Package 'cfma'

October 12, 2022

Type Package

Title Causal Functional Mediation Analysis

version 1.0
Date 2018-05-16
Author Yi Zhao <zhaoyi1026@gmail.com>, Xi Luo <xi.rossi.luo@gmail.com>, Martin Lindquist <mal2053@gmail.com>, Brian Caffo <bcaffo@gmail.com></bcaffo@gmail.com></mal2053@gmail.com></xi.rossi.luo@gmail.com></zhaoyi1026@gmail.com>
Maintainer Yi Zhao <zhaoyi1026@gmail.com></zhaoyi1026@gmail.com>
Description Performs causal functional mediation analysis (CFMA) for functional treatment, functional mediator, and functional outcome. This package includes two functional mediation model types: (1) a concurrent mediation model and (2) a historical influence mediation model. See Zhao et al. (2018), Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data, <arxiv:1805.06923> for details.</arxiv:1805.06923>
License GPL (>= 2)
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-24 12:45:18 UTC
R topics documented:
cfma-package 2 env.concurrent 2 env.historical 3 FMA.concurrent 4 FMA.concurrent.boot 6 FMA.concurrent.CV 9 FMA.historical 11 FMA.historical.boot 14 FMA.historical.CV 17
Index 21

2 env.concurrent

cfma-package

Causal Functional Mediation Analysis

Description

cfma package performs causal functional mediation analysis (CFMA) for functional treatment, functional mediator, and functional outcome. This package includes two functional mediation model type: (1) a concurrent mediation model and (2) a historical influence mediation model.

Details

Package: cfma Type: Package Version: 1.0

Date: 2018-05-16 License: GPL (>=2)

Author(s)

Yi Zhao <zhaoyi1026@gmail.com> and Xi Luo <xi.rossi.luo@gmail.com> and Martin Lindquist <mal2053@gmail.com> and Brian Caffo
bcaffo@gmail.com>

Maintainer: Yi Zhao <zhaoyi1026@gmail.com>

env.concurrent

Simulated data from the concurrent mediation model

Description

"env.concurrent" is an R environment containing the data generated from a concurrent mediation model.

Usage

```
data("env.concurrent")
```

Format

An R environment

Z a $n \times T$ data matrix, treatment trajectory of n subjects for T time points.

M a $n \times T$ data matrix, mediator trajectory of n subjects for T time points.

env.historical 3

Y a $n \times T$ data matrix, outcome trajectory of n subjects for T time points.

alpha a length T vector model coefficient.

beta a length T vector model coefficient.

gamma a length T vector model coefficient.

Details

The data was generated from the concurrent mediation model

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t),$$

$$R(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t).$$

Z(t) is the convolution of hemodynamic response function (HRF) and event onsets.

Examples

```
data(env.concurrent)
Z<-get("Z",env.concurrent)
M<-get("M",env.concurrent)
Y<-get("Y",env.concurrent)</pre>
```

env.historical

Simulated data from the historical influence mediation model

Description

"env.historical" is an R environment containing the data generated from a historical influence mediation model.

Usage

```
data("env.historical")
```

Format

An R environment

Z a $n \times T$ data matrix, treatment trajectory of n subjects for T time points.

M a $n \times T$ data matrix, mediator trajectory of n subjects for T time points.

Y a $n \times T$ data matrix, outcome trajectory of n subjects for T time points.

alpha a $T \times T$ matrix model coefficient.

beta a $T \times T$ matrix model coefficient.

gamma a $T \times T$ matrix model coefficient.

4 FMA.concurrent

Details

The data was generated from the historical influence mediation model

$$M(t) = \int_{\Omega_t^1} Z(s)\alpha(s,t)ds + \epsilon_1(t),$$

$$Y(t) = \int_{\Omega_t^2} Z(s)\gamma(s,t)ds + \int_{\Omega_t^3} M(s)\beta(s,t)ds + \epsilon_2(t),$$

where $\alpha(s,t)$, $\beta(s,t)$, $\gamma(s,t)$ are coefficient curves; $\Omega_t^j = [(t-\delta_j) \vee 0,t]$ for j=1,2,3. Z(t) is the convolution of hemodynamic response function (HRF) and event onsets.

Examples

```
data(env.historical)
Z<-get("Z",env.historical)
M<-get("M",env.historical)
Y<-get("Y",env.historical)</pre>
```

FMA.concurrent

Functional mediation analysis under concurrent regression model

Description

This function performs functional mediation regression under the concurrent model with given tuning parameter.

Usage

```
FMA.concurrent(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL,
    basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL,
    lambda.m = 0.01, lambda.y = 0.01)
```

Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
Υ	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model.

FMA.concurrent 5

basis	a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
Ld2.basis	a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").
nbasis	an integer, the number of basis function included. If basis is provided, this argument will be ignored.
timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.
timegrids	a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.
lambda.m	a numeric value of the tuning parameter in the mediator model.
lambda.y	a numeric value of the tuning parameter in the outcome model.

Details

The concurrent mediation model is

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t),$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t),$$

where $\alpha(t)$, $\beta(t)$, $\gamma(t)$ are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_2 -loss.

Value

basis	the basis functions used in the analysis.
М	a list of output for the mediator model
	coefficient the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of M
	lambda: λ value
Υ	a list of output for the outcome model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of Y
	lambda: λ value
IE	a list of output for the indirect effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	coefficients: the coefficient with respect to the basis function
	curve: the estimated causal curve
DE	a list of output for the direct effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	coefficients: the coefficient with respect to the basis function
	curve: the estimated causal curve

6 FMA.concurrent.boot

Author(s)

```
Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;
Xi Luo, Brown University <xi.rossi.luo@gmail.com>;
Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;
Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>
```

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

Examples

```
# Concurrent functional mediation model
data(env.concurrent)
Z<-get("Z",env.concurrent)</pre>
M<-get("M",env.concurrent)</pre>
Y<-get("Y",env.concurrent)
# consider Fourier basis
fit<-FMA.concurrent(Z,M,Y,intercept=FALSE,timeinv=c(0,300))</pre>
# estimate of alpha
plot(fit$M$curve[1,],type="1",lwd=5)
lines(get("alpha",env.concurrent),lty=2,lwd=2,col=2)
# estimate of gamma
plot(fit$Y$curve[1,],type="1",lwd=5)
lines(get("gamma",env.concurrent),lty=2,lwd=2,col=2)
# estimate of beta
plot(fit$Y$curve[2,],type="1",lwd=5)
lines(get("beta",env.concurrent),lty=2,lwd=2,col=2)
# estimate of causal curves
plot(fit$IE$curve,type="1",lwd=5)
plot(fit$DE$curve,type="1",lwd=5)
```

 ${\sf FMA.concurrent.boot}$

Functional mediation analysis under concurrent regression model with point-wise bootstrap confidence interval

Description

This function performs functional mediation regression under the concurrent model with given tuning parameter. Point-wise confidence bands are obtained from bootstrap.

FMA.concurrent.boot 7

Usage

```
FMA.concurrent.boot(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL,
  basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL,
  lambda.m = 0.01, lambda.y = 0.01, sims = 1000, boot = TRUE,
  boot.ci.type = c("bca", "perc"), conf.level = 0.95, verbose = TRUE)
```

r	guments	
	Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	Υ	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model.
	basis	a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
	Ld2.basis	a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
	basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").
	nbasis	an integer, the number of basis function included. If basis is provided, this argument will be ignored.
	timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.
	timegrids	a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.
	lambda.m	a numeric value of the tuning parameter in the mediator model.
	lambda.y	a numeric value of the tuning parameter in the outcome model.
	sims	an integer indicating the number of simulations for inference.
	boot	a logical value, indicating whether or not bootstrap should be used. Default is TRUE.
	boot.ci.type	a character of confidence interval method. boot.ci.type = "bca" bias corrected confidence interval; boot.ci.type = "perc" percentile confidence interval.
	conf.level	a number of significance level. Default is 0.95.
	verbose	a logical value, indicating whether print out bootstrap replications.

8 FMA.concurrent.boot

Details

The concurrent mediation model is

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t),$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t),$$

where $\alpha(t)$, $\beta(t)$, $\gamma(t)$ are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_2 -loss.

Value

alpha a list of output for α estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

gamma : a list of output for γ estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

beta a list of output for β estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

IE a list of output for indirect effect estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

DE a list of output for direct effect estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

Author(s)

Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;

Xi Luo, Brown University <xi.rossi.luo@gmail.com>;

Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;

Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

FMA.concurrent.CV 9

Examples

FMA.concurrent.CV

Functional mediation analysis under concurrent regression model

Description

This function performs functional mediation regression under the concurrent model. Tuning parameter is chosen based on cross-validation.

Usage

```
FMA.concurrent.CV(Z, M, Y, intercept = TRUE, basis = NULL, Ld2.basis = NULL, basis.type = c("fourier"), nbasis = 3, timeinv = c(0, 1), timegrids = NULL, lambda = NULL, nfolds = 5)
```

Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
Υ	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model. $ \\$
basis	a data matrix. Basis function used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.

10 FMA.concurrent.CV

Ld2.basis	a data matrix. The second derivative of the basis function. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").
nbasis	an integer, the number of basis function included. If basis is provided, this argument will be ignored.
timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.
timegrids	a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.
lambda	a numeric vector of tuning parameter values.
nfolds	a number gives the number of folds in cross-validation.

Details

The concurrent mediation model is

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t),$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t),$$

where $\alpha(t)$, $\beta(t)$, $\gamma(t)$ are coefficient curves. The model coefficient curves are estimated by minimizing the penalized L_2 -loss. Tuning parameter λ controls the smoothness of the estimated curves, and is chosen by cross-validation.

Value

basis	the basis functions used in the analysis.
М	a list of output for the mediator model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of M
	lambda: the chosen λ value
Υ	a list of output for the outcome model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of Y
	lambda: the chosen λ value
IE	a list of output for the indirect effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	coefficients: the coefficient with respect to the basis function
	curve: the estimated causal curve
DE	a list of output for the direct effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	coefficients: the coefficient with respect to the basis function
	curve: the estimated causal curve

Author(s)

```
Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;
Xi Luo, Brown University <xi.rossi.luo@gmail.com>;
Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;
Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>
```

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

Examples

```
# Concurrent functional mediation model
data(env.concurrent)
Z<-get("Z",env.concurrent)</pre>
M<-get("M",env.concurrent)</pre>
Y<-get("Y",env.concurrent)
# consider Fourier basis
fit<-FMA.concurrent.CV(Z,M,Y,intercept=FALSE,timeinv=c(0,300))</pre>
# estimate of alpha
plot(fit$M$curve[1,],type="1",lwd=5)
lines(get("alpha",env.concurrent),lty=2,lwd=2,col=2)
# estimate of gamma
plot(fit$Y$curve[1,],type="1",lwd=5)
lines(get("gamma",env.concurrent),lty=2,lwd=2,col=2)
# estimate of beta
plot(fit$Y$curve[2,],type="1",lwd=5)
lines(get("beta",env.concurrent),lty=2,lwd=2,col=2)
# estimate of causal curves
plot(fit$IE$curve,type="1",lwd=5)
plot(fit$DE$curve,type="1",lwd=5)
```

FMA.historical

Functional mediation analysis under historical influence model

Description

This function performs functional mediation regression under the historical influence model with given tuning parameter.

Usage

```
FMA.historical(Z, M, Y, delta.grid1 = 1, delta.grid2 = 1, delta.grid3 = 1,
  intercept = TRUE, basis1 = NULL, Ld2.basis1 = NULL, basis2 = NULL, Ld2.basis2 = NULL,
   basis.type = c("fourier"), nbasis1 = 3, nbasis2 = 3,
    timeinv = c(0, 1), timegrids = NULL,
   lambda1.m = 0.01, lambda2.m = 0.01, lambda1.y = 0.01, lambda2.y = 0.01)
```

Arg

guments	
Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
Υ	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
delta.grid1	a number indicates the width of treatment-mediator time interval in the mediator model.
delta.grid2	a number indicates the width of treatment-outcome time interval in the outcome model.
delta.grid3	a number indicates the width of mediator-outcome time interval in the outcome model.
intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model.
basis1	a data matrix. Basis function on the s domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
Ld2.basis1	a data matrix. The second derivative of the basis function on the s domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
basis2	a data matrix. Basis function on the t domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
Ld2.basis2	a data matrix. The second derivative of the basis function on the t domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").

nbasis1	an integer, the number of basis function on the s domain included. If basis1 is provided, this argument will be ignored.
nbasis2	an integer, the number of basis function on the t domain included. If basis2 is provided, this argument will be ignored.
timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.
timegrids	a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.
lambda1.m	a numeric vector of tuning parameter values on the \boldsymbol{s} domain in the mediator model.
lambda2.m	a numeric vector of tuning parameter values on the t domain in the mediator model.
lambda1.y	a numeric vector of tuning parameter values on the \boldsymbol{s} domain in the outcome model.
lambda2.y	a numeric vector of tuning parameter values on the t domain in the outcome model.

Details

The historical influence mediation model is

$$\begin{split} M(t) &= \int_{\Omega_t^1} Z(s) \alpha(s,t) ds + \epsilon_1(t), \\ Y(t) &= \int_{\Omega_t^2} Z(s) \gamma(s,t) ds + \int_{\Omega_t^3} M(s) \beta(s,t) ds + \epsilon_2(t), \end{split}$$

where $\alpha(s,t)$, $\beta(s,t)$, $\gamma(s,t)$ are coefficient curves; $\Omega_t^j = [(t-\delta_j) \vee 0,t]$ for j=1,2,3. The model coefficient curves are estimated by minimizing the penalized L_2 -loss.

Value

basis1	the basis functions on the s domain used in the analysis.
basis2	the basis functions on the t domain used in the analysis.
М	a list of output for the mediator model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of M
	lambda1: the λ value on the s domain
	lambda2: the λ value on the t domain
Υ	a list of output for the outcome model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of Y
	lambda1: the λ value on the s domain
	lambda2: the λ value on the t domain

14 FMA.historical.boot

IE	a list of output for the indirect effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	curve: the estimated causal curve
DE	a list of output for the direct effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	curve: the estimated causal curve

Author(s)

```
Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;
Xi Luo, Brown University <xi.rossi.luo@gmail.com>;
Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;
Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>
```

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

Examples

FMA.historical.boot

Functional mediation analysis under historical influence regression model with point-wise bootstrap confidence interval

Description

This function performs functional mediation regression under the historical influence model with given tuning parameter. Point-wise confidence bands are obtained from bootstrap.

FMA.historical.boot

Usage

```
FMA.historical.boot(Z, M, Y, delta.grid1 = 1, delta.grid2 = 1, delta.grid3 = 1,
  intercept = TRUE, basis1 = NULL, Ld2.basis1 = NULL, basis2 = NULL, Ld2.basis2 = NULL,
  basis.type = c("fourier"), nbasis1 = 3, nbasis2 = 3,
  timeinv = c(0, 1), timegrids = NULL,
  lambda1.m = 0.01, lambda2.m = 0.01, lambda1.y = 0.01, lambda2.y = 0.01,
  sims = 1000, boot = TRUE, boot.ci.type = c("bca", "perc"),
  conf.level = 0.95, verbose = TRUE)
```

r	rguments				
	Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.			
	М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.			
	Y	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.			
	delta.grid1	a number indicates the width of treatment-mediator time interval in the mediator model.			
	delta.grid2	a number indicates the width of treatment-outcome time interval in the outcome model.			
	delta.grid3	a number indicates the width of mediator-outcome time interval in the outcome model.			
	intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model.			
	basis1	a data matrix. Basis function on the s domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.			
	Ld2.basis1	a data matrix. The second derivative of the basis function on the s domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.			
	basis2	a data matrix. Basis function on the t domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.			
	Ld2.basis2	a data matrix. The second derivative of the basis function on the t domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.			
	basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").			
	nbasis1	an integer, the number of basis function on the s domain included. If basis1 is provided, this argument will be ignored.			
	nbasis2	an integer, the number of basis function on the t domain included. If basis2 is provided, this argument will be ignored.			

16 FMA.historical.boot

timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.
timegrids	a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.
lambda1.m	a numeric vector of tuning parameter values on the \boldsymbol{s} domain in the mediator model.
lambda2.m	a numeric vector of tuning parameter values on the \boldsymbol{t} domain in the mediator model.
lambda1.y	a numeric vector of tuning parameter values on the \boldsymbol{s} domain in the outcome model.
lambda2.y	a numeric vector of tuning parameter values on the t domain in the outcome model.
sims	an integer indicating the number of simulations for inference.
boot	a logical value, indicating whether or not bootstrap should be used. Default is \ensuremath{TRUE} .
boot.ci.type	a character of confidence interval method. boot.ci.type = "bca" bias corrected confidence interval; boot.ci.type = "perc" percentile confidence interval.
conf.level	a number of significance level. Default is 0.95.
verbose	a logical value, indicating whether print out bootstrap replications.

Details

The historical influence mediation model is

$$M(t) = \int_{\Omega_t^1} Z(s)\alpha(s,t)ds + \epsilon_1(t),$$

$$Y(t) = \int_{\Omega_t^2} Z(s)\gamma(s,t)ds + \int_{\Omega_t^3} M(s)\beta(s,t)ds + \epsilon_2(t),$$

where $\alpha(s,t)$, $\beta(s,t)$, $\gamma(s,t)$ are coefficient curves; $\Omega_t^j = [(t-\delta_j) \vee 0,t]$ for j=1,2,3. The model coefficient curves are estimated by minimizing the penalized L_2 -loss.

Value

alpha a list of output for α estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

gamma a list of output for γ estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

beta a list of output for β estimate

coefficients: the result of the coefficient estimates corresponding to the basis

function

curve: the point-wise estimate of the coefficient curve

IE a list of output for indirect effect estimate

curve: the point-wise estimate of the coefficient curve

DE a list of output for direct effect estimate

curve: the point-wise estimate of the coefficient curve

Author(s)

Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;

Xi Luo, Brown University <xi.rossi.luo@gmail.com>;

Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;

Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

Examples

FMA.historical.CV

Functional mediation analysis under historical influence model

Description

This function performs functional mediation regression under the historical influence model. Tuning parameter is chosen based on cross-validation.

Usage

```
FMA.historical.CV(Z, M, Y, delta.grid1 = 1, delta.grid2 = 1, delta.grid3 = 1,
  intercept = TRUE, basis1 = NULL, Ld2.basis1 = NULL, basis2 = NULL, Ld2.basis2 = NULL,
  basis.type = c("fourier"), nbasis1 = 3, nbasis2 = 3,
  timeinv = c(0, 1), timegrids = NULL, lambda1 = NULL, lambda2 = NULL, nfolds = 5)
```

•	guments	
	Z	a data matrix. Z is the treatment trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	М	a data matrix. M is the mediator trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	Y	a data matrix. Y is the outcome trajectory in the mediation analysis. The number of rows is the number of subjects, and the number of columns is the number of measured time points.
	delta.grid1	a number indicates the width of treatment-mediator time interval in the mediator model.
	delta.grid2	a number indicates the width of treatment-outcome time interval in the outcome model.
	delta.grid3	a number indicates the width of mediator-outcome time interval in the outcome model.
	intercept	a logic variable. Default is TRUE, an intercept term is included in the regression model.
	basis1	a data matrix. Basis function on the s domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
	Ld2.basis1	a data matrix. The second derivative of the basis function on the <i>s</i> domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
	basis2	a data matrix. Basis function on the t domain used in the functional data analysis. The number of columns is the number of basis function considered. If basis = NULL, Fourier basis functions will be generated.
	Ld2.basis2	a data matrix. The second derivative of the basis function on the t domain. The number of columns is the number of basis function considered. If Ld2.basis = NULL, the second derivative of Fourier basis functions will be generated.
	basis.type	a character of basis function type. Default is Fourier basis (basis.type = "fourier").
	nbasis1	an integer, the number of basis function on the s domain included. If basis1 is provided, this argument will be ignored.
	nbasis2	an integer, the number of basis function on the t domain included. If basis2 is provided, this argument will be ignored.
	timeinv	a numeric vector of length two, the time interval considered in the analysis. Default is $(0,1)$.

a numeric vector of time grids of measurement. If timegrids = NULL, it is assumed the between measurement time interval is constant.

lambda1 a numeric vector of tuning parameter values on the *s* domain.

lambda2 a numeric vector of tuning parameter values on the *t* domain.

nfolds a number gives the number of folds in cross-validation.

Details

The historical influence mediation model is

$$\begin{split} M(t) &= \int_{\Omega_t^1} Z(s) \alpha(s,t) ds + \epsilon_1(t), \\ Y(t) &= \int_{\Omega_t^2} Z(s) \gamma(s,t) ds + \int_{\Omega_t^3} M(s) \beta(s,t) ds + \epsilon_2(t), \end{split}$$

where $\alpha(s,t)$, $\beta(s,t)$, $\gamma(s,t)$ are coefficient curves; $\Omega_t^j = [(t-\delta_j) \vee 0,t]$ for j=1,2,3. The model coefficient curves are estimated by minimizing the penalized L_2 -loss. Tuning parameter λ controls the smoothness of the estimated curves, and is chosen by cross-validation.

Value

basis1	the basis functions on the s domain used in the analysis.
basis2	the basis functions on the t domain used in the analysis.
М	a list of output for the mediator model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of M
	lambda1: the chosen λ value on the s domain
	lambda2: the chosen λ value on the t domain
Υ	a list of output for the outcome model
	coefficient: the estimated coefficient with respect to the basis function
	curve: the estimated coefficient curve
	fitted: the fitted value of Y
	lambda1: the chosen λ value on the s domain
	lambda2: the chosen λ value on the t domain
IE	a list of output for the indirect effect comparing $Z_1(t)=1$ versus $Z_0(t)=0$
	curve: the estimated causal curve
DE	a list of output for the direct effect comparing $Z_1(t) = 1$ versus $Z_0(t) = 0$
	curve: the estimated causal curve

Author(s)

Yi Zhao, Johns Hopkins University, <zhaoyi1026@gmail.com>;

Xi Luo, Brown University <xi.rossi.luo@gmail.com>;

Martin Lindquist, Johns Hopkins University, <mal2053@gmail.com>;

Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>

References

Zhao et al. (2017). Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data. arXiv preprint arXiv:1805.06923.

Examples

Index

```
* datasets
    env.concurrent, 2
    env.historical, 3
* models
    FMA.concurrent, 4
    FMA.concurrent.boot, 6
    FMA.concurrent.CV, 9
    FMA.historical, 11
    FMA.historical.boot, 14
    FMA.historical.CV, 17
* package
    \quad \text{cfma-package}, \, 2
cfma (cfma-package), 2
\quad \text{cfma-package}, \, 2 \\
env.concurrent, 2
env.historical, 3
FMA.concurrent, 4
FMA.concurrent.boot, 6
FMA.concurrent.CV, 9
FMA.historical, 11
FMA.historical.boot, 14
FMA.historical.CV, 17
```