Package 'SAPP'

June 2, 2023
Version 1.0.9-1
Title Statistical Analysis of Point Processes
Author The Institute of Statistical Mathematics
Maintainer Masami Saga msaga@mtb.biglobe.ne.jp
Depends R (>=4.0.0)
Imports graphics, grDevices
Description Functions for statistical analysis of point processes.
License GPL (>=2)
MailingList Please send bug reports to ismrp@grp.ism.ac.jp.
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-06-02 03:50:02 UTC

R topics documented:

SAPP-package . 2
Brastings . 2
eptren . 3
etarpp . 5
etasap . 6
etasim . 8
linlin . 9
linsim . 11
main2003JUL26 . 12
momori . 13
pgraph . 14
PoissonData . 16
PProcess . 16
ptspec . 17
res2003JUL26 . 18
respoi . 18
SelfExcit . 20
simbvh . 20

SAPP-package Statistical Analysis of Point Processes

Description

R functions for statistical analysis of point processes

Details

This package provides functions for statistical analysis of series of events and seismicity.
For overview of point process models, 'Statistical Analysis of Point Processes with R' is available in the package vignette using the vignette function (e.g., vignette("SAPP")).

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics. https://www.ism.ac.jp/editsec/csm/

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics. https://www.ism.ac.jp/ editsec/csm/

```
Brastings The Occurrence Times Data
```


Description

This data consists of the occurrence times of 627 blastings at a certain stoneyard with a very small portion of microearthquakes during a past 4600 days.

Usage

data(Brastings)

Format

A numeric vector of length 627.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: Statistical Analysis of Series of events (TIMSAC84-SASE) Version 2. The Institute of Statistical Mathematics.

```
eptren Maximum Likelihood Estimates of Intensity Rates
```


Description

Compute the maximum likelihood estimates of intensity rates of either exponential polynomial or exponential Fourier series of non-stationary Poisson process models.

Usage

eptren(data, mag $=$ NULL, threshold $=0.0$, nparam, nsub, cycle $=0$, tmpfile $=$ NULL, nlmax $=1000$, plot $=$ TRUE)

Arguments

\(\left.$$
\begin{array}{ll}\text { data } & \text { point process data. } \\
\text { mag } & \text { magnitude. } \\
\text { threshold } & \begin{array}{l}\text { threshold magnitude. } \\
\text { nparam } \\
\text { nsub }\end{array} \\
\text { maximum number of parameters. }\end{array}
$$ \quad \begin{array}{l}number of subdivisions in either(0, t) or(0, cycle), where t is the length of

observed time interval of points.

periodicity to be investigated days in a Poisson process model. If zero (default)

fit an exponential polynomial model.\end{array}\right]\)| a character string naming the file to write the process of minimizing by Davidon- |
| :--- |
| tmpfile |
| nlmax |
| plot |\quad| NULL (default) no report. |
| :--- |
| the maximum number of steps in the process of minimizing. |
| logical. If TRUE (default) intensity rates are plotted. |

Details

This function computes the maximum likelihood estimates (MLEs) of the coefficients $A_{1}, A_{2}, \ldots A_{n}$ is an exponential polynomial

$$
f(t)=\exp \left(A_{1}+A_{2} t+A_{3} t^{2}+\ldots\right)
$$

or $A_{1}, A_{2}, B_{2}, \ldots, A_{n}, B_{n}$ in a Poisson process model with an intensity taking the form of an exponential Fourier series

$$
f(t)=\exp \left\{A_{1}+A_{2} \cos (2 \pi t / p)+B_{2} \sin (2 \pi t / p)+A_{3} \cos (4 \pi t / p)+B_{3} \sin (4 \pi t / p)+\ldots\right\}
$$

which represents the time varying rate of occurrence (intensity function) of earthquakes in a region.
These two models belong to the family of non-stationary Poisson process. The optimal order n can be determined by minimize the value of the Akaike Information Criterion (AIC).

Value

aic
param parameters.
aicmin minimum AIC.
maice. order number of parameters of minimum AIC.
time time $($ cycle $=0)$ or superposed occurrence time $($ cycle $>0)$.
intensity intensity rates.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
## The Occurrence Times Data of 627 Blastings
data(Brastings)
# exponential polynomial trend fitting
eptren(Brastings, nparam = 10, nsub = 1000)
# exponential Fourier series fitting
eptren(Brastings, nparam = 10, nsub = 1000, cycle = 1)
## Poisson Process data
data(PoissonData)
# exponential polynomial trend fitting
eptren(PoissonData, nparam = 10, nsub = 1000)
# exponential Fourier series fitting
eptren(PoissonData, nparam = 10, nsub = 1000, cycle = 1)
## The aftershock data of 26th July 2003 earthquake of M6.2
data(main2003JUL26)
x <- main2003JUL26
# exponential polynomial trend fitting
eptren(x$time, mag = x$magnitude, nparam = 10, nsub = 1000)
# exponential Fourier series fitting
eptren(x$time, mag = x$magnitude, nparam = 10, nsub = 1000, cycle = 1)
```


Description

Compute the residual data using the ETAS model with MLEs.

Usage

```
etarpp(time, mag, threshold = 0.0, reference = 0.0, parami, zts = 0.0, tstart,
    zte, ztend = NULL, plot = TRUE)
etarpp2(etas, threshold = 0.0, reference = 0.0, parami, zts = 0.0, tstart, zte,
            ztend = NULL, plot = TRUE)
```


Arguments

time the time measured from the main $\operatorname{shock}(\mathrm{t}=0)$.
mag magnitude.
etas a etas-format dataset on 9 variables
(no., longitude, latitude, magnitude, time, depth, year, month and days).
threshold threshold magnitude.
reference reference magnitude.
parami initial estimates of five parameters μ, K, c, α and p.
zts the start of the precursory period.
tstart the start of the target period.
zte the end of the target period.
ztend the end of the prediction period. If NULL (default) the last time of available data is set.
plot logical. If TRUE (default) the graphs of cumulative number and magnitude against the ordinary time and transformed time are plotted.

Details

The cumulative number of earthquakes at time t since t_{0} is given by the integration of $\lambda(t)$ (see etasap) with respect to the time t,

$$
\Lambda(t)=\mu\left(t-t_{0}\right)+K \Sigma_{i} \exp \left[\alpha\left(M_{i}-M_{z}\right)\right]\left\{c^{(1-p)}-\left(t-t_{i}+c\right)^{(1-p)}\right\} /(p-1)
$$

where the summation of i is taken for all data event. The output of etarpp2 is given in a res-format dataset which includes the column of $\left\{\Lambda\left(t_{i}\right), i=1,2, \ldots, N\right\}$.

Value

trans.time \quad transformed time $\Lambda\left(t_{i}\right), i=1,2, \ldots, N$.
no.tstart data number of the start of the target period.
resData a res-format dataset on 7 variables
(no., longitude, latitude, magnitude, time, depth and transformed time).

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2
## output transformed times and cumulative numbers
x <- main2003JUL26
etarpp(time = x$time, mag = x$magnitude, threshold = 2.5, reference = 6.2,
            parami = c(0, 0.63348e+02, 0.38209e-01, 0.26423e+01, 0.10169e+01),
            tstart = 0.01, zte = 7, ztend = 18.68)
## output a res-format dataset
etarpp2(main2003JUL26, threshold = 2.5, reference = 6.2,
            parami = c(0, 0.63348e+02, 0.38209e-01, 0.26423e+01, 0.10169e+01),
            tstart = 0.01, zte = 7, ztend = 18.68)
```

```
etasap Maximum Likelihood Estimates of the ETAS Model
```


Description

Compute the maximum likelihood estimates of five parameters of ETAS model. This function consists of two (exact and approximated) versions of the calculation algorithm for the maximization of likelihood.

Usage

etasap(time, mag, threshold $=0.0$, reference $=0.0$, parami, zts $=0.0$, tstart, zte, approx = 2, tmpfile = NULL, nlmax = 1000, plot = TRUE)

Arguments

time	the time measured from the main $\operatorname{shock}(\mathrm{t}=0)$.
mag	magnitude.
threshold	threshold magnitude.
reference	reference magnitude.

parami	initial estimates of five parameters μ, K, c, α and p.
zts	the start of the precursory period.
tstart	the start of the target period.
zte	the end of the target period.
approx	$8:$ the level for approximation version, which is one of the five levels $1,2,4$, a and 16. The higher level means faster processing but lower accuracy.
tmpfile	a character string naming the file to write the process of maximum likelihood procedure. If "" print the process to the standard output and if NULL (default) no report.
nlmax	the maximum number of steps in the process of minimizing.
plot	logical. If TRUE (default) the graph of cumulative number and magnitude of earthquakes against the ordinary time is plotted.

Details

The ETAS model is a point-process model representing the activity of earthquakes of magnitude M_{z} and larger occurring in a certain region during a certain interval of time. The total number of such earthquakes is denoted by N. The seismic activity includes primary activity of constant occurrence rate μ in time (Poisson process). Each earthquake (including aftershock of another earthquake) is followed by its aftershock activity, though only aftershocks of magnitude M_{z} and larger are included in the data. The aftershock activity is represented by the Omori-Utsu formula in the time domain. The rate of aftershock occurrence at time t following the i th earthquake (time: t_{i}, magnitude: M_{i}) is given by

$$
n_{i}(t)=K \exp \left[\alpha\left(M_{i}-M_{z}\right)\right] /\left(t-t_{i}+c\right)^{p},
$$

for $t>t_{i}$ where K, α, c, and p are constants, which are common to all aftershock sequences in the region. The rate of occurrence of the whole earthquake series at time t becomes

$$
\lambda(t)=\mu+\Sigma_{i} n_{i}(t)
$$

The summation is done for all i satisfying $t_{i}<t$. Five parameters μ, K, c, α and p represent characteristics of seismic activity of the region.

Value

ngmle negative max log-likelihood.
param list of maximum likelihood estimates of five parameters μ, K, c, α and p.
aic2 AIC/2.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
    data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2
    x <- main2003JUL26
    etasap(x$time, x$magnitude, threshold = 2.5, reference = 6.2,
        parami = c(0, 0.63348e+02, 0.38209e-01, 0.26423e+01, 0.10169e+01),
        tstart = 0.01, zte = 18.68)
```

 etasim Simulation of Earthquake Dataset Based on the ETAS Model

Description

Produce simulated dataset for given sets of parameters in the point process model used in ETAS.

Usage

etasim1 (bvalue, nd, threshold $=0.0$, reference $=0.0$, param)
etasim2(etas, tstart, threshold $=0.0$, reference $=0.0$, param)

Arguments

bvalue $\quad b$-value of G-R law if etasim1.
nd the number of the simulated events if etasim1.
etas a etas-format dataset on 9 variables (no., longitude, latitude, magnitude, time, depth, year, month and days).
tstart the end of precursory period if etasim2.
threshold threshold magnitude.
reference reference magnitude.
param five parameters μ, K, c, α and p.

Details

There are two versions; either simulating magnitude by Gutenberg-Richter's Law etasim1 or using magnitudes from etas dataset etasim2. For etasim1, b-value of G-R law and number of events to be simulated are provided. stasim2 simulates the same number of events that are not less than threshold magnitude in the dataset etas, and simulation starts after a precursory period depending on the same history of events in etas in the period.

Value

etasim1 and etasim2 generate a etas-format dataset given values of 'no.', 'magnitude' and 'time'.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
## by Gutenberg-Richter's Law
etasim1(bvalue = 1.0, nd = 999, threshold = 3.5, reference = 3.5,
        param = c(0.2e-02, 0.4e-02, 0.3e-02, 0.24e+01, 0.13e+01))
## from a etas-format dataset
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2
etasim2(main2003JUL26, tstart = 0.01, threshold = 2.5, reference = 6.2,
    param = c(0, 0.63348e+02, 0.38209e-01, 0.26423e+01, 0.10169e+01))
```

 linlin Maximum Likelihood Estimates of Linear Intensity Models

Description

Perform the maximum likelihood estimates of linear intensity models of self-exciting point process with another point process input, cyclic and trend components.

Usage

linlin(external, self.excit, interval, c, d, ax = NULL, ay = NULL, ac = NULL, at $=$ NULL, opt $=0$, tmpfile $=$ NULL, nlmax $=1000$)

Arguments

external another point process data.
self.excit self-exciting data.
interval length of observed time interval of event.
c
exponential coefficient of lgp in self-exciting part.
d exponential coefficient of lgp in input part.
ax coefficients of self-exciting response function.
ay coefficients of input response function.
ac coefficients of cycle.
at coefficients of trend.
opt $\quad 0:$ minimize the likelihood with fixed exponential coefficient c
$1:$ not fixed d.
tmpfile a character string naming the file to write the process of minimizing. If "" print the process to the standard output and if NULL (default) no report.
nlmax the maximum number of steps in the process of minimizing.

Details

The cyclic part is given by the Fourier series, the trend is given by usual polynomial. The response functions of the self-exciting and the input are given by the Laguerre type polynomials (lgp), where the scaling parameters in the exponential function, say c and d, can be different. However, it is advised to estimate c first without the input component, and then to estimate d with the fixed c (this means that the gradient corresponding to the c is set to keep 0), which are good initial estimates for the c and d of the mixed self-exciting and input model.
Note that estimated intensity sometimes happen to be negative on some part of time interval outside the neighborhood of events. this take place more easily the larger the number of parameters. This causes some difficulty in getting the m.l.e., because the negativity of the intensity contributes to the seeming increase of the likelihood.
Note that for the initial estimates of $a x(1), a y(1)$ and $a t(1)$, some positive value are necessary. Especially 0.0 is not suitable.

Value

c1 initial estimate of exponential coefficient of lgp in self-exciting part.
d1 initial estimate of exponential coefficient of lgp in input part.
ax1 initial estimates of lgp coefficients in self-exciting part.
ay1 initial estimates of lgp coefficients in the input part.
ac1 initial estimates of coefficients of Fourier series.
at1 initial estimates of coefficients of the polynomial trend.
c2 final estimate of exponential coefficient of \lg in self-exciting part.
d2 final estimate of exponential coefficient of lgp in input part.
ax2 final estimates of lgp coefficients in self-exciting part.
ay2 final estimates of lgp coefficients in the input part.
ac2 final estimates of coefficients of Fourier series.
at2 final estimates of coefficients of the polynomial trend.
aic2
ngmle
AIC/2.
rayleigh.prob Rayleigh probability.
distance $\left.\quad=\sqrt{(} r w x^{2}+r w y^{2}\right)$.
phase
phase.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.
Ogata, Y. and Akaike, H. (1982) On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. J. royal statist. soc. b, vol. 44, pp. 102-107.

Ogata, Y., Akaike, H. and Katsura, K. (1982) The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann. inst. statist. math., vol. 34. pp. 373-387.

Examples

```
data(PProcess) # point process data
data(SelfExcit) # self-exciting point process data
linlin(PProcess[1:69], SelfExcit, interval = 20000, c = 0.13, d = 0.026,
        ax = c(0.035, -0.0048), ay = c(0.0, 0.00017), at = c(0.007, -.00000029))
```

linsim Simulation of a Self-Exciting Point Process

Description

Perform simulation of a self-exciting point process whose intensity also includes a component triggered by another given point process data and a non-stationary Poisson trend.

Usage

linsim(data, interval, c, d, ax, ay, at, ptmax)

Arguments

data point process data.
interval length of time interval in which events take place.
c exponential coefficient of lgp corresponding to simulated data.
d exponential coefficient of lgp corresponding to input data.
ax $\quad \operatorname{lgp}$ coefficients in self-exciting part.
ay $\quad \operatorname{lgp}$ coefficients in the input part.
at coefficients of the polynomial trend.
ptmax an upper bound of trend polynomial.

Details

This function performs simulation of a self-exciting point process whose intensity also includes a component triggered by another given point process data and non-stationary Poisson trend. The trend is given by usual polynomial, and the response functions to the self-exciting and the external inputs are given the Laguerre-type polynomials (lgp), where the scaling parameters in the exponential functions, say c and d, can be different.

Value

in.data input data for sim.data.
sim.data self-exciting simulated data.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE information theory, vol. it-27, pp. 23-31.

Ogata, Y. and Akaike, H. (1982) On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. J. royal statist. soc. b, vol. 44, pp. 102-107.

Ogata, Y., Akaike, H. and Katsura, K. (1982) The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann. inst. statist math., vol. 34. pp. 373-387.

Examples

```
data(PProcess) ## The point process data
linsim(PProcess, interval = 20000, c = 0.13, d = 0.026, ax = c(0.035, -0.0048),
    ay = c(0.0, 0.00017), at = c(0.007, -0.00000029), ptmax = 0.007)
```

main2003JUL26 The Aftershock Data

Description

The aftershock data of 26th July 2003 earthquake of M6.2 at the northern Miyagi-Ken Japan.

Usage

data(main2003JUL26)

Format

main 2003 JUL 26 is a data frame with 2305 observations and 9 variables named no., longitude, latitude, magnitude, time (from the main shock in days), depth, year, month, and day.

Source

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

```
momori
```


Maximum Likelihood Estimates of Parameters in the Omori-Utsu (Modified Omori) Formula

Description

Compute the maximum likelihood estimates (MLEs) of parameters in the Omori-Utsu (modified Omori) formula representing for the decay of occurrence rate of aftershocks with time.

Usage

momori(data, mag $=$ NULL, threshold $=0.0$, tstart, tend, parami, tmpfile $=$ NULL, nlmax = 1000)

Arguments

data	point process data.
mag	magnitude.
threshold	threshold magnitude.
tstart	the start of the target period.
tend	the end of the target period.
parami	the initial estimates of the four parameters B, K, c and p.
tmpfile	a character string naming the file to write the process of minimizing. If "" print the process to the standard output and if NULL (default) no report.
nlmax	the maximum number of steps in the process of minimizing.

Details

The modified Omori formula represent the delay law of aftershock activity in time. In this equation, $f(t)$ represents the rate of aftershock occurrence at time t, where t is the time measured from the origin time of the main shock. B, K, c and p are non-negative constants. B represents constant-rate background seismicity which may be included in the aftershock data.

$$
f(t)=B+K /(t+c)^{p}
$$

In this function the negative log-likelihood function is minimized by the Davidon-Fletcher-Powell algorithm. Starting from a given set of initial guess of the parameters parai, momori() repeats calculations of function values and its gradients at each step of parameter vector. At each cycle
 estimates of square sum of gradients are shown (process $=1$).
The cumulative number of earthquakes at time t since t_{0} is given by the integration of $f(t)$ with respect to the time t,

$$
F(t)=B\left(t-t_{0}\right)+K\left\{c^{1-p}-\left(t-t_{i}+c\right)^{1-p}\right\} /(p-1)
$$

where the summation of i is taken for all data event.

Value

param the final estimates of the four parameters B, K, c and p.
ngmle negative max likelihood.
aic $\quad \mathrm{AIC}=-2 L L+2 *$ (number of variables), and the number $=4$ in this case.
plist list of parameters t_{i}, K, c, p and $c l s$.

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2
x <- main2003JUL26
momori(x$time, x$magnitude, threshold = 2.5, tstart = 0.01, tend = 18.68,
    parami = c(0,0.96021e+02, 0.58563e-01, 0.96611e+00))
```

```
pgraph Graphical Outputs for the Point Process Data Set
```


Description

Provide the several graphical outputs for the point process data set.

Usage

pgraph(data, mag, threshold $=0.0, \mathrm{~h}$, npoint, days, delta $=0.0, \mathrm{dmax}=0.0$, separate.graphics = FALSE)

Arguments	
data	point process data.
mag	magnitude.
threshold	threshold magnitude.
h	time length of the moving interval in which points are counted to show the graph.
npoint	number of subintervals in (0 , days) to estimate a nonparametric intensity under the palm probability measure.
days	length of interval to display the intensity estimate under the palm probability.
delta	length of a subinterval unit in ($0, \mathrm{dmax}$) to compute the variance time curve.
dmax	time length of an interval to display the variance time curve; this is less than (length of whole interval)/4. As the default setting of either delta $=0.0$ or dmax $=0.0$, set dmax $=($ length of whole interval $) / 4$ and delta $=$ dmax/100.
separate.g	
	logical. If TRUE a graphic device is opened for each graphics display.

Value

cnum cumulative numbers of events time.
lintv interval length.
tau $\quad=$ time * (total number of events)/(time end).
nevent number of events in [tau, tau +h$]$.
survivor $\quad \log$ survivor curve with i^{*} (standard error), $i=1,2,3$.
deviation deviation of survivor function from the Poisson.
nomal.cnum normalized cumulative number.
nomal.lintv $\quad U(i)=-\exp (-($ normalized interval length $))$.
success.intv successive pair of intervals.
occur occurrence rate.
time time assuming the stationary Poisson process.
variance $\quad \operatorname{Var}(\mathrm{N}(0$, time $))$.
error the 0.95 and 0.99 error lines assuming the stationary Poisson process.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Ogata, Y. and Shimazaki, K. (1984) Transition from aftershock to normal activity: The 1965 Rat islands earthquake aftershock sequence. Bulletin of the seismological society of America, vol. 74, no. 5, pp. 1757-1765.

Examples

```
## The aftershock data of 26th July 2003 earthquake of M6.2
data(main2003JUL26)
x <- main2003JUL26
pgraph(x$time, x$magnitude, h = 6, npoint = 100, days = 10)
## The residual point process data of 26th July 2003 earthquake of M6.2
data(res2003JUL26)
y <- res2003JUL26
pgraph(y$trans.time, y$magnitude, h = 6, npoint = 100, days = 10)
```

| PoissonData \quad Poisson Data |
| :--- | :--- |

Description

Poisson test data for ptspec.

Usage
 data(PoissonData)

Format

A numeric vector of length 2553.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.
PProcess The Point Process Data

Description

The point process test data for linsim and linlin.

Usage

```
data(PProcess)
```


Format

A numeric vector of length 72.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Description

Provide the periodogram of point process data with the significant band $(0.90,0.95$ and 0.99$)$ of the maximum power in searching a cyclic component, for stationary Poisson Process.

Usage

ptspec(data, nfre, prdmin, prd, nsmooth $=1$, pprd, interval, plot $=$ TRUE)

Arguments

data data of events.
nfre number of sampling frequencies of spectra.
prdmin the minimum periodicity of the sampling.
prd a periodicity for calculating the Rayleigh probability.
nsmooth number for smoothing of periodogram.
pprd particular periodicities to be investigated among others.
interval length of observed time interval of events.
plot logical. If TRUE (default) the periodogram is plotted.

Value

$f \quad$ frequency.
db
D.B.
power power.
rayleigh.prob the probability of Rayleigh.
distance $\left.\quad=\sqrt{(} r w x^{2}+r w y^{2}\right)$.
phase phase.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Examples

```
data(Brastings) # The Occurrence Times Data of 627 Blastings
ptspec(Brastings, nfre = 1000, prdmin = 0.5, prd = 1.0, pprd = c(2.0, 1.0, 0.5),
    interval = 4600)
data(PoissonData) # to see the contrasting difference
ptspec(PoissonData, nfre = 1000, prdmin = 0.5, prd = 1.0, pprd = c(2.0, 1.0, 0.5),
    interval = 5000)
```

 res2003JUL26 The Residual Point Process Data

Description

The residual point process data of 26th July 2003 earthquake of M6.2 at the northern Miyagi-Ken Japan.

Usage

data(res2003JUL26)

Format

res2003JUL 26 is a data frame with 553 observations and 7 variables named no., longitude, latitude, magnitude, time (from the main shock in days), depth, Ft (transformed time).

Source

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.
respoi The Residual Point Process of the ETAS Model

Description

Compute the residual of modified Omori Poisson process and display the cumulative curve and magnitude v.s. transformed time.

Usage

respoi(time, mag, param, zts, tstart, zte, threshold = 0.0, plot = TRUE)
respoi2(etas, param, zts, tstart, zte, threshold = 0.0, plot = TRUE)

Arguments

time mag etas	the time measured from the main shock $(\mathrm{t}=0)$. magnitude.
param	an etas-format dataset on 9 variables (no., longitude, latitude, magnitude, time, depth, year, month and days). zts the four parameters B, K, c and p.
tstart	the start of the precursory period.
zte	the start of the target period.
threshold	the end of the target period.
plot	threshold magnitude.
	logical. If TRUE (default) cumulative curve and magnitude v.s. transformed time

Details

The function respoi and respoi 2 compute the following output for displaying the goodness-of-fit of Omori-Utsu model to the data. The cumulative number of earthquakes at time t since t_{0} is given by the integration of $f(t)$ with respect to the time t,

$$
F(t)=B\left(t-t_{0}\right)+K\left\{c^{(1-p)}-\left(t-t_{i}+c\right)^{(1-p)}\right\} /(p-1)
$$

where the summation of i is taken for all data event.
respoi2 is equivalent to respoi except that input and output forms are different. When a etasformat dataset is given, respoi 2 returns the dataset with the format as described below.

Value

trans.time
cnum cumulative number of events.
resData a res-format dataset on 7 variables (no., longitude, latitude, magnitude, time, depth and trans.time)

References

Ogata, Y. (2006) Computer Science Monographs, No.33, Statistical Analysis of Seismicity - updated version (SASeies2006). The Institute of Statistical Mathematics.

Examples

```
data(main2003JUL26) # The aftershock data of 26th July 2003 earthquake of M6.2
# output transformed times and cumulative numbers
x <- main2003JUL26
respoi(x$time, x$magnitude, param = c(0,0.96021e+02, 0.58563e-01, 0.96611e+00),
        zts = 0.0, tstart = 0.01, zte = 18.68, threshold = 2.5)
```

\# output a res-format dataset
respoi2(main2003JUL26, param $=c(0,0.96021 \mathrm{e}+02,0.58563 \mathrm{e}-01,0.96611 \mathrm{e}+00)$, zts $=0.0$, tstart $=0.01$, zte $=18.68$, threshold $=2.5$)

SelfExcit Self-Exciting Point Process Data

Description

Self-exciting point process test data for linlin.

Usage

data(SelfExcit)

Format

A numeric vector of length 99.

Source

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.

Description

Perform the simulation of bi-variate Hawkes' mutually exciting point processes. The response functions are parameterized by the Laguerre-type polynomials.

Usage

simbvh(interval, axx = NULL, axy = NULL, axz = NULL, ayx = NULL, ayy = NULL, ayz = NULL, c, d, c2, d2, ptxmax, ptymax)

Arguments

interval length of time interval in which events take place.
axx coefficients of Laguerre polynomial (lgp) of the transfer function ($=$ response function) from the data events x to x (trf; $\mathrm{x}->\mathrm{x}$).
axy coefficients of $\operatorname{lgp}(t r f ; ~ y ~ x)$.
ayx coefficients of $\operatorname{lgp}(\operatorname{trf} ; x \rightarrow y)$.
ayy coefficients of $\lg p(t r f ; y \rightarrow y)$.
$a x z \quad$ coefficients of polynomial for x data.
ayz coefficients of polynomial for y data.
c exponential coefficient of \lg corresponding to xx .
d exponential coefficient of lgp corresponding to $x y$.
c2 exponential coefficient of $\lg \mathrm{p}$ corresponding to yx .
d2 exponential coefficient of lgp corresponding to yy.
ptxmax an upper bound of trend polynomial corresponding to xz.
ptymax an upper bound of trend polynomial corresponding to yz .

Value

X simulated data X .
$y \quad$ simulated data Y.

References

Ogata, Y., Katsura, K. and Zhuang, J. (2006) Computer Science Monographs, No.32, TIMSAC84: STATISTICAL ANALYSIS OF SERIES OF EVENTS (TIMSAC84-SASE) VERSION 2. The Institute of Statistical Mathematics.
Ogata, Y. (1981) On Lewis' simulation method for point processes. IEEE Information Theory, IT-27, pp.23-31.

Examples

```
simbvh(interval = 20000,
    axx = 0.01623,
    axy = 0.007306,
    axz = c(0.006187, -0.00000023),
    ayz = c(0.0046786, -0.00000048, 0.2557e-10),
    c = 0.4032, d = 0.0219, c2 = 1.0, d2 = 1.0,
    ptxmax = 0.0062, ptymax = 0.08)
```


Index

```
* datasets
    Brastings,2
    main2003JUL26, 12
    PoissonData,16
    PProcess,16
    res2003JUL26,18
    SelfExcit,20
* package
    SAPP-package, 2
* spatial
    eptren, }
    etarpp,5
    etasap,6
    etasim,8
    linlin,9
    linsim,11
    momori,}1
    pgraph, 14
    ptspec,17
    respoi, 18
    simbvh, 20
Brastings,2
eptren, 3
etarpp,5
etarpp2 (etarpp), 5
etasap, 5,6
etasim,8
etasim1 (etasim), 8
etasim2 (etasim), 8
linlin,9
linsim, 11
main2003JUL26,12
momori, 13
pgraph,14
PoissonData,16
PProcess,16
```

