
Package ‘Rforestry’
March 25, 2023

Type Package

Title Random Forests, Linear Trees, and Gradient Boosting for
Inference and Interpretability

Version 0.10.0

Maintainer Theo Saarinen <theo_s@berkeley.edu>

BugReports https://github.com/forestry-labs/Rforestry/issues

URL https://github.com/forestry-labs/Rforestry

Description Provides fast implementations of Honest Random Forests,
Gradient Boosting, and Linear Random Forests, with an emphasis on inference
and interpretability. Additionally contains methods for variable
importance, out-of-bag prediction, regression monotonicity, and
several methods for missing data imputation. Soren R. Kunzel,
Theo F. Saarinen, Edward W. Liu, Jasjeet S. Sekhon (2019) <arXiv:1906.06463>.

License GPL (>= 3)

Encoding UTF-8

Imports Rcpp (>= 0.12.9), parallel, methods, visNetwork, glmnet (>=
4.1), grDevices, onehot, pROC

LinkingTo Rcpp, RcppArmadillo, RcppThread

RoxygenNote 7.2.3

Suggests testthat, knitr, rmarkdown, mvtnorm

Collate 'R_preprocessing.R' 'RcppExports.R' 'forestry.R'
'backwards_compatible.R' 'compute_rf_lp.R'
'neighborhood_imputation.R' 'plottree.R'

NeedsCompilation yes

Author Sören Künzel [aut],
Theo Saarinen [aut, cre],
Simon Walter [aut],
Sam Antonyan [aut],
Edward Liu [aut],
Allen Tang [aut],
Jasjeet Sekhon [aut]

1

https://github.com/forestry-labs/Rforestry/issues
https://github.com/forestry-labs/Rforestry
https://arxiv.org/abs/1906.06463

2 addTrees

Repository CRAN

Date/Publication 2023-03-25 00:50:02 UTC

R topics documented:
addTrees . 2
compute_lp-forestry . 3
CppToR_translator . 4
forestry . 5
forestry-class . 10
forest_checker . 11
getOOB-forestry . 11
getOOBpreds-forestry . 12
getVI . 12
honestRF . 13
impute_features . 14
loadForestry . 15
make_savable . 15
plot-forestry . 16
predict-forestry . 17
predictInfo . 19
preprocess_testing . 20
preprocess_training . 20
relinkCPP_prt . 21
saveForestry . 21
scale_center . 22
testing_data_checker-forestry . 22
training_data_checker . 23
unscale_uncenter . 26

Index 28

addTrees addTrees-forestry

Description

Add more trees to the existing forest.

Usage

addTrees(object, ntree)

Arguments

object A ‘forestry‘ object.

ntree Number of new trees to add

compute_lp-forestry 3

Value

A ‘forestry‘ object

compute_lp-forestry compute lp distances

Description

Return the L_p norm distances of selected test observations relative to the training observations
which the forest was trained on.

Usage

compute_lp(
object,
newdata,
feature,
p,
scale = FALSE,
aggregation = "average",
trainingIdx = NULL

)

Arguments

object A ‘forestry‘ object.

newdata A data frame of test predictors.

feature A string denoting the dimension for computing lp distances.

p A positive real number determining the norm p-norm used.

scale A boolean indicating whether or not we want to center + scale the features (based
on the mean and sd of the training data) before calculating the L_p norm. This
is useful for computing the detachment index, but can be less useful when we
need to interpret the L_p distances.

aggregation The aggregation used when the weightMatrix is calculated. This can be useful
for calculating the lp distances on observations in the training data. This must
be one of ‘average‘, ‘oob‘, or ‘doubleOOB‘. When newdata has fewer rows than
the training data, one must also pass the vector of training indices corresponding
to the indices of the observations in the original data set. Default is ‘average‘.

trainingIdx This is an optional parameter that must be set when aggregation is set to ‘oob‘
or ‘doubleOOB‘ and the newdata is not the same size as the training data.

Value

A vector of the lp distances.

4 CppToR_translator

Examples

Set seed for reproductivity
set.seed(292313)

Use Iris Data
test_idx <- sample(nrow(iris), 11)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train,nthread = 2)
predict(rf, x_test)

Compute the l2 distances in the "Petal.Length" dimension
distances_2 <- compute_lp(object = rf,

newdata = x_test,
feature = "Petal.Length",
p = 2)

CppToR_translator Cpp to R translator

Description

Add more trees to the existing forest.

Usage

CppToR_translator(object)

Arguments

object external CPP pointer that should be translated from Cpp to an R object

Value

A list of lists. Each sublist contains the information to span a tree.

forestry 5

forestry forestry

Description

forestry

Usage

forestry(
x,
y,
ntree = 500,
replace = TRUE,
sampsize = if (replace) nrow(x) else ceiling(0.632 * nrow(x)),
sample.fraction = NULL,
mtry = max(floor(ncol(x)/3), 1),
nodesizeSpl = 5,
nodesizeAvg = 5,
nodesizeStrictSpl = 1,
nodesizeStrictAvg = 1,
minSplitGain = 0,
maxDepth = round(nrow(x)/2) + 1,
interactionDepth = maxDepth,
interactionVariables = numeric(0),
featureWeights = NULL,
deepFeatureWeights = NULL,
observationWeights = NULL,
customSplitSample = NULL,
customAvgSample = NULL,
customExcludeSample = NULL,
splitratio = 1,
OOBhonest = FALSE,
doubleBootstrap = if (OOBhonest) TRUE else FALSE,
seed = as.integer(runif(1) * 1000),
verbose = FALSE,
nthread = 0,
splitrule = "variance",
middleSplit = FALSE,
maxObs = length(y),
linear = FALSE,
linFeats = 0:(ncol(x) - 1),
monotonicConstraints = rep(0, ncol(x)),
groups = NULL,
minTreesPerFold = 0,
foldSize = 1,
monotoneAvg = FALSE,

6 forestry

overfitPenalty = 1,
scale = TRUE,
doubleTree = FALSE,
naDirection = FALSE,
reuseforestry = NULL,
savable = TRUE,
saveable = TRUE

)

Arguments

x A data frame of all training predictors.

y A vector of all training responses.

ntree The number of trees to grow in the forest. The default value is 500.

replace An indicator of whether sampling of training data is with replacement. The
default value is TRUE.

sampsize The size of total samples to draw for the training data. If sampling with replace-
ment, the default value is the length of the training data. If sampling without
replacement, the default value is two-thirds of the length of the training data.

sample.fraction

If this is given, then sampsize is ignored and set to be round(length(y) * sam-
ple.fraction). It must be a real number between 0 and 1

mtry The number of variables randomly selected at each split point. The default value
is set to be one-third of the total number of features of the training data.

nodesizeSpl Minimum observations contained in terminal nodes. The default value is 5.

nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 5.
nodesizeStrictSpl

Minimum observations to follow strictly in terminal nodes. The default value is
1.

nodesizeStrictAvg

The minimum size of terminal nodes for averaging data set to follow when pre-
dicting. No splits are allowed that result in nodes with observations less than
this parameter. This parameter enforces overlap of the averaging data set with
the splitting set when training. When using honesty, splits that leave less than
nodesizeStrictAvg averaging observations in either child node will be rejected,
ensuring every leaf node also has at least nodesizeStrictAvg averaging observa-
tions. The default value is 1.

minSplitGain Minimum loss reduction to split a node further in a tree.

maxDepth Maximum depth of a tree. The default value is 99.
interactionDepth

All splits at or above interaction depth must be on variables that are not weight-
ing variables (as provided by the interactionVariables argument).

interactionVariables

Indices of weighting variables.

forestry 7

featureWeights (optional) vector of sampling probabilities/weights for each feature used when
subsampling mtry features at each node above or at interactionDepth. The de-
fault is to use uniform probabilities.

deepFeatureWeights

Used in place of featureWeights for splits below interactionDepth.
observationWeights

Denotes the weights for each training observation that determine how likely the
observation is to be selected in each bootstrap sample. This option is not allowed
when sampling is done without replacement.

customSplitSample

List of vectors for user-defined splitting observations per tree. The vector at
index i contains the indices of the sampled splitting observations, with replace-
ment allowed, for tree i. This feature overrides other sampling parameters and
must be set in conjunction with customAvgSample.

customAvgSample

List of vectors for user-defined averaging observations per tree. The vector at
index i contains the indices of the sampled splitting observations, with replace-
ment allowed, for tree i. This feature overrides other sampling parameters and
must be set in conjunction with customSplitSample.

customExcludeSample

An optional list of vectors for user-defined excluded observations per tree. The
vector at index i contains the indices of the excluded observations for tree i. An
observation is considered excluded if it does not appear in the splitting or aver-
aging set and has been explicitly withheld from being sampled for a tree. Ex-
cluded observations are not considered out-of-bag, so when we call predict with
aggregation = "oob", when we predict for an observation, we will only use the
predictions of trees in which the observation was in the customSplitSample (and
neither in the customAvgSample nor the customExcludeSample). This param-
eter is optional even when customSplitSample and customAvgSample are set.
It is also optional at the tree level, so can have fewer than ntree entries. When
given fewer than ntree entries, for example K, the entries will be applied to the
first K trees in the forest and the remaining trees will have no excludedSamples.

splitratio Proportion of the training data used as the splitting dataset. It is a ratio between
0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data,
as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0,
then the splitting data set is empty, and the entire dataset is used for the averaging
set (This is not a good usage, however, since there will be no data available for
splitting).

OOBhonest In this version of honesty, the out-of-bag observations for each tree are used as
the honest (averaging) set. This setting also changes how predictions are con-
structed. When predicting for observations that are out-of-sample (using pre-
dict(..., aggregation = "average")), all the trees in the forest are used to construct
predictions. When predicting for an observation that was in-sample (using pre-
dict(..., aggregation = "oob")), only the trees for which that observation was not
in the averaging set are used to construct the prediction for that observation. ag-
gregation="oob" (out-of-bag) ensures that the outcome value for an observation
is never used to construct predictions for a given observation even when it is

8 forestry

in sample. This property does not hold in standard honesty, which relies on an
asymptotic subsampling argument. By default, when OOBhonest = TRUE, the
out-of-bag observations for each tree are resamples with replacement to be used
for the honest (averaging) set. This results in a third set of observations that are
left out of both the splitting and averaging set, we call these the double out-of-
bag (doubleOOB) observations. In order to get the predictions of only the trees
in which each observation fell into this doubleOOB set, one can run predict(... ,
aggregation = "doubleOOB"). In order to not do this second bootstrap sample,
the doubleBootstrap flag can be set to FALSE.

doubleBootstrap

The doubleBootstrap flag provides the option to resample with replacement from
the out-of-bag observations set for each tree to construct the averaging set when
using OOBhonest. If this is FALSE, the out-of-bag observations are used as
the averaging set. By default this option is TRUE when running OOBhonest =
TRUE. This option increases diversity across trees.

seed random seed

verbose Indicator to train the forest in verbose mode

nthread Number of threads to train and predict the forest. The default number is 0 which
represents using all cores.

splitrule Only variance is implemented at this point and it specifies the loss function
according to which the splits of random forest should be made.

middleSplit Indicator of whether the split value is takes the average of two feature values. If
FALSE, it will take a point based on a uniform distribution between two feature
values. (Default = FALSE)

maxObs The max number of observations to split on.

linear Indicator that enables Ridge penalized splits and linear aggregation functions in
the leaf nodes. This is recommended for data with linear outcomes. For imple-
mentation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

linFeats A vector containing the indices of which features to split linearly on when using
linear penalized splits (defaults to use all numerical features).

monotonicConstraints

Specifies monotonic relationships between the continuous features and the out-
come. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating
an increasing monotonic relationship, -1 indicating a decreasing monotonic re-
lationship, and 0 indicating no constraint. Constraints supplied for categorical
variable will be ignored.

groups A vector of factors specifying the group membership of each training observa-
tion. these groups are used in the aggregation when doing out of bag predictions
in order to predict with only trees where the entire group was not used for ag-
gregation. This allows the user to specify custom subgroups which will be used
to create predictions which do not use any data from a common group to make
predictions for any observation in the group. This can be used to create gen-
eral custom resampling schemes, and provide predictions consistent with the
Out-of-Group set.

forestry 9

minTreesPerFold

The number of trees which we make sure have been created leaving out each
fold (each fold is a set of randomly selected groups). This is 0 by default, so we
will not give any special treatment to the groups when sampling observations,
however if this is set to a positive integer, we modify the bootstrap sampling
scheme to ensure that exactly that many trees have each group left out. We do
this by, for each fold, creating minTreesPerFold trees which are built on obser-
vations sampled from the set of training observations which are not in a group in
the current fold. The folds form a random partition of all of the possible groups,
each of size foldSize. This means we create at least # folds * minTreesPer-
Fold trees for the forest. If ntree > # folds * minTreesPerFold, we create max(#
folds * minTreesPerFold, ntree) total trees, in which at least minTreesPerFold
are created leaving out each fold.

foldSize The number of groups that are selected randomly for each fold to be left out
when using minTreesPerFold. When minTreesPerFold is set and foldSize is
set, all possible groups will be partitioned into folds, each containing foldSize
unique groups (if foldSize doesn’t evenly divide the number of groups, a single
fold will be smaller, as it will contain the remaining groups). Then minTreesPer-
Fold are grown with each entire fold of groups left out.

monotoneAvg This is a boolean flag that indicates whether or not monotonic constraints should
be enforced on the averaging set in addition to the splitting set. This flag is
meaningless unless both honesty and monotonic constraints are in use. The
default is FALSE.

overfitPenalty Value to determine how much to penalize the magnitude of coefficients in ridge
regression when using linear splits.

scale A parameter which indicates whether or not we want to scale and center the
covariates and outcome before doing the regression. This can help with stability,
so by default is TRUE.

doubleTree if the number of tree is doubled as averaging and splitting data can be exchanged
to create decorrelated trees. (Default = FALSE)

naDirection Sets a default direction for missing values in each split node during training. It
test placing all missing values to the left and right, then selects the direction that
minimizes loss. If no missing values exist, then a default direction is randomly
selected in proportion to the distribution of observations on the left and right.
(Default = FALSE)

reuseforestry Pass in an ‘forestry‘ object which will recycle the dataframe the old object cre-
ated. It will save some space working on the same data set.

savable If TRUE, then RF is created in such a way that it can be saved and loaded using
save(...) and load(...). However, setting it to TRUE (default) will take longer and
use more memory. When training many RF, it makes sense to set this to FALSE
to save time and memory.

saveable deprecated. Do not use.

Value

A ‘forestry‘ object.

10 forestry-class

Note

Treatment of Missing Data

In version 0.9.0.34, we have modified the handling of missing data. Instead of the greedy approach
used in previous iterations, we now test any potential split by putting all NA’s to the right, and all
NA’s to the left, and taking the choice which gives the best MSE for the split. Under this version
of handling the potential splits, we will still respect monotonic constraints. So if we put all NA’s
to either side, and the resulting leaf nodes have means which violate the monotone constraints, the
split will be rejected.

Examples

set.seed(292315)
library(Rforestry)
test_idx <- sample(nrow(iris), 3)
x_train <- iris[-test_idx, -1]
y_train <- iris[-test_idx, 1]
x_test <- iris[test_idx, -1]

rf <- forestry(x = x_train, y = y_train, nthread = 2)
predict(rf, x_test)

set.seed(49)
library(Rforestry)

n <- c(100)
a <- rnorm(n)
b <- rnorm(n)
c <- rnorm(n)
y <- 4*a + 5.5*b - .78*c
x <- data.frame(a,b,c)

forest <- forestry(
x,
y,
ntree = 10,
replace = TRUE,
nodesizeStrictSpl = 5,
nodesizeStrictAvg = 5,
nthread = 2,
linear = TRUE
)

predict(forest, x)

forestry-class forestry class

forest_checker 11

Description

‘honestRF‘ class only exists for backwards compatibility reasons

forest_checker Checks if forestry object has valid pointer for C++ object.

Description

Checks if forestry object has valid pointer for C++ object.

Usage

forest_checker(object)

Arguments

object a forestry object

Value

A message if the forest does not have a valid C++ pointer.

getOOB-forestry getOOB-forestry

Description

Calculate the out-of-bag error of a given forest. This is done by using the out-of-bag predictions for
each observation, and calculating the MSE over the entire forest.

Usage

getOOB(object, noWarning)

Arguments

object A ‘forestry‘ object.

noWarning flag to not display warnings

Value

The OOB error of the forest.

12 getVI

getOOBpreds-forestry getOOBpreds-forestry

Description

Calculate the out-of-bag predictions of a given forest.

Usage

getOOBpreds(object, newdata = NULL, doubleOOB = FALSE, noWarning = FALSE)

Arguments

object A trained model object of class "forestry".

newdata A possible new data frame on which to run out of bag predictions. If this is not
NULL, we assume that the indices of newdata are the same as the indices of the
training set, and will use these to find which trees the observation is considered
in/out of bag for.

doubleOOB A flag specifying whether or not we should use the double OOB set for the OOB
predictions. This is the set of observations for each tree which were in neither
the averaging set nor the splitting set. Note that the forest must have been trained
with doubleBootstrap = TRUE for this to be used. Default is FALSE.

noWarning Flag to not display warnings.

Value

The vector of all training observations, with their out of bag predictions. Note each observation
is out of bag for different trees, and so the predictions will be more or less stable based on the
observation. Some observations may not be out of bag for any trees, and here the predictions are
returned as NA.

See Also

forestry

getVI getVI-forestry

Description

Calculate the percentage increase in OOB error of the forest when each feature is shuffled.

Usage

getVI(object, noWarning, metric = "mse", seed = 1)

honestRF 13

Arguments

object A ‘forestry‘ object.

noWarning flag to not display warnings

metric A parameter to determine how the predictions of the forest with a permuted
variable are compared to the predictions of the standard forest. Must be one of
c("mse","auc","tnr"), "mse" gives the percentage increase in mse when the fea-
ture is permuted, "auc" gives the percentage decrease in AUC when the feature
is permuted, and "tnr" gives the percentage decrease in TNR when the TPR is
99% when the feature is permuted.

seed A parameter to seed the random number generator for shuffling the features of
X.

Value

The variable importance of the forest.

Note

Pass a seed to this function so it is possible to replicate the vector permutations used when measuring
feature importance.

honestRF Honest Random Forest

Description

This function is deprecated and only exists for backwards backwards compatibility. The function
you want to use is ‘forestry‘.

Usage

honestRF(...)

Arguments

... parameters which are passed directly to ‘forestry‘

Value

A ‘forestry‘ object

14 impute_features

impute_features Feature imputation using random forests neighborhoods

Description

This function uses the neighborhoods implied by a random forest to impute missing features. The
neighbors of a data point are all the training points assigned to the same leaf in at least one tree in the
forest. The weight of each neighbor is the fraction of trees in the forest for which it was assigned to
the same leaf. We impute a missing feature for a point by computing the weighted average feature
value, using neighborhood weights, using all of the point’s neighbors.

Usage

impute_features(
object,
newdata,
seed = round(runif(1) * 10000),
use_mean_imputation_fallback = FALSE

)

Arguments

object an object of class ‘forestry‘
newdata the feature data.frame we will impute missing features for.
seed a random seed passed to the predict method of forestry
use_mean_imputation_fallback

if TRUE, mean imputation (for numeric variables) and mode imputation (for
factor variables) is used for missing features for which all neighbors also had the
corresponding feature missing; if FALSE these missing features remain NAs in
the data frame returned by ‘impute_features‘.

Value

A data.frame that is newdata with imputed missing values.

Examples

iris_with_missing <- iris
idx_miss_factor <- sample(nrow(iris), 25, replace = TRUE)
iris_with_missing[idx_miss_factor, 5] <- NA
idx_miss_numeric <- sample(nrow(iris), 25, replace = TRUE)
iris_with_missing[idx_miss_numeric, 3] <- NA

x <- iris_with_missing[,-1]
y <- iris_with_missing[, 1]

forest <- forestry(x, y, ntree = 500, seed = 2,nthread = 2)
imputed_x <- impute_features(forest, x, seed = 2)

loadForestry 15

loadForestry load RF

Description

This wrapper function checks the forestry object, makes it saveable if needed, and then saves it.

Usage

loadForestry(filename)

Arguments

filename a filename in which to store the ‘forestry‘ object

Value

The loaded forest from filename.

make_savable make_savable

Description

When a ‘foresty‘ object is saved and then reloaded the Cpp pointers for the data set and the Cpp
forest have to be reconstructed

Usage

make_savable(object)

Arguments

object an object of class ‘forestry‘

Value

A list of lists. Each sublist contains the information to span a tree.

Note

‘make_savable‘ does not translate all of the private member variables of the C++ forestry object
so when the forest is reconstructed with ‘relinkCPP_prt‘ some attributes are lost. For example,
‘nthreads‘ will be reset to zero. This makes it impossible to disable threading when predicting for
forests loaded from disk.

16 plot-forestry

Examples

set.seed(323652639)
x <- iris[, -1]
y <- iris[, 1]
forest <- forestry(x, y, ntree = 3, nthread = 2)
y_pred_before <- predict(forest, x)

forest <- make_savable(forest)

wd <- tempdir()
saveForestry(forest, filename = file.path(wd, "forest.Rda"))
rm(forest)

forest <- loadForestry(file.path(wd, "forest.Rda"))

y_pred_after <- predict(forest, x)

file.remove(file.path(wd, "forest.Rda"))

plot-forestry visualize a tree

Description

plots a tree in the forest.

Usage

S3 method for class 'forestry'
plot(x, tree.id = 1, print.meta_dta = FALSE, beta.char.len = 30, ...)

Arguments

x A forestry x.

tree.id Specifies the tree number that should be visualized.

print.meta_dta A flag indicating whether the data for the plot should be printed.

beta.char.len The length of the beta values in leaf node representation. This is only re-
quired when plotting a forestry object with linear aggregation functions (linear
= TRUE).

... additional arguments that are not used.

Details

plot

Value

A plot of the specified tree in the forest.

predict-forestry 17

Examples

set.seed(292315)
rf <- forestry(x = iris[,-1],

y = iris[, 1],
nthread = 2)

plot(x = rf)
plot(x = rf, tree.id = 2)
plot(x = rf, tree.id = 500)

predict-forestry predict-forestry

Description

Return the prediction from the forest.

Usage

S3 method for class 'forestry'
predict(
object,
newdata = NULL,
aggregation = "average",
holdOutIdx = NULL,
trainingIdx = NULL,
seed = as.integer(runif(1) * 10000),
nthread = 0,
exact = NULL,
trees = NULL,
weightMatrix = FALSE,
...

)

Arguments

object A ‘forestry‘ object.

newdata A data frame of testing predictors.

aggregation How the individual tree predictions are aggregated: ‘average‘ returns the mean
of all trees in the forest; ‘terminalNodes‘ also returns the weightMatrix, as well
as "terminalNodes", a matrix where the ith entry of the jth column is the index
of the leaf node to which the ith observation is assigned in the jth tree; and
"sparse", a matrix where the ith entry in the jth column is 1 if the ith observation
in newdata is assigned to the jth leaf and 0 otherwise. In each tree the leaves are
indexed using a depth first ordering, and, in the "sparse" representation, the first

18 predict-forestry

leaf in the second tree has column index one more than the number of leaves
in the first tree and so on. So, for example, if the first tree has 5 leaves, the
sixth column of the "sparse" matrix corresponds to the first leaf in the second
tree. ‘oob‘ returns the out-of-bag predictions for the forest. We assume that
the ordering of the observations in newdata have not changed from training. If
the ordering has changed, we will get the wrong OOB indices. ‘doubleOOB‘
is an experimental flag, which can only be used when OOBhonest = TRUE
and doubleBootstrap = TRUE. When both of these settings are on, the splitting
set is selected as a bootstrap sample of observations and the averaging set is
selected as a bootstrap sample of the observations which were left out of bag
during the splitting set selection. This leaves a third set which is the observations
which were not selected in either bootstrap sample. This predict flag gives the
predictions using- for each observation- only the trees in which the observation
fell into this third set (so was neither a splitting nor averaging example). ‘coefs‘
is an aggregation option which works only when linear aggregation functions
have been used. This returns the linear coefficients for each linear feature which
were used in the leaf node regression of each predicted point.

holdOutIdx This is an optional argument, containing a vector of indices from the training
data set that should be not be allowed to influence the predictions of the forest.
When a vector of indices of training observations are given, the predictions will
be made only with trees in the forest that do not contain any of these indices in
either the splitting or averaging sets. This cannot be used at the same time as
any other aggregation options. If ‘weightMatrix = TRUE‘, this will return the
weightMatrix corresponding to the predictions made with trees respecting hold-
OutIdx. If there are no trees that have held out all of the indices in holdOutIdx,
then the predictions will return NaN.

trainingIdx This is an optional parameter to give the indices of the observations in ‘new-
data‘ from the training data set. This is used when we want to run predict on
only a subset of observations from the training data set and use ‘aggregation =
"oob"‘ or ‘aggregation = "doubleOOB"‘. For example, at the tree level, a tree
make out of bag (‘aggregation = "oob"‘) predictions for the indices in the set set-
diff(trainingIdx,tree$averagingIndices) and will make double out-of-bag predic-
tions for the indices in the set setdiff(trainingIdx,union(tree$averagingIndices,tree$splittingIndices).
Note, this parameter must be set when predict is called with an out-of-bag
aggregation option on a data set not matching the original training data size.
The order of indices in ‘trainingIdx‘ also needs to match the order of obser-
vations in newdata. So for an arbitrary index set ‘trainingIdx‘ and dataframe
‘newdata‘, of the same size as the training set, the predictions from ‘predict(rf,
newdata[trainingIdx,],‘ ‘aggregation = "oob", trainingIdx = trainingIdx)‘ should
match the predictions of to ‘predict(rf, newdata, aggregation = "oob")[trainingIdx]‘.
This option also works with the ‘weightMatrix‘ option and will return the (smaller)
weightMatrix for the observations in the passed data frame.

seed random seed

nthread The number of threads with which to run the predictions with. This will default
to the number of threads with which the forest was trained with.

exact This specifies whether the forest predictions should be aggregated in a repro-
ducible ordering. Due to the non-associativity of floating point addition, when

predictInfo 19

we predict in parallel, predictions will be aggregated in varied orders as different
threads finish at different times. By default, exact is TRUE unless N > 100,000
or a custom aggregation function is used.

trees A vector (1-indexed) of indices in the range 1:ntree which tells predict which
trees in the forest to use for the prediction. Predict will by default take the
average of all trees in the forest, although this flag can be used to get single tree
predictions, or averages of diffferent trees with different weightings. Duplicate
entries are allowed, so if trees = c(1,2,2) this will predict the weighted average
prediction of only trees 1 and 2 weighted by: predict(..., trees = c(1,2,2)) =
(predict(..., trees = c(1)) + 2*predict(..., trees = c(2))) / 3. note we must have
exact = TRUE, and aggregation = "average" to use tree indices.

weightMatrix An indicator of whether or not we should also return a matrix of the weights
given to each training observation when making each prediction. When get-
ting the weight matrix, aggregation must be one of ‘average‘, ‘oob‘, and ‘dou-
bleOOB‘.

... additional arguments.

Value

A vector of predicted responses.

predictInfo predictInfo-forestry

Description

Get the observations which are used to predict for a set of new observations using either all trees
(for out of sample observations), or tree for which the observation is out of averaging set or out of
sample entirely.

Usage

predictInfo(object, newdata, aggregation = "average")

Arguments

object A ‘forestry‘ object.

newdata Data on which we want to do predictions. Must be the same length as the train-
ing set if we are doing ‘oob‘ or ‘doubleOOB‘ aggregation.

aggregation Specifies which aggregation version is used to predict for the observation, must
be one of ‘average‘,‘oob‘, and ‘doubleOOB‘.

20 preprocess_training

Value

A list with four entries. ‘weightMatrix‘ is a matrix specifying the weight given to training observatio
i when prediction on observation j. ‘avgIndices‘ gives the indices which are in the averaging set for
each new observation. ‘avgWeights‘ gives the weights corresponding to each averaging observation
returned in ‘avgIndices‘. ‘obsInfo‘ gives the full observation vectors which were used to predict for
an observation, as well as the weight given each observation.

preprocess_testing preprocess_testing

Description

Perform preprocessing for the testing data, including converting data to dataframe, and testing if
the columns are consistent with the training data and encoding categorical data into numerical rep-
resentation in the same way as training data.

Usage

preprocess_testing(x, categoricalFeatureCols, categoricalFeatureMapping)

Arguments

x A data frame of all training predictors.
categoricalFeatureCols

A list of index for all categorical data. Used for trees to detect categorical
columns.

categoricalFeatureMapping

A list of encoding details for each categorical column, including all unique factor
values and their corresponding numeric representation.

Value

A preprocessed training dataaset x

preprocess_training preprocess_training

Description

Perform preprocessing for the training data, including converting data to dataframe, and encoding
categorical data into numerical representation.

Usage

preprocess_training(x, y)

relinkCPP_prt 21

Arguments

x A data frame of all training predictors.
y A vector of all training responses.

Value

A list of two datasets along with necessary information that encodes the preprocessing.

relinkCPP_prt relink CPP ptr

Description

When a ‘foresty‘ object is saved and then reloaded the Cpp pointers for the data set and the Cpp
forest have to be reconstructed

Usage

relinkCPP_prt(object)

Arguments

object an object of class ‘forestry‘

Value

Relinks the pointer to the correct C++ object.

saveForestry save RF

Description

This wrapper function checks the forestry object, makes it saveable if needed, and then saves it.

Usage

saveForestry(object, filename, ...)

Arguments

object an object of class ‘forestry‘
filename a filename in which to store the ‘forestry‘ object
... additional arguments useful for specifying compression type and level

Value

Saves the forest into filename.

22 testing_data_checker-forestry

scale_center scale_center

Description

Given a dataframe, scale and center the continous features

Usage

scale_center(x, categoricalFeatureCols, colMeans, colSd)

Arguments

x A dataframe in order to be processed.
categoricalFeatureCols

A vector of the categorical features, we don’t want to scale/center these. Should
be 1-indexed.

colMeans A vector of the means to center each column.

colSd A vector of the standard deviations to scale each column with.

Value

A scaled and centered dataset x

testing_data_checker-forestry

Test data check

Description

Check the testing data to do prediction

Usage

testing_data_checker(object, newdata, hasNas)

Arguments

object A forestry object.

newdata A data frame of testing predictors.

hasNas TRUE if the there were NAs in the training data FALSE otherwise.

Value

A feature dataframe if it can be used for new predictions.

training_data_checker 23

training_data_checker Training data check

Description

Check the input to forestry constructor

Usage

training_data_checker(
x,
y,
ntree,
replace,
sampsize,
mtry,
nodesizeSpl,
nodesizeAvg,
nodesizeStrictSpl,
nodesizeStrictAvg,
minSplitGain,
maxDepth,
interactionDepth,
splitratio,
OOBhonest,
doubleBootstrap,
nthread,
middleSplit,
doubleTree,
linFeats,
monotonicConstraints,
groups,
featureWeights,
deepFeatureWeights,
observationWeights,
customSplitSample,
customAvgSample,
customExcludeSample,
linear,
scale,
hasNas,
naDirection

)

Arguments

x A data frame of all training predictors.

24 training_data_checker

y A vector of all training responses.

ntree The number of trees to grow in the forest. The default value is 500.

replace An indicator of whether sampling of training data is with replacement. The
default value is TRUE.

sampsize The size of total samples to draw for the training data. If sampling with replace-
ment, the default value is the length of the training data. If sampling without
replacement, the default value is two-thirds of the length of the training data.

mtry The number of variables randomly selected at each split point. The default value
is set to be one-third of the total number of features of the training data.

nodesizeSpl Minimum observations contained in terminal nodes. The default value is 5.

nodesizeAvg Minimum size of terminal nodes for averaging dataset. The default value is 5.
nodesizeStrictSpl

Minimum observations to follow strictly in terminal nodes. The default value is
1.

nodesizeStrictAvg

The minimum size of terminal nodes for averaging data set to follow when pre-
dicting. No splits are allowed that result in nodes with observations less than
this parameter. This parameter enforces overlap of the averaging data set with
the splitting set when training. When using honesty, splits that leave less than
nodesizeStrictAvg averaging observations in either child node will be rejected,
ensuring every leaf node also has at least nodesizeStrictAvg averaging observa-
tions. The default value is 1.

minSplitGain Minimum loss reduction to split a node further in a tree.

maxDepth Maximum depth of a tree. The default value is 99.
interactionDepth

All splits at or above interaction depth must be on variables that are not weight-
ing variables (as provided by the interactionVariables argument).

splitratio Proportion of the training data used as the splitting dataset. It is a ratio between
0 and 1. If the ratio is 1 (the default), then the splitting set uses the entire data,
as does the averaging set—i.e., the standard Breiman RF setup. If the ratio is 0,
then the splitting data set is empty, and the entire dataset is used for the averaging
set (This is not a good usage, however, since there will be no data available for
splitting).

OOBhonest In this version of honesty, the out-of-bag observations for each tree are used as
the honest (averaging) set. This setting also changes how predictions are con-
structed. When predicting for observations that are out-of-sample (using pre-
dict(..., aggregation = "average")), all the trees in the forest are used to construct
predictions. When predicting for an observation that was in-sample (using pre-
dict(..., aggregation = "oob")), only the trees for which that observation was not
in the averaging set are used to construct the prediction for that observation. ag-
gregation="oob" (out-of-bag) ensures that the outcome value for an observation
is never used to construct predictions for a given observation even when it is
in sample. This property does not hold in standard honesty, which relies on an
asymptotic subsampling argument. By default, when OOBhonest = TRUE, the
out-of-bag observations for each tree are resamples with replacement to be used

training_data_checker 25

for the honest (averaging) set. This results in a third set of observations that are
left out of both the splitting and averaging set, we call these the double out-of-
bag (doubleOOB) observations. In order to get the predictions of only the trees
in which each observation fell into this doubleOOB set, one can run predict(... ,
aggregation = "doubleOOB"). In order to not do this second bootstrap sample,
the doubleBootstrap flag can be set to FALSE.

doubleBootstrap

The doubleBootstrap flag provides the option to resample with replacement from
the out-of-bag observations set for each tree to construct the averaging set when
using OOBhonest. If this is FALSE, the out-of-bag observations are used as
the averaging set. By default this option is TRUE when running OOBhonest =
TRUE. This option increases diversity across trees.

nthread Number of threads to train and predict the forest. The default number is 0 which
represents using all cores.

middleSplit Indicator of whether the split value is takes the average of two feature values. If
FALSE, it will take a point based on a uniform distribution between two feature
values. (Default = FALSE)

doubleTree if the number of tree is doubled as averaging and splitting data can be exchanged
to create decorrelated trees. (Default = FALSE)

linFeats A vector containing the indices of which features to split linearly on when using
linear penalized splits (defaults to use all numerical features).

monotonicConstraints

Specifies monotonic relationships between the continuous features and the out-
come. Supplied as a vector of length p with entries in 1,0,-1 which 1 indicating
an increasing monotonic relationship, -1 indicating a decreasing monotonic re-
lationship, and 0 indicating no constraint. Constraints supplied for categorical
variable will be ignored.

groups A vector of factors specifying the group membership of each training observa-
tion. these groups are used in the aggregation when doing out of bag predictions
in order to predict with only trees where the entire group was not used for ag-
gregation. This allows the user to specify custom subgroups which will be used
to create predictions which do not use any data from a common group to make
predictions for any observation in the group. This can be used to create gen-
eral custom resampling schemes, and provide predictions consistent with the
Out-of-Group set.

featureWeights weights used when subsampling features for nodes above or at interactionDepth.
deepFeatureWeights

weights used when subsampling features for nodes below interactionDepth.
observationWeights

Denotes the weights for each training observation that determine how likely the
observation is to be selected in each bootstrap sample. This option is not allowed
when sampling is done without replacement.

customSplitSample

List of vectors for user-defined splitting observations per tree. The vector at
index i contains the indices of the sampled splitting observations, with replace-
ment allowed, for tree i. This feature overrides other sampling parameters and
must be set in conjunction with customAvgSample.

26 unscale_uncenter

customAvgSample

List of vectors for user-defined averaging observations per tree. The vector at
index i contains the indices of the sampled splitting observations, with replace-
ment allowed, for tree i. This feature overrides other sampling parameters and
must be set in conjunction with customSplitSample.

customExcludeSample

An optional list of vectors for user-defined excluded observations per tree. The
vector at index i contains the indices of the excluded observations for tree i. An
observation is considered excluded if it does not appear in the splitting or aver-
aging set and has been explicitly withheld from being sampled for a tree. Ex-
cluded observations are not considered out-of-bag, so when we call predict with
aggregation = "oob", when we predict for an observation, we will only use the
predictions of trees in which the observation was in the customSplitSample (and
neither in the customAvgSample nor the customExcludeSample). This param-
eter is optional even when customSplitSample and customAvgSample are set.
It is also optional at the tree level, so can have fewer than ntree entries. When
given fewer than ntree entries, for example K, the entries will be applied to the
first K trees in the forest and the remaining trees will have no excludedSamples.

linear Indicator that enables Ridge penalized splits and linear aggregation functions in
the leaf nodes. This is recommended for data with linear outcomes. For imple-
mentation details, see: https://arxiv.org/abs/1906.06463. Default is FALSE.

scale A parameter which indicates whether or not we want to scale and center the
covariates and outcome before doing the regression. This can help with stability,
so by default is TRUE.

hasNas indicates if there is any missingness in x.

naDirection Sets a default direction for missing values in each split node during training. It
test placing all missing values to the left and right, then selects the direction that
minimizes loss. If no missing values exist, then a default direction is randomly
selected in proportion to the distribution of observations on the left and right.
(Default = FALSE)

Value

A list of parameters after checking the selected parameters are valid.

unscale_uncenter unscale_uncenter

Description

Given a dataframe, un scale and un center the continous features

Usage

unscale_uncenter(x, categoricalFeatureCols, colMeans, colSd)

unscale_uncenter 27

Arguments

x A dataframe in order to be processed.
categoricalFeatureCols

A vector of the categorical features, we don’t want to scale/center these. Should
be 1-indexed.

colMeans A vector of the means to add to each column.

colSd A vector of the standard deviations to rescale each column with.

Value

A dataset x in it’s original scaling

Index

addTrees, 2

compute_lp (compute_lp-forestry), 3
compute_lp-forestry, 3
CppToR_translator, 4

forest_checker, 11
forestry, 5, 12
forestry-class, 10

getOOB (getOOB-forestry), 11
getOOB,forestry-method

(getOOB-forestry), 11
getOOB-forestry, 11
getOOBpreds (getOOBpreds-forestry), 12
getOOBpreds-forestry, 12
getVI, 12

honestRF, 13

impute_features, 14

loadForestry, 15

make_savable, 15
make_savable,forestry-method

(make_savable), 15

plot-forestry, 16
plot.forestry (plot-forestry), 16
predict-forestry, 17
predict.forestry (predict-forestry), 17
predictInfo, 19
preprocess_testing, 20
preprocess_training, 20

relinkCPP_prt, 21

saveForestry, 21
scale_center, 22

testing_data_checker
(testing_data_checker-forestry),
22

testing_data_checker-forestry, 22
training_data_checker, 23

unscale_uncenter, 26

28

	addTrees
	compute_lp-forestry
	CppToR_translator
	forestry
	forestry-class
	forest_checker
	getOOB-forestry
	getOOBpreds-forestry
	getVI
	honestRF
	impute_features
	loadForestry
	make_savable
	plot-forestry
	predict-forestry
	predictInfo
	preprocess_testing
	preprocess_training
	relinkCPP_prt
	saveForestry
	scale_center
	testing_data_checker-forestry
	training_data_checker
	unscale_uncenter
	Index

