
Package ‘SPCAvRP’
October 12, 2022

Type Package

Title Sparse Principal Component Analysis via Random Projections
(SPCAvRP)

Version 0.4

Date 2019-05-01

Author Milana Gataric, Tengyao Wang and Richard J. Samworth

Maintainer Milana Gataric <m.gataric@statslab.cam.ac.uk>

Description Implements the SPCAvRP algorithm, developed and analysed in ``Sparse principal com-
ponent analysis via random projections'' Gataric, M., Wang, T. and Sam-
worth, R. J. (2018) <arXiv:1712.05630>. The algorithm is based on the aggregation of eigenvec-
tor information from carefully-selected random projections of the sample covariance matrix.

Depends R (>= 3.0.0), parallel, MASS

License GPL-3

URL https://arxiv.org/abs/1712.05630

NeedsCompilation no

Repository CRAN

RoxygenNote 6.1.1

Date/Publication 2019-05-03 23:00:04 UTC

R topics documented:

SPCAvRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
SPCAvRP_deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SPCAvRP_subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 9

1

https://arxiv.org/abs/1712.05630
https://arxiv.org/abs/1712.05630


2 SPCAvRP

SPCAvRP Computes the leading eigenvector using the SPCAvRP algorithm

Description

Computes l-sparse leading eigenvector of the sample covariance matrix, using A x B random axis-
aligned projections of dimension d. For the multiple component estimation use SPCAvRP_subspace
or SPCAvRP_deflation.

Usage

SPCAvRP(data, cov = FALSE, l, d = 20, A = 600, B = 200,
center_data = TRUE, parallel = FALSE,
cluster_type = "PSOCK", cores = 1, machine_names = NULL)

Arguments

data Either the data matrix (p x n) or the sample covariance matrix (p x p).

cov TRUE if data is given as a sample covariance matrix.

l Desired sparsity level in the final estimator (see Details).

d The dimension of the random projections (see Details).

A Number of projections over which to aggregate (see Details).

B Number of projections in a group from which to select (see Details).

center_data TRUE if the data matrix should be centered (see Details).

parallel TRUE if the selection step should be computed in parallel by uses package "parallel".

cluster_type If parallel == TRUE, this can be "PSOCK" or "FORK" (cf. package "parallel").

cores If parallel == TRUE and cluster_type == "FORK", number of cores to use.

machine_names If parallel == TRUE, the names of the computers on the network.

Details

This function implements the SPCAvRP algorithm for the principal component estimation (Algo-
rithm 1 in the reference given below).

If the true sparsity level k is known, use l = k and d = k.

If the true sparsity level k is unknown, l can take an array of different values and then the estimators
of the corresponding sparsity levels are computed. The final choice of l can then be done by the
user via inspecting the explained variance computed in the output value or via inspecting the output
importance_scores. The default choice for d is 20, but we suggest choosing d equal to or slightly
larger than l.

It is desirable to choose A (and B = ceiling(A/3)) as big as possible subject to the computational
budget. In general, we suggest using A = 300 and B = 100 when the dimension of data is a few
hundreds, while A = 600 and B = 200 when the dimension is on order of 1000.
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If center_data == TRUE and data is given as a data matrix, the first step is to center it by exe-
cuting scale(data, center_data, FALSE), which subtracts the column means of data from their
corresponding columns.

If parallel == TRUE, the parallelised SPCAvRP algorithm is used. We recommend to use this
option if p, A and B are very large.

Value

Returns a list of three elements:

vector A matrix of dimension p x length(l) with columns as the estimated eigenvec-
tors of sparsity level l.

value An array with length(l) eigenvalues corresponding to the estimated eigenvec-
tors returned in vector.

importance_scores

An array of length p with importance scores for each variable 1 to p.

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component anal-
ysis via random projections https://arxiv.org/abs/1712.05630

Examples

p <- 100 # data dimension
k <- 10 # true sparsity level
n <- 1000 # number of observations
v1 <- c(rep(1/sqrt(k), k), rep(0,p-k)) # true principal component
Sigma <- 2*tcrossprod(v1) + diag(p) # population covariance
mu <- rep(0, p) # population mean
loss = function(u,v){

# the loss function
sqrt(abs(1-sum(v*u)^2))

}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) # data matrix

spcavrp <- SPCAvRP(data = X, cov = FALSE, l = k, d = k, A = 200, B = 70)
spcavrp.loss <- loss(v1,spcavrp$vector)
print(paste0("estimation loss when l=d=k=10, A=200, B=70: ", spcavrp.loss))

##choosing sparsity level l if k unknown:
#spcavrp.choosel <- SPCAvRP(data = X, cov = FALSE, l = c(1:30), d = 15, A = 200, B = 70)
#plot(1:p,spcavrp.choosel$importance_scores,xlab='variable',ylab='w',
# main='choosing l when k unknown: \n importance scores w')
#plot(1:30,spcavrp.choosel$value,xlab='l',ylab='Var_l',
# main='choosing l when k unknown: \n explained variance Var_l')

https://arxiv.org/abs/1712.05630


4 SPCAvRP_deflation

SPCAvRP_deflation Computes multiple principal components using our modified deflation
scheme

Description

Computes m leading eigenvectors of the sample covariance matrix which are sparse and orthogonal,
using the modified deflation scheme in conjunction with the SPCAvRP algorithm.

Usage

SPCAvRP_deflation(data, cov = FALSE, m, l, d = 20,
A = 600, B = 200, center_data = TRUE)

Arguments

data Either the data matrix (p x n) or the sample covariance matrix (p x p).

cov TRUE if data is given as a sample covariance matrix.

m The number of principal components to estimate.

l The array of length m with the desired sparsity of m principle components (see
Details).

d The dimension of the random projections (see Details).

A Number of projections over which to aggregate (see Details).

B Number of projections in a group from which to select (see Details).

center_data TRUE if the data matrix should be centered (see Details).

Details

This function implements the modified deflation scheme in conjunction with SPCAvRP (Algorithm
2 in the reference given below).

If the true sparsity level is known and for each component is equal to k, use d = k and l = rep(k,m).
Sparsity levels of different components may take different values. If k is unknown, appropriate k
could be chosen from an array of different values by inspecting the explained variance for one com-
ponent at the time and by using SPCAvRP in a combination with the deflation scheme implemented
in SPCAvRP_deflation.

It is desirable to choose A (and B = ceiling(A/3)) as big as possible subject to the computational
budget. In general, we suggest using A = 300 and B = 100 when the dimension of data is a few
hundreds, while A = 600 and B = 200 when the dimension is on order of 1000.

If center_data == TRUE and data is given as a data matrix, the first step is to center it by exe-
cuting scale(data, center_data, FALSE), which subtracts the column means of data from their
corresponding columns.
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Value

Returns a list of two elements:

vector A matrix whose m columns are the estimated eigenvectors.

value An array with m estimated eigenvalues.

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component anal-
ysis via random projections https://arxiv.org/abs/1712.05630

See Also

SPCAvRP, SPCAvRP_subspace

Examples

p <- 50 # data dimension
k <- 8 # true sparsity of each component
v1 <- 1/sqrt(k)*c(rep(1, k), rep(0, p-k)) # first principal compnent (PC)
v2 <- 1/sqrt(k)*c(rep(0,4), 1, -1, 1, -1, rep(1,4), rep(0,p-12)) # 2nd PC
v3 <- 1/sqrt(k)*c(rep(0,6), 1, -rep(1,4), rep(1,3), rep(0,p-14)) # 3rd PC
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) # population covariance
mu <- rep(0, p) # population mean
n <- 2000 # number of observations
loss = function(u,v){

sqrt(abs(1-sum(v*u)^2))
}
loss_sub = function(U,V){

U<-qr.Q(qr(U)); V<-qr.Q(qr(V))
norm(tcrossprod(U)-tcrossprod(V),"2")

}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) # data matrix

spcavrp.def <- SPCAvRP_deflation(data = X, cov = FALSE, m = 2, l = rep(k,2),
d = k, A = 200, B = 70, center_data = FALSE)

subspace_estimation<-data.frame(
loss_sub(matrix(c(v1,v2),ncol=2),spcavrp.def$vector),
loss(spcavrp.def$vector[,1],v1),
loss(spcavrp.def$vector[,2],v2),
crossprod(spcavrp.def$vector[,1],spcavrp.def$vector[,2]))

colnames(subspace_estimation)<-c("loss_sub","loss_v1","loss_v2","inner_prod")
rownames(subspace_estimation)<-c("")
print(subspace_estimation)

https://arxiv.org/abs/1712.05630
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SPCAvRP_subspace Computes the leading eigenspace using the SPCAvRP algorithm for
the eigenspace estimation

Description

Computes m leading eigenvectors of the sample covariance matrix which are sparse and orthogonal,
using A x B random axis-aligned projections of dimension d.

Usage

SPCAvRP_subspace(data, cov = FALSE, m, l, d = 20,
A = 600, B = 200, center_data = TRUE)

Arguments

data Either the data matrix (p x n) or the sample covariance matrix (p x p).

cov TRUE if data is given as a sample covariance matrix.

m The dimension of the eigenspace, i.e the number of principal components to
compute.

l Desired sparsity level of the eigenspace (i.e. the number of non-zero rows in
output$vector) (see Details).

d The dimension of the random projections (see Details).

A Number of projections over which to aggregate (see Details).

B Number of projections in a group from which to select (see Details).

center_data TRUE if the data matrix should be centered (see Details).

Details

This function implements the SPCAvRP algorithm for the eigenspace estimation (Algorithm 3 in
the reference given below).

If the true sparsity level k of the eigenspace is known, use l = k and d = k.

If the true sparsity level k of the eigenspace is unknown, the appropriate choice of l can be done, for
example, by running the algorithm (for any l) and inspecting the computed output importance_scores.
The default choice for d is 20, but we suggest choosing d equal to or slightly larger than l.

It is desirable to choose A (and B = ceiling(A/3)) as big as possible subject to the computational
budget. In general, we suggest using A = 300 and B = 100 when the dimension of data is a few
hundreds, while A = 600 and B = 200 when the dimension is on order of 1000.

If center_data == TRUE and data is given as a data matrix, the first step is to center it by exe-
cuting scale(data, center_data, FALSE), which subtracts the column means of data from their
corresponding columns.
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Value

Returns a list of two elements:

vector A matrix whose m columns are the estimated eigenvectors.

value An array with m estimated eigenvalues.
importance_scores

An array of length p with importance scores for each variable 1 to p.

Author(s)

Milana Gataric, Tengyao Wang and Richard J. Samworth

References

Milana Gataric, Tengyao Wang and Richard J. Samworth (2018) Sparse principal component anal-
ysis via random projections https://arxiv.org/abs/1712.05630

See Also

SPCAvRP, SPCAvRP_deflation

Examples

p <- 50 # data dimension
k1 <- 8 # sparsity of each induvidual component
v1 <- 1/sqrt(k1)*c(rep(1, k1), rep(0, p-k1)) # first principal compnent (PC)
v2 <- 1/sqrt(k1)*c(rep(0,4), 1, -1, 1, -1, rep(1,4), rep(0,p-12)) # 2nd PC
v3 <- 1/sqrt(k1)*c(rep(0,6), 1, -rep(1,4), rep(1,3), rep(0,p-14)) # 3rd PC
Sigma <- diag(p) + 40*tcrossprod(v1) + 20*tcrossprod(v2) + 5*tcrossprod(v3) # population covariance
mu <- rep(0, p) # pupulation mean
n <- 2000 # number of observations
loss = function(u,v){

sqrt(abs(1-sum(v*u)^2))
}
loss_sub = function(U,V){

U<-qr.Q(qr(U)); V<-qr.Q(qr(V))
norm(tcrossprod(U)-tcrossprod(V),"2")

}
set.seed(1)
X <- mvrnorm(n, mu, Sigma) # data matrix

spcavrp.sub <- SPCAvRP_subspace(data = X, cov = FALSE, m = 2, l = 12, d = 12,
A = 200, B = 70, center_data = FALSE)

subspace_estimation<-data.frame(
loss_sub(matrix(c(v1,v2),ncol=2),spcavrp.sub$vector),
loss(spcavrp.sub$vector[,1],v1),
loss(spcavrp.sub$vector[,2],v2),
crossprod(spcavrp.sub$vector[,1],spcavrp.sub$vector[,2]))

colnames(subspace_estimation)<-c("loss_sub","loss_v1","loss_v2","inner_prod")

https://arxiv.org/abs/1712.05630


8 SPCAvRP_subspace

rownames(subspace_estimation)<-c("")
print(subspace_estimation)

plot(1:p,spcavrp.sub$importance_scores,xlab='variable',ylab='w',
main='importance scores w \n (may use to choose l when k unknown)')
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