| Type: | Package |
| Title: | Statistical Quality-Assured Integrated Response Estimation |
| Version: | 1.0.1 |
| Date: | 2025-11-22 |
| Author: | Richard A. Feiss |
| Maintainer: | Richard A. Feiss <feiss026@umn.edu> |
| Description: | Provides systematic geometry-adaptive parameter optimization with statistical validation for experimental biological data. Combines ANOVA-based validation with systematic constraint configuration testing (log-scale, positive domain, Euclidean) through T,P,E testing. Only proceeds with parameter optimization when statistically significant biological effects are detected, preventing over-fitting to noise. Uses 'GALAHAD' trust region methods with constraint projection from Conn et al. (2000) <doi:10.1137/S1052623497325107>, ANOVA-based validation following Fisher (1925) <doi:10.1007/978-1-4612-4380-9_6>, and effect size calculations per Cohen (1988, ISBN:0805802835). Designed for structured experimental data including kinetic curves, dose-response studies, and treatment comparisons where appropriate parameter constraints and statistical justification are important for meaningful biological interpretation. Developed at the Minnesota Center for Prion Research and Outreach at the University of Minnesota. |
| License: | MIT + file LICENSE |
| Encoding: | UTF-8 |
| Depends: | R (≥ 4.2.0) |
| Imports: | stats, GALAHAD (≥ 1.0.0), knitr |
| Suggests: | testthat (≥ 3.0.0), rmarkdown |
| VignetteBuilder: | knitr |
| RoxygenNote: | 7.3.3 |
| Config/testthat/edition: | 3 |
| NeedsCompilation: | no |
| URL: | https://github.com/RFeissIV/SQUIRE |
| BugReports: | https://github.com/RFeissIV/SQUIRE/issues |
| Packaged: | 2025-11-23 00:38:32 UTC; feiss026 |
| Repository: | CRAN |
| Date/Publication: | 2025-11-30 23:40:06 UTC |
SQUIRE: Statistical Quality-Assured Integrated Response Estimation
Description
Systematic adaptive GALAHAD framework: 1. Statistical validation 2. Systematic T->P->E geometry discovery (3 focused runs) 3. Final optimization with discovered optimal settings 4. Done!
Usage
SQUIRE(
data,
treatments,
control_treatment = treatments[1],
validation_level = 0.05,
min_timepoints = 5,
min_replicates = 3,
verbose = TRUE
)
Arguments
data |
Data frame with columns: time, response, treatment, replicate |
treatments |
Character vector of treatment names |
control_treatment |
Name of control treatment for comparisons |
validation_level |
Statistical significance level (default: 0.05) |
min_timepoints |
Minimum timepoints required for fitting (default: 5) |
min_replicates |
Minimum replicates per treatment (default: 3) |
verbose |
Logical, print progress messages |
Value
List with validation results, systematic GALAHAD discovery, and final parameters
Examples
# Synthetic germination data for demonstration
test_data <- data.frame(
time = rep(c(0, 1, 2, 3, 4, 5, 6, 7), times = 12),
treatment = rep(c("Control", "Contaminant_A", "Contaminant_B"), each = 32),
replicate = rep(rep(1:4, each = 8), times = 3),
response = c(
0, 5, 15, 28, 45, 62, 75, 82, # Control
0, 4, 12, 26, 43, 60, 73, 80,
0, 6, 17, 30, 47, 64, 77, 84,
0, 5, 14, 27, 44, 61, 74, 81,
0, 2, 8, 18, 32, 48, 60, 68, # Contaminant_A
0, 3, 7, 16, 30, 46, 58, 66,
0, 2, 9, 19, 34, 50, 62, 70,
0, 3, 8, 17, 31, 47, 59, 67,
0, 8, 22, 38, 55, 72, 85, 92, # Contaminant_B
0, 7, 20, 36, 53, 70, 83, 90,
0, 9, 24, 40, 57, 74, 87, 94,
0, 8, 21, 37, 54, 71, 84, 91
)
)
result <- SQUIRE(test_data, c("Control", "Contaminant_A", "Contaminant_B"))
if (result$optimization_performed) {
print(result$parameters$parameter_matrix)
}
Generate Example Data for SQUIRE
Description
Creates a simple example dataset suitable for testing SQUIRE functionality. The data simulates a germination experiment with three treatments.
Usage
generate_example_data(n_time = 8, n_rep = 4, seed = NULL)
Arguments
n_time |
Number of time points (default 8) |
n_rep |
Number of replicates per treatment (default 4) |
seed |
Random seed for reproducibility (default NULL) |
Value
A data frame with columns: time, treatment, replicate, response
Examples
# Generate example data
example_data <- generate_example_data(seed = 123)
head(example_data)
# Check structure
str(example_data)
table(example_data$treatment, example_data$time)
Simple Parameter Optimization Without GALAHAD
Description
A simplified version of parameter optimization that doesn't require GALAHAD. Used for examples and testing when GALAHAD is not available.
Usage
optimize_simple(data, constraints = "positive")
Arguments
data |
Data frame with time and response columns |
constraints |
Character vector specifying constraints ("positive", "none") |
Value
Named vector of parameters: rate, offset, scale
Examples
# Create simple growth data
simple_data <- data.frame(
time = rep(0:7, 4),
response = rnorm(32, mean = rep(seq(0, 50, length.out = 8), 4), sd = 2)
)
# Optimize parameters
params <- optimize_simple(simple_data, constraints = "positive")
print(params)
Print SQUIRE Results
Description
Print SQUIRE Results
Usage
## S3 method for class 'SQUIRE'
print(x, ...)
Arguments
x |
SQUIRE results object |
... |
Additional arguments |