	the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
estimand	character string for estimand, either ATE, ATT, or ATC. See Match for more details.
\ldots	other parameters passed to Match.

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis

Description

MatchIt package implementation for bootstrapping.

Usage

boot.matchit(Tr, Y, X, X.trans, formu, ...)

Arguments

Tr vector indicating treatment assignment.
Y vector of outcome.
$X \quad$ matrix or data frame of covariates.
X.trans a data frame of X with factors recoded. See $c v$.trans.psa
formu the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
... other parameters passed from PSAboot

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X . trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis

boot.rpart Stratification using classification trees for bootstrapping.

Description

Stratification using classification trees for bootstrapping.

Usage

boot.rpart(Tr, Y, X, X.trans, formu, minStrata = 5, ...)

Arguments

Tr
Y
$X \quad$ matrix or data frame of covariates.
X.trans a data frame of X with factors recoded. See cv.trans.psa
formu the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
minStrata minimum number of treatment or control units within a strata to include that strata.
.. other parameters passed from PSAboot

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis

Description

Stratification implementation for bootstrapping.

Usage

boot.strata(Tr, Y, X, X.trans, formu, nstrata = 5, ...)

Arguments

$\mathrm{Tr} \quad$ vector indicating treatment assignment.
$Y \quad$ vector of outcome.
$X \quad$ matrix or data frame of covariates.
X.trans a data frame of X with factors recoded. See cv.trans.psa
formu the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
nstrata number of strata to divide the propensity scores.
... other parameters passed from PSAboot

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis
boot.weighting Propensity score weighting implementation for bootstrapping.

Description

Propensity score weighting implementation for bootstrapping.

Usage

boot.weighting(Tr, Y, X, X.trans, formu, estimand = "ATE", ...)

Arguments

Tr vector indicating treatment assignment.
$Y \quad$ vector of outcome.
$X \quad$ matrix or data frame of covariates.
X.trans a data frame of X with factors recoded. See cv.trans.psa
formu the formula to use to estimate propensity scores. Note that the dependent varaible (i.e. treatment varaible) name will be updated using the Tr vector.
estimand which treatment effect to estimate. Values can be ATE, ATT, ATC, or ATM.
... other parameters passed from PSAboot

Value

a list with three elements:
summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)
balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)
details an arbitrary object that contains the full results of the analysis

```
boxplot.PSAboot Boxplot of PSA bootstrap results.
```


Description

Boxplot of PSA bootstrap results.

```
Usage
    ## S3 method for class 'PSAboot'
    boxplot(
    x,
    bootstrap.mean.color = "blue",
    bootstrap.ci.color = "green",
    bootstrap.ci.width = 0.5,
    bootstrap.ci.size = 3,
    overall.mean.color = "red",
    tufte = FALSE,
    coord.flip = TRUE,
)
```


Arguments

```
    x result of PSAboot.
    bootstrap.mean.color
        the color of the point for the bootstrap mean, or NA to omit.
    bootstrap.ci.color
        the color of the confidence intervals of the bootstrap samples, or NA to omit.
    bootstrap.ci.width
        the width of the confidence interval lines at the end.
    bootstrap.ci.size
        the size of the confidence interval lines.
    overall.mean.color
        the color of the point for the overall (before bootstrapping) mean, or NA to omit.
    tufte use Tufte's boxplot style. Requires the ggthemes package.
    coord.flip Whether to flip the coordinates.
    ... unused
```

Value
a ggplot2 expression.

```
boxplot.PSAboot.balance
```

Boxplot of the balance statistics for bootstrapped samples.

Description

Boxplot of the balance statistics for bootstrapped samples.

Usage

```
## S3 method for class 'PSAboot.balance'
boxplot(
        x,
        unadjusted.color = "red",
        pooled.color = "blue",
        point.size = 3,
        point.alpha = 0.5,
    )
```


Arguments

x	results of balance
unadjusted.color	the color used for the unadjusted effect size.
pooled.color	the color used for the mean bootstrap effect size.
point.size	the size of the points.
point.alpha	the transparency level for the points.
\ldots	other parameters passed to facet_wrap

Value

a ggplot2 expression.

Examples

```
library(PSAboot)
data(pisa.psa.cols)
data(pisausa)
bm.usa <- PSAboot(Tr = as.integer(pisausa$PUBPRIV) - 1,
    Y = pisausa$Math,
    X = pisausa[,pisa.psa.cols],
    control.ratio = 5, M = 100, seed = 2112)
bm.usa.bal <- balance(bm.usa)
boxplot(bm.usa.bal, nrow = 1)
```

calculate_ps_weights Calculates propensity score weights.

Description

Calculates propensity score weights.

Usage

calculate_ps_weights(treatment, ps, estimand = "ATE")

Arguments

treatment a logical vector for treatment status.
ps numeric vector of propensity scores
estimand character string indicating which estimand to be used. Possible values are ATE (average treatment effect), ATT (average treatment effect for the treated), ATC (average treatement effect for the controls), ATM (Average Treatment Effect Among the Evenly Matchable), ATO (Average Treatment Effect Among the Overlap Populatio)
getPSAbootMethods Returns a vector with the default methods used by PSAboot.

Description

The current default methods are:
Stratification boot.strata
ctree boot.ctree
rpart boot.rpart
Matching boot.matching
MatchIt boot.matchit

Usage

getPSAbootMethods()

Details

The default methods can be changed by setting the PSAboot. methods option using options('PSAboot.methods ' =c (. . .)) where . . . is a named list of functions.

Value
a vector of methods for use by PSAboot
hist.PSAboot Histogram of PSA bootstrap results

Description

Histogram of PSA bootstrap results

Usage

\#\# S3 method for class 'PSAboot'
hist(x, ...)

Arguments

x result of PSAboot.
... other parameters passed to geom_histogram

Value

a ggplot2 expression.

```
    matrixplot Matrix Plot of Bootstrapped Propensity Score Analysis
```


Description

Matrix Plot of Bootstrapped Propensity Score Analysis

Usage
 matrixplot(bm)

Arguments

bm result from PSAboot.

Value

Nothing returned. Creates a plot using the [graphics::pairs()] function.

```
pisa.psa.cols Character vector representing the list of covariates used for estimating propensity scores.
```


Description

Character vector representing the list of covariates used for estimating propensity scores.

Format

a character vector with covariate names for estimating propensity scores.

| pisalux | Programme of International Student Assessment (PISA) results from
 the Luxembourg in 2009. |
| :--- | :--- | the Luxembourg in 2009.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See https://www. oecd.org/pisa/ for more information including the code book.

Format

a data frame with 4,622 rows and 65 columns.
CNT Country
SCHOOLID SchoolID
ST01Q01 Grade
ST04Q01 Sex
ST05Q01 Attend
ST06Q01 Age
ST07Q01 Repeat
ST08Q01 At home mother
ST08Q02 At home father
ST08Q03 At home brothers
ST08Q04 At home sisters
ST08Q05 At home grandparents
ST08Q06 At home others
ST10Q01 Mother highest schooling
ST12Q01 Mother current job status
ST14Q01 Father highest schooling
ST16Q01 Father current job status
ST19Q01 Language at home
ST20Q01 Desk
ST20Q02 Own room
ST20Q03 Study place
ST20Q04 Computer
ST20Q05 Software
ST20Q06 Internet
ST20007 Literature
ST20Q08 Poetry
ST20009 Art
ST20Q10 Textbooks
ST20Q12 Dictionary
ST20Q13 Dishwasher
ST20Q14 DVD
ST21Q01 How many cellphones
ST21Q02 How many TVs
ST21Q03 How many computers
ST21Q04 How many cars

ST21Q05 How many rooms bath or shower
ST22Q01 How many books
ST23Q01 Reading enjoyment time
ST31Q01 Enrich in test language
ST31Q02 Enrich in mathematics
ST31Q03 Enrich in science
ST31Q05 Remedial in test language
ST31Q06 Remedial in mathematics
ST31Q07 Remedial in science
ST32Q01 Out of school lessons in test language
ST32Q02 Out of school lessons maths
ST32Q03 Out of school lessons in science
PUBPRIV Public or private school
STRATIO Student to teacher ratio in school

Details

Note that missing values have been imputed using the mice package. Details on the specific procedure are in the pisa.impute function in the pisa package.

References

Organisation for Economic Co-operation and Development (2009). Programme for International Student Assessment (PISA).

| pisausa | Programme of International Student Assessment (PISA) results from
 the United States in 2009. |
| :--- | :--- | the United States in 2009.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See www.oecd.org/pisa/ for more information including the code book.

Format

a data frame with 5,233 rows and 65 columns.
CNT Country
SCHOOLID SchoolID
ST01Q01 Grade
ST04Q01 Sex

```
ST05Q01 Attend
ST06Q01 Age
ST07Q01 Repeat
ST08Q01 At home mother
ST08Q02 At home father
ST08Q03 At home brothers
ST08Q04 At home sisters
ST08Q05 At home grandparents
ST08Q06 At home others
ST10Q01 Mother highest schooling
ST12Q01 Mother current job status
ST14Q01 Father highest schooling
ST16Q01 Father current job status
ST19Q01 Language at home
ST20Q01 Desk
ST20Q02 Own room
ST20Q03 Study place
ST20Q04 Computer
ST20Q05 Software
ST20Q06 Internet
ST20Q07 Literature
ST20Q08 Poetry
ST20Q09 Art
ST20Q10 Textbooks
ST20Q12 Dictionary
ST20Q13 Dishwasher
ST20Q14 DVD
ST21Q01 How many cellphones
ST21Q02 How many TVs
ST21Q03 How many computers
ST21Q04 How many cars
ST21Q05 How many rooms bath or shower
ST22Q01 How many books
ST23Q01 Reading enjoyment time
ST31Q01 Enrich in test language
ST31Q02 Enrich in mathematics
ST31Q03 Enrich in science
```

ST31Q05 Remedial in test language
ST31Q06 Remedial in mathematics
ST31Q07 Remedial in science
ST32Q01 Out of school lessons in test language
ST32Q02 Out of school lessons maths
ST32Q03 Out of school lessons in science
PUBPRIV Public or private school
STRATIO Student to teacher ratio in school

Details

Note that missing values have been imputed using the mice package. Details on the specific procedure are in the pisa.impute function in the pisa package.

References

Organisation for Economic Co-operation and Development (2009). Programme for International Student Assessment (PISA).

```
plot.PSAboot
```


Description

Plot the results of PSAboot

Usage

```
    ## S3 method for class 'PSAboot'
    plot(
        x,
        sort = "all",
        ci.sig.color = "red",
        plot.overall = FALSE,
        plot.bootstrap = TRUE,
    )
```


Arguments

x	result of PSAboot.
sort	how the sort the rows by mean difference. Options are to sort using the mean difference from matching, stratification, both individually, or no sorting.
ci.sig.color	the color used for confidence intervals that do not span zero.

plot.overall whether to plot vertical lines for the overall (non-bootstrapped) estimate and confidence interval.
plot.bootstrap whether to plot vertical lines for the bootstrap pooled estimate and confidence interval.
... currently unused.

Value
a ggplot2 expression.
plot.PSAboot.balance Plot method for balance.

Description

Plot method for balance.

Usage

\#\# S3 method for class 'PSAboot.balance'
plot $($
x ,
unadjusted.color = "red",
complete.color = "blue",
pooled.color = "black",
)

Arguments

$x \quad$ results from balance
unadjusted.color
color of the vertical line representing the mean unadjusted effect size for all covariates.
complete.color color of the vertical line representing the mean adjusted effect size for all covariates using the complete dataset.
pooled.color color of the vertical line representing the mean adjusted effect size for all covariates across all bootstrapped samples.
... currently unused.

Value

a ggplot2 expression.

Examples

```
library(PSAboot)
data(pisa.psa.cols)
data(pisausa)
bm.usa <- PSAboot(Tr = as.integer(pisausa$PUBPRIV) - 1,
    Y = pisausa$Math,
    X = pisausa[,pisa.psa.cols],
    control.ratio = 5, M = 100, seed = 2112)
bm.usa.bal <- balance(bm.usa)
plot(bm.usa.bal)
```

 print.PSAboot Print results of PSAboot

Description

Print results of PSAboot

Usage

\#\# S3 method for class 'PSAboot'
print(x, ...)

Arguments

x	result of PSAboot.
\ldots	currently unused.

Value

Nothing returned. S3 generic function that calls the [PSAboot::summary()] function.
print.PSAboot.balance Print method for balance.

Description

This is a crude measure of overall balance. Absolute value of the standardized effect sizes are calculated for each covariate. Overall balance statistics are the mean of those effect sizes after adjustment for each method across all bootstrap samples.

Usage

```
## S3 method for class 'PSAboot.balance'
```

print(x, na.rm = TRUE, ...)

Arguments

X
na.rm
results from balance.
whether NA balance statistics should be removed before averaging them. currently unused.

Value

No valued returned.

```
print.PSAbootSummary Print method for PSAboot Summary.
```


Description

Print method for PSAboot Summary.

Usage

\#\# S3 method for class 'PSAbootSummary'
print(x, digits $=3, \ldots$)

Arguments

x result of summary.PSAboot
digits desired number of digits after the decimal point.
... unused.

Value
Nothing returned.

Description

Propensity Score Analysis using Stratification

Usage

psa.strata(Y, Tr, strata, trim = 0, minStrata = 5)

Arguments

Y	response variable.
Tr	treatment variable.
strata	strata identifier.
trim	allows for a trimmed mean as outcome measure, where trim is from 0 to $.5(.5$ implying median $).$
minStrata	minimum number of treatment or control units within a strata to include that strata.

Value

a character vector containing summary.strata, ATE, se.wtd, approx.t, df, and CI.95.

Description

Bootstrapping has become a popular resampling method for estimating sampling distributions. And propensity score analysis (PSA) has become popular for estimating causal effects in observational studies. This function implements bootstrapping specifically for PSA. Like typical bootstrapping methods, this function estimates treatment effects for M random samples. However, unlike typical bootstrap methods, this function allows for separate sample sizes for treatment and control units. That is, under certain circumstances (e.g. when the ratio of treatment-to-control units is large) bootstrapping only the control units may be desirable. Additionally, this function provides a framework to use multiple PSA methods for each bootstrap sample.

Usage

```
PSAboot(
        Tr,
        Y,
        X,
        M = 100,
        formu = as.formula(paste0("treat ~ ", paste0(names(X), collapse = " + "))),
        control.ratio = 5,
        control.sample.size = min(control.ratio * min(table(Tr)), max(table(Tr))),
        control.replace = TRUE,
        treated.sample.size = min(table(Tr)),
        treated.replace = TRUE,
        methods = getPSAbootMethods(),
        parallel = TRUE,
        seed = NULL,
    )
```


Arguments

Value

a list with following elements:
overall.summary Data frame with the results using the complete dataset (i.e. unbootstrapped results).
overall.details Objects returned from each method for complete dataset.
pooled.summary Data frame with results of each bootstrap sample.
pooled.details List of objects returned from each method for each bootstrap sample.
control.sample.size sample size used for control units.
treated.sample.size sample size used for treated units.
control.replace whether control units were sampled with replacement.
treated.replace whether treated units were sampled with replacement.
Tr vector of treatment assignment.
Y vector out outcome.
\mathbf{X} matrix or data frame of covariates.
\mathbf{M} number of bootstrap samples.

See Also

getPSAbootMethods

Examples

```
library(PSAboot)
data(pisa.psa.cols)
data(pisausa)
bm.usa <- PSAboot(Tr = as.integer(pisausa$PUBPRIV) - 1,
    Y = pisausa$Math,
    X = pisausa[,pisa.psa.cols],
    control.ratio = 5, M = 100, seed = 2112)
```

q25
Return the 25th percentile.

Description

Return the 25 th percentile.

Usage

q25(x, na.rm = FALSE, ...)

Arguments

x numeric vector.
na.rm logical; if true, any NA and NaN's are removed from x before the quantiles are computed
... other parameters passed to quantile.

Value

the 25th percentile.
q75 Returns the 75th percentile.

Description

Returns the 75th percentile.

Usage

q75(x, na.rm = FALSE, ...)

Arguments

x
na.rm logical; if true, any NA and NaN's are removed from x before the quantiles are computed
... other parameters passed to quantile.

Value

the 75th percentile.

```
summary.PSAboot Summary of pooled results from PSAboot
```


Description

Summary of pooled results from PSAboot

Usage

\#\# S3 method for class 'PSAboot'
summary (object, ...)

Arguments

object result of PSAboot.
... currently unused.

Value

a list with pooled summary statistics.
a list with the results from easch PSA method. For each method a list contains the following elements:
sig.tot.per Percentage of boostrap samples where the confidence interval does not span zero.
boostrap.mean Weighted mean difference across all bootstrap samples.
boostrap.ci Overall confidence interval across all bootstrap samples.
bootstrap.weighted.mean Overall weighted bootstrap mean.
percent.sig Contingency table of the number of bootstrap samples that don't span zero.
complete Results of the summary of the PSA method.

Index

```
* datasets
    pisa.psa.cols,13
as.data.frame.PSAbootSummary, 3
balance, 3, 11, 18, 20
balance.matching,4
boot.ctree, 5, 12
boot.matching, 5, 12
boot.matchit, 6, 12
boot.rpart, 7, 12
boot.strata, 8, 12
boot.weighting, }
boxplot.PSAboot,9
boxplot.PSAboot.balance, 10
calculate_ps_weights,11
cv.trans.psa, 4-9
facet_wrap,11
geom_histogram, 12
getPSAbootMethods, 12
hist.PSAboot,12
Match, 6, 22
matrixplot,13
pisa.psa.cols,13
pisalux,13
pisausa, 15
plot.PSAboot,17
plot.PSAboot.balance,18
print.PSAboot,19
print.PSAboot.balance, 19
print.PSAbootSummary, 20
psa.strata, 20, 22
PSAboot, 3, 5-10, 12, 13, 17, 19, 21, 24
PSAboot-package, 2
q25, 3, 23
```

q75, 3, 23
quantile, 23, 24
summary.PSAboot, 3, 20, 24

