Package 'decorrelate'

July 18, 2025

Type Package

Title Decorrelation Projection Scalable to High Dimensional Data

Version 0.1.6.4

Date 2025-06-18

Description Data whitening is a widely used preprocessing step to remove correlation structure since statistical models often assume independence. Here we use a probabilistic model of the observed data to apply a whitening transformation. This Gaussian Inverse Wishart Empirical Bayes model substantially reduces computational complexity, and regularizes the eigen-values of the sample covariance matrix to improve out-of-sample performance.

License Artistic-2.0

Encoding UTF-8

URL https://gabrielhoffman.github.io/decorrelate/

BugReports https://github.com/GabrielHoffman/decorrelate/issues

Suggests knitr, pander, whitening, CCA, yacca, mvtnorm, ggplot2, cowplot, colorRamps, RUnit, latex2exp, clusterGeneration, rmarkdown

Depends R (\geq 4.2.0), methods

Imports Rfast, irlba, graphics, Rcpp, CholWishart, Matrix, utils, stats

RoxygenNote 7.3.2

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Gabriel Hoffman [aut, cre] (ORCID: https://orcid.org/0000-0002-0957-0224>)

Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

Repository CRAN

Date/Publication 2025-07-18 13:10:03 UTC

Contents

autocorr.mat	. 2
averageCorr	. 3
cov_transform	. 5
decorrelate	. 7
dmult	. 8
eclairs	. 9
eclairs-class	. 11
eclairs_corMat	. 12
eclairs_sq	. 13
fastcca-class	. 14
getCov	. 15
getShrinkageParams	. 16
getWhiteningMatrix	. 17
kappa,eclairs-method	. 18
lm_each_eclairs	. 19
lm_eclairs	. 21
logDet	. 23
mahalanobisDistance	. 24
mult_eclairs	. 25
optimal_SVHT_coef	. 26
plot,eclairs-method	. 27
quadForm	. 27
reform_decomp	. 28
rmvnorm_eclairs	. 29
sv_threshold	. 30
whiten	. 31
	33

Index

autocorr.mat

Create auto-correlation matrix

Description

Create auto-correlation matrix

Usage

autocorr.mat(p, rho)

Arguments

р	dimension of matrix
rho	autocorrelation value

averageCorr

Value

auto-matrix of size p with parameter rho

Examples

```
# Create 4x4 matrix with correlation between adjacent enties is 0.9 autocorr.mat(4, .9)
```

averageCorr

Summarize correlation matrix

Description

Summarize correlation matrix as a scalar scalar value, given its SVD and shrinkage parameter. averageCorr() computes the average correlation, and averageCorrSq() computes the average squared correlation, where both exclude the diagonal terms. sumInverseCorr() computes the sum of entries in the inverse correlation matrix to give the 'effective number of independent features'. effVariance() evaluates effective variance of the correlation (or covariance) matrix. These values can be computed using the correlation matrix using standard MLE, or EB shrinkage.

Usage

```
averageCorr(ecl, method = c("EB", "MLE"))
averageCorrSq(ecl, method = c("EB", "MLE"))
sumInverseCorr(ecl, method = c("EB", "MLE"), absolute = TRUE)
effVariance(ecl, method = c("EB", "MLE"))
tr(ecl, method = c("EB", "MLE"))
```

Arguments

ecl	estimate of correlation matrix from eclairs() storing U,d_1^2,λ and $ u$
method	compute average correlation for either the empirical Bayes (EB) shinken corre- lation matrix or the MLE correlation matrix
absolute	if TRUE (default) evaluate on absolute correlation matrix

Details

tr(): trace of the matrix. Sum of diagonals is the same as the sum of the eigen-values.

averageCorr(): The average correlation is computed by summing the off-diagonal values in the correlation matrix. The sum of all elements in a matrix is $g = \sum_{i,j} C_{i,j} = 1^T C 1$, where 1 is a vector of p elements with all entries 1. This last term is a quadratic form of the correlation matrix

that can be computed efficiently using the SVD and shrinkage parameter from eclairs(). Given the value of g, the average is computed by subtracting the diagonal values and dividing by the number of off-diagonal values: (g - p)/(p(p - 1)).

averageCorrSq(): The average squared correlation is computed using only the eigen-values. Surprisingly, this is a function of the variance of the eigen-values. The is reviewed by Watanabe (2022) and Durand and Le Roux (2017). Letting λ_i be the i^{th} sample or shrunk eigen-value, and $\tilde{\lambda}$ be the mean eigen-value, then $\sum_i (\lambda_i - \tilde{\lambda})^2 / p(p-1)\tilde{\lambda}^2$.

sumInverseCorr(): The 'effective number of independent features' is computed by summing the entires of the inverse covariance matrix. This has the form $\sum_{i,j} C_{i,j}^{-1} = 1^T C^{-1} 1$. This last term is a quadratic form of the correlation matrix that can be computed efficiently using the SVD and shrinkage parameter from eclairs() as described above.

effVariance(): Compute a metric of the amount of variation represented by a correlation (or covariance) matrix that is comparable across matrices of difference sizes. Proposed by Peña and Rodriguez (2003), the 'effective variance' is $|C|^{\frac{1}{p}}$ where C is a correlation (or covariance matrix) between p variables. The effective variance is the mean of the log eigen-values.

Value

value of summary statistic

References

Durand, J. L., & Le Roux, B. (2017). Linkage index of variables and its relationship with variance of eigenvalues in PCA and MCA. Statistica Applicata-Italian Journal of Applied Statistics, (2-3), 123-135.

Peña, D., & Rodriguez, J. (2003). Descriptive measures of multivariate scatter and linear dependence. Journal of Multivariate Analysis, 85(2), 361-374.

Watanabe, J. (2022). Statistics of eigenvalue dispersion indices: Quantifying the magnitude of phenotypic integration. Evolution, 76(1), 4-28.

Examples

```
library(Rfast)
n <- 200 # number of samples
p <- 800 # number of features
# create correlation matrix
Sigma <- matrix(.2, p, p)
diag(Sigma) <- 1
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition
ecl <- eclairs(Y, compute = "cor")
</pre>
```

cov_transform

```
averageCorr(ecl)
# Average squared correlation value
averageCorrSq(ecl)
# Sum elements in inverse correlation matrix
# Gives the effective number of independent features
sumInverseCorr(ecl)
# Effective variance
effVariance(ecl)
```

cov_transform Estimate covariance matrix after applying transformation

Description

Given covariance between features in the original data, estimate the covariance matrix after applying a transformation to each feature. Here we use the eclairs decomposition of the original covariance matrix, perform a parametric bootstrap and return the eclairs decomposition of the covariance matrix of the transformed data.

Usage

```
cov_transform(
  ecl,
  f,
  n.boot,
  lambda = NULL,
  compute = c("covariance", "correlation"),
  seed = NULL
)
```

Arguments

ecl	covariance/correlation matrix as an eclairs object
f	function specifying the transformation.
n.boot	number of parametric bootstrap samples. Increasing n gives more precise esti- mates.
lambda	shrinkage parameter. If not specified, it is estimated from the data.
compute	evaluate either the "covariance" or "correlation" of X
seed	If you want the same to be generated again use a seed for the generator, an integer number

Details

When the transformation is linear, these covariance matrices are the same.

Value

eclairs decomposition representing correlation/covariance on the transformed data

Examples

```
library(Rfast)
n <- 800 # number of samples</pre>
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# sample matrix from MVN with covariance Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma, seed = 1)
# perform eclairs decomposition
ecl <- eclairs(Y)</pre>
# Parametric boostrap to estimate covariance
# after transformation
# transformation function
f \leq function(x) \log(x^2 + 1e^{-3})
# number of bootstrap samples
n_boot <- 5000
# Evaluate eclairs decomposition on boostrap samples
ecl2 <- cov_transform(ecl, f = f, n_boot, lambda = 1e-4)</pre>
# Get full covariance matrix from eclairs decomposition
C1 <- getCov(ecl2)
# Parametric boostrap samples directly from full covariance matrix
X <- rmvnorm(n_boot, rep(0, p), getCov(ecl))</pre>
# get covariance of transformed data
C2 <- cov(f(X))
# Evaluate differences
# small differences are due to Monte Carlo error from boostrap sampling
range(C1 - C2)
# Plot entries from two covariance estimates
par(pty = "s")
plot(C1, C2, main = "Concordance between covariances")
abline(0, 1, col = "red")
# Same above but compute eclairs for correlation matrix
```

decorrelate

```
# Evaluate eclairs decomposition on boostrap samples
ecl2 <- cov_transform(ecl, f = f, n_boot, compute = "correlation", lambda = 1e-4)
# Get full covariance matrix from eclairs decomposition
C1 <- getCor(ecl2)
# Parametric boostrap samples directly from full covariance matrix
X <- rmvnorm(n_boot, rep(0, p), getCov(ecl))</pre>
# get correlation of transformed data
C2 <- cor(f(X))
# Evaluate differences
# small differences are due to Monte Carlo error from boostrap sampling
range(C1 - C2)
# Plot entries from two correlation estimates
oldpar <- par(pty = "s")</pre>
plot(C1, C2, main = "Correlation between covariances")
abline(0, 1, col = "red")
par(oldpar)
```

decorrelate Decorrelation projection

Description

Efficient decorrelation projection using eclairs decomposition

Usage

```
decorrelate(X, ecl, lambda, transpose = FALSE, alpha = -1/2)
```

Arguments

Х	matrix to be transformed so *columns* are independent
ecl	estimate of covariance/correlation matrix from eclairs storing U,d_1^2,λ and ν
lambda	specify lambda and override value from ecl
transpose	logical, (default FALSE) indicating if X should be transposed first
alpha	default = $-1/2$. Exponent of eigen-values

Details

Apply a decorrelation transform using the implicit covariance approach to avoid directly evaluating the covariance matrix

dmult

Value

a matrix following the decorrelation transformation

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)
# whitened Y
Y.transform <- decorrelate(Y, ecl)
#</pre>
```

dmult

Multiply by diagonal matrix

Description

Multiply by diagonal matrix using efficient algorithm

Usage

dmult(M, v, side = c("left", "right"))

Arguments

М	matrix
V	vector with entries forming a diagonal matrix matching the dimensions of ${\tt M}$ depending on the value of side
side	is the matrix M "left" or "right" multiplied by the diagonal matrix

Details

Naively multiplying by a diagonal matrix with p entries takes $\mathcal{O}(p^2)$, even though must values in the diagonal matrix are zero. R has built in syntax to scale *columns*, so diag(v) %*% M can be evaluated with v * M. This is often difficult to remember, hard to look up, and scaling *rows* requires t(t(M) * v). This is hard to read and write, and requires two transpose operations.

eclairs

Here, dmult() uses Rcpp to evaluate the right multiplication efficiently, and uses v * M for left multiplication. This gives good performance and readability.

In principle, the Rcpp code can be modified to use BLAS for better performance by treating a NumericMatrix as a C array. But this is not currently a bottleneck

Value

matrix product

Examples

```
# right multiply
# mat %*% diag(v)
n <- 30
p <- 20
mat <- matrix(n * p, n, p)</pre>
v <- rnorm(p)</pre>
A <- dmult(mat, v, side = "right")
B <- mat %*% diag(v)</pre>
range(A - B)
# left multiply
# diag(v) %*% mat
n <- 30
p <- 20
mat <- matrix(n * p, p, n)</pre>
v <- rnorm(p)</pre>
A <- dmult(mat, v, side = "left")
B <- diag(v) %*% mat
range(A - B)
```

```
eclairs
```

Estimate covariance/correlation with low rank and shrinkage

Description

Estimate the covariance/correlation between columns as the weighted sum of a low rank matrix and a scaled identity matrix. The weight acts to shrink the sample correlation matrix towards the identity matrix or the sample covariance matrix towards a scaled identity matrix with constant variance. An estimate of this form is useful because it is fast, and enables fast operations downstream. The method is based on the Gaussian Inverse Wishart Empirical Bayes (GIW-EB) model.

Usage

eclairs(X, k,

eclairs

```
lambda = NULL,
compute = c("covariance", "correlation"),
n.samples = nrow(X)
)
```

Arguments

Х	data matrix with n samples as rows and p features as columns
k	the rank of the low rank component
lambda	shrinkage parameter. If not specified, it is estimated from the data.
compute	evaluate either the "covariance" or "correlation" of X
n.samples	number of samples data is from. Usually nrow(X), but can be other values in special cases.

Details

Compute U, d^2 to approximate the correlation matrix between columns of data matrix X by $U diag(d^2(1-\lambda))U^T + I\nu\lambda$. When computing the covariance matrix, scale by the standard deviation of each feature.

Value

eclairs object storing:

U: orthonormal matrix with k columns representing the low rank component

dSq: eigen-values so that $U diag(d^2) U^T$ is the low rank component

lambda: shrinkage parameter λ for the scaled diagonal component

sigma: standard deviations of input columns

nu: diagonal value, ν , of target matrix in shrinkage

n: number of samples (i.e. rows) in the original data

p: number of features (i.e. columns) in the original data

k: rank of low rank component

rownames: sample names from the original matrix

colnames: features names from the original matrix

method: method used for decomposition

call: the function call

Examples

```
library(Rfast)
```

```
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
```

10

eclairs-class

```
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition: covariance
ecl <- eclairs(Y, compute = "covariance")
ecl
# eclairs decomposition: correlation
ecl <- eclairs(Y, compute = "correlation")
ecl</pre>
```

eclairs-class Class eclairs

Description

Class eclairs

Details

Object storing:

U: orthonormal matrix with k columns representing the low rank component

dSq: eigen-values so that $U diag(d^2) U^T$ is the low rank component

lambda: shrinkage parameter λ for the scaled diagonal component

sigma: standard deviations of input columns

nu: diagonal value, ν , of target matrix in shrinkage

n: number of samples (i.e. rows) in the original data

p: number of features (i.e. columns) in the original data

k: rank of low rank component

rownames: sample names from the original matrix

colnames: features names from the original matrix

method: method used for decomposition

call: the function call

eclairs_corMat

Description

Estimate covariance/correlation with low rank and shrinkage from the correlation matrix

Usage

```
eclairs_corMat(C, n, k = min(n, nrow(C)), lambda = NULL)
```

Arguments

C	sample correlation matrix between features
n	number of samples used to estimate the sample correlation matrix
k	the rank of the low rank component. Defaults to min of sample size and feature number, min(n, p).
lambda	shrinkage parameter. If not specified, it is estimated from the data.

Value

eclairs object storing:

U: orthonormal matrix with k columns representing the low rank component
dSq: eigen-values so that Udiag(d²)U^T is the low rank component
lambda: shrinkage parameter λ for the scaled diagonal component
sigma: standard deviations of input columns
nu: diagonal value, ν, of target matrix in shrinkage
n: number of samples (i.e. rows) in the original data
p: number of features (i.e. columns) in the original data
k: rank of low rank component
rownames: sample names from the original matrix
colnames: features names from the original matrix
method: method used for decomposition
call: the function call

eclairs_sq

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", 1:n)
colnames(Y) <- paste0("gene_", 1:p)
# eclairs decomposition
eclairs(Y, compute = "correlation")
# eclairs decomposition from correlation matrix
eclairs_corMat(cor(Y), n = n)</pre>
```

eclairs_sq

Compute eclairs decomp of squared correlation matrix

Description

Given the eclairs decomp of C, compute the eclairs decomp of C^2

Usage

```
eclairs_sq(ecl, rank1 = ecl$k, rank2 = Inf, varianceFraction = 1)
```

Arguments

ecl	estimate of correlation matrix from eclairs() storing U, d_1^2, λ and $ u$
rank1	use the first 'rank' singular vectors from the SVD. Using increasing rank1 will increase the accuracy of the estimation. But note that the computationaly complexity is O(P choose(rank, 2)), where P is the number of features in the dataset
rank2	rank of eclairs() decomposition returned
varianceFraction	

fraction of variance to retain after truncating trailing eigen values

Details

Consider a data matrix X_{NxP} of P features and N samples where $N \ll P$. Let the columns of X be scaled so that $C_{PxP} = XX^T$. C is often too big to compute directly since it is O(P^2) and O(P^3) to invert. But we can compute the SVD of X in O(PN^2). The goal is to compute the SVD of the matrix C^2, given only the SVD of C in less than $O(P^2)$ time. Here we compute this SVD

of C² in $O(PN^4)$ time, which is tractible for small N. Moreover, if we use an SVD X = UDV^T with of rank R, we can approximate the SVD of C² in O(PR⁴) using only D and V

Value

compute the eclairs of C^2

Examples

```
# Compute correlations directly and using eclairs decomp
n <- 600 # number of samples</pre>
p <- 100 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# draw data from correlation matrix Sigma
Y <- Rfast::rmvnorm(n, rep(0, p), sigma = Sigma, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))</pre>
colnames(Y) <- paste0("gene_", seq(p))</pre>
# correlation computed directly
C <- cor(Y)
# correlation from eclairs decomposition
ecl <- eclairs(Y, compute = "cor")</pre>
C.eclairs <- getCor(ecl, lambda = 0)</pre>
all.equal(C, C.eclairs)
# Correlation of Y^2
#-----
# exact quadratic way
C <- 2 * cor(Y)^2
# faster low rank
ecl2 <- eclairs_sq(ecl)</pre>
C.eclairs <- 2 * getCor(ecl2, lambda = 0)
all.equal(C.eclairs, C)
```

fastcca-class Class fastcca

Description

Class fastcca

getCov

Details

Object storing:

n.comp: number of canonical components
cors: canonical correlations
x.coefs: canonical coefficients for X
x.vars: canonical variates for X
y.coefs: canonical coefficients for Y
y.vars: canonical variates for Y
lambdas: shrinkage parameters from eclairs

getCov

Get full covariance/correlation matrix from eclairs

Description

Get full covariance/correlation matrix from eclairs decomposition

Usage

```
getCov(ecl, lambda, ...)
getCor(ecl, lambda, ...)
## S4 method for signature 'eclairs'
getCov(ecl, lambda, ...)
## S4 method for signature 'eclairs'
```

getCor(ecl, lambda, ...)

Arguments

ecl	eclairs decomposition
lambda	shrinkage parameter for the convex combination.
	other arguments

Details

The full matrix is computationally expensive to compute and uses a lot of memory for large p. So it is better to use decorrelate or mult_eclairs to perform projections in O(np) time.

Value

p x p covariance/correlation matrix

Examples

library(Rfast)

```
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition
ecl <- eclairs(Y)
# extract covariance implied by eclairs decomposition
getCov(ecl)[1:3, 1:3]
```

getShrinkageParams Estimate shrinkage parameter by empirical Bayes

Description

Estimate shrinkage parameter by empirical Bayes

Usage

```
getShrinkageParams(ecl, k = ecl$k, minimum = 1e-04, lambda = NULL)
```

Arguments

ecl	eclairs() decomposition
k	number of singular vectors to use
minimum	minimum value of lambda
lambda	(default: NULL) If NULL, estimate lambda from data. Else evaluate logML using specified lambda value.

Details

Estimate shrinkage parameter for covariance matrix estimation using empirical Bayes method (Hannart and Naveau, 2014; Leday and Richardson 2019). The shrinage estimate of the covariance matrix is $(1 - \lambda)\hat{\Sigma} + \lambda\nu I$, where $\hat{\Sigma}$ is the sample covariance matrix, given a value of λ . A large value of λ indicates more weight on the prior.

16

Value

value λ and ν indicating the shrinkage between sample and prior covariance matrices.

References

Hannart, A., & Naveau, P. (2014). Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework. Journal of Multivariate Analysis, 131, 149-162.

Leday, G. G., & Richardson, S. (2019). Fast Bayesian inference in large Gaussian graphical models. Biometrics, 75(4), 1288-1298.

Examples

library(Rfast)

```
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition: covariance
ecl <- eclairs(Y, compute = "correlation")
# For full SVD
getShrinkageParams(ecl)
# For truncated SVD at k = 20
```

getShrinkageParams(ecl, k = 20)

getWhiteningMatrix Get whitening matrix

Description

Get whitening matrix implied by eclairs decompostion

Usage

getWhiteningMatrix(ecl, lambda)

Arguments

ecl	estimate of covariance/correlation matrix from eclairs storing U, d_1^2, λ and ν
lambda	specify lambda and override value from ecl

Value

whitening matrix

Examples

```
library(Rfast)
n <- 2000
p <- 3
Y <- matrnorm(n, p, seed = 1) * 10
# decorrelate with implicit whitening matrix
# give same result as explicity whitening matrix
ecl <- eclairs(Y, compute = "covariance")
# get explicit whitening matrix
W <- getWhiteningMatrix(ecl)
# apply explicit whitening matrix
Z1 <- tcrossprod(Y, W)
# use implicit whitening matrix
Z2 <- decorrelate(Y, ecl)
range(Z1 - Z2)
```

kappa,eclairs-method Compute condition number

Description

Compute condition number of matrix from eclairs decomposition

Usage

S4 method for signature 'eclairs'
kappa(z, lambda = NULL)

Arguments

Z	eclairs() decomposition
lambda	specify lambda to override value from z

lm_each_eclairs

Value

condition number of the correlation matrix. If z is a covariance matrix, kappa is only computed for the correlation component

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition
ecl <- eclairs(Y, compute = "correlation")
# compute condition number
kappa(ecl)</pre>
```

lm_each_eclairs Fit linear model on each feature after decorrelating

Description

Fit linear model on each feature after applying decorrelation projection to response and predictors.

Usage

```
lm_each_eclairs(
   formula,
   data,
   X,
   ecl,
   subset,
   weights,
   na.action,
   method = "qr",
   model = TRUE,
   x = FALSE,
   y = FALSE,
   qr = TRUE,
```

```
singular.ok = TRUE,
contrasts = NULL,
offset,
...
```

Arguments

formula	an object of class 'formula' (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data	a matrix or data.frame containing the variables in the model
Х	matrix or data.frame where each column stores a predictor to be evaluated by the regression model one at a time. The i^{th} model includes X[,i] as a predictor.
ecl	estimate of covariance/correlation matrix from eclairs storing U, d_1^2, λ and ν
subset	same as for lm
weights	same as for lm
na.action	same as for lm
method	same as for lm
model	same as for lm
x	same as for lm
У	same as for lm
qr	same as for lm
singular.ok	same as for lm
contrasts	same as for lm
offset	same as for lm
	other arguments passed to lm()

Value

data.frame with columns beta, se, tsat, pvalue storing results for regression model fit for each feature

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)</pre>
```

lm_eclairs

```
# eclairs decomposition
ecl <- eclairs(Y)</pre>
# simulate covariates
data <- data.frame(matrnorm(p, 2, seed = 1))</pre>
colnames(data) <- paste0("v", 1:2)</pre>
# simulate response
y <- rnorm(p)</pre>
# Simulate 1000 features to test
X <- matrnorm(p, 1000, seed = 1)
colnames(X) <- paste0("set_", seq(ncol(X)))</pre>
# Use linear model to test each feature stored as columns in X
res <- lm_each_eclairs(y ~ v1 + v2, data, X, ecl)</pre>
head(res)
# Analysis after non-linear transform
#-----
# Apply function to transforme data
f <- function(x) log(x^2 + 0.001)
# evaluate covariance of transformed data
ecl_transform <- cov_transform(ecl, f, 100)</pre>
# Use linear model to test each feature stored as columns in X
# in data transformed by f()
res2 <- lm_each_eclairs(f(y) ~ v1 + v2, data, X, ecl_transform)</pre>
head(res)
```

```
lm_eclairs
```

Fit linear model after decorrelating

Description

Fit linear model after applying decorrelation projection to response and predictors.

Usage

```
lm_eclairs(
   formula,
   data,
   ecl,
   subset,
   weights,
```

```
na.action,
method = "qr",
model = TRUE,
x = FALSE,
y = FALSE,
qr = TRUE,
singular.ok = TRUE,
contrasts = NULL,
offset,
....)
```

Arguments

formula	an object of class 'formula' (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data	a matrix or data.frame containing the variables in the model
ecl	estimate of covariance/correlation matrix from eclairs storing U,d_1^2,λ and ν
subset	same as for lm
weights	same as for lm
na.action	same as for lm
method	same as for lm
model	same as for lm
x	same as for lm
У	same as for lm
qr	same as for lm
singular.ok	same as for lm
contrasts	same as for lm
offset	same as for lm
	same as for lm

Details

This function fit a linear regression to the transformed response, and transformed design matrix. Note that the design matrix, not just the data.frame of variables is transformed so that 1) factors are transformed and 2) the intercept term is transformed.

Value

Object of class 1m returned by function 1m

22

logDet

Examples

```
library(Rfast)
n <- 800 # number of samples</pre>
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)</pre>
# simulate covariates
data <- data.frame(matrnorm(p, 2, seed = 1))</pre>
colnames(data) <- paste0("v", 1:2)</pre>
# simulate response
y <- rnorm(p)</pre>
# fit linear model on transformed data
lm_eclairs(y ~ v1 + v2, data, ecl)
```

logDet

Evaluate the log determinant

Description

Evaluate the log determinant of the matrix

Usage

```
logDet(ecl, alpha = 1)
```

Arguments

ecl	estimate of covariance/correlation matrix from eclairs() storing U,d_1^2,λ and
	ν
alpha	exponent to be applied to eigen-values

Value

log determinant

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))
colnames(Y) <- paste0("gene_", seq(p))
# eclairs decomposition
ecl <- eclairs(Y)
logDet(ecl)</pre>
```

mahalanobisDistance Mahalanobis Distance

Description

Mahalanobis Distance using eclairs() decomposition

Usage

```
mahalanobisDistance(ecl, X, lambda, center = FALSE)
```

Arguments

ecl	estimate of covariance/correlation matrix from eclairs storing U, d_1^2, λ and ν
Х	data matrix
lambda	specify lambda and override value from 'ecl'
center	logical: should columns be centered internally

Details

Evaluate quadratic form $(X - \mu)^T \Sigma^{-1} (X - \mu)$ where covariance is estimated from finite sample

Value

array of distances

24

mult_eclairs

Examples

```
library(Rfast)
n <- 800 # number of samples</pre>
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)</pre>
# Mahalanobis distance after mean centering
Y_center <- scale(Y, scale = FALSE)</pre>
mu <- colMeans(Y)</pre>
# Standard R method
a <- mahalanobis(Y, mu, cov = cov(Y))</pre>
# distance using eclairs decomposition, no shrinage
b <- mahalanobisDistance(ecl, Y_center, lambda = 0)</pre>
range(a - b)
# with shrinkage
d <- mahalanobisDistance(ecl, Y_center)</pre>
# centering internally
e <- mahalanobisDistance(ecl, Y, center = TRUE)</pre>
range(d - e)
#
```

mult_eclairs Multiply by eclairs matrix

Description

Multiply by eclairs matrix using special structure to achieve linear instead of cubic time complexity.

Usage

mult_eclairs(X, U1, dSq1, lambda, nu, alpha, sigma, transpose = FALSE)

Arguments

X	matrix to be transformed so *columns* are independent
J1	orthonormal matrix with k columns representing the low rank component

dSq1	eigen values so that $U_1 diag(d_1^2) U_1^T$ is the low rank component
lambda	shrinkage parameter for the convex combination.
nu	diagonal value of target matrix in shrinkage
alpha	exponent to be evaluated
sigma	standard deviation of each feature
transpose	logical, (default FALSE) indicating if X should be transposed first

Details

Let $\Sigma = U_1 diag(d_1^2)U_1^T * (1 - \lambda) + diag(\nu\lambda, p)$, where λ shrinkage parameter for the convex combination between a low rank matrix and the diagonal matrix with values ν .

Evaluate $X\Sigma^{\alpha}$ using special structure of the eclairs decomposition in $O(k^2p)$ when there are k components in the decomposition.

Value

a matrix product

optimal_SVHT_coef Optimal Hard Threshold for Singular Values

Description

A function for the calculation of the coefficient determining optimal location of hard threshold for matrix denoising by singular values hard thresholding when noise level is known or unknown. Recreation of MATLAB code by Matan Gavish and David Donoho.

Usage

```
optimal_SVHT_coef(beta, sigma_known = FALSE)
```

Arguments

beta	A single value or a vector that represents aspect ratio m/n of the matrix to be
	denoised. 0 <beta<=1.< td=""></beta<=1.<>
sigma_known	A logical value. TRUE if noise level known, FALSE if unknown.

Value

Optimal location of hard threshold, up the median data singular value (sigma unknown) or up to sigma*sqrt(n) (sigma known); a vector of the same dimension as beta, where coef[i] is the coefficient corresponding to beta[i].

References

Gavish, M., & Donoho, D. L. (2014). The optimal hard threshold for singular values is 4/sqrt(3). IEEE Transactions on Information Theory, 60(8), 5040-5053.

plot, eclairs-method Plot eclairs object

Description

Plot eclairs object

Usage

S4 method for signature 'eclairs'
plot(x, y, ...)

Arguments

x	eclairs object
У	extra argument, not used
	additional arguments

Value

plot

quadForm Evaluate quadratic form

Description

Evaluate quadratic form

Usage

quadForm(ecl, A, alpha = -1/2)

Arguments

ecl	estimate of covariance/correlation matrix from eclairs storing U , d_1^2 , λ and ν
А	matrix
alpha	default = $-1/2$. Exponent of eigen-values

Details

Evaluate quadratic form $A^T \Sigma^{2\alpha} A$

Value

scalar value

Examples

```
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)
# return scalar
quadForm(ecl, Y[1, ])
# return matrix
quadForm(ecl, Y[1:2, ])</pre>
```

reform_decomp Recompute eclairs after dropping features

Description

Recompute eclairs after dropping features

Usage

```
reform_decomp(ecl, k = ecl$k, drop = NULL)
```

Arguments

ecl	covariance/correlation matrix as an eclairs object
k	the rank of the low rank component
drop	array of variable names to drop.

Details

Reform the dataset from the eclairs decomposition, drop features, then recompute the eclairs decomposition. If the original SVD/eigen was truncated, then the reconstruction of the original data will be approximate. Note that the target shrinkage matrix is the same as in ecl, so ν is not recomputed from the retained features.

Value

eclairs decomposition for a subset of features

28

rmvnorm_eclairs

Examples

```
library(Rfast)
n <- 800 # number of samples</pre>
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# draw data from correlation matrix Sigma
Y \leq rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
rownames(Y) <- paste0("sample_", seq(n))</pre>
colnames(Y) <- paste0("gene_", seq(p))</pre>
# Correlation
#-----
# eclairs decomposition
Sigma.eclairs <- eclairs(Y, compute = "correlation")</pre>
# features to drop
drop <- paste0("gene_", 1:100)</pre>
# Compute SVD on subset of eclairs decomposition
ecl1 <- reform_decomp(Sigma.eclairs, drop = drop)</pre>
ecl1
```

rmvnorm_eclairs Draw from multivariate normal and t distributions

Description

Draw from multivariate normal and t distributions using eclairs decomposition

Usage

```
rmvnorm_eclairs(n, mu, ecl, v = Inf, seed = NULL)
```

Arguments

n	sample size
mu	mean vector
ecl	covariance matrix as an eclairs object
v	degrees of freedom, defaults to Inf. If finite, uses a multivariate t distribution
seed	If you want the same to be generated again use a seed for the generator, an integer number

Details

Draw from multivariate normal and t distributions using eclairs decomposition. If the (implied) covariance matrix is $p \times p$, the standard approach is $O(p^3)$. Taking advantage of the previously computed eclairs decomposition of rank k, this can be done in $O(pk^2)$.

Value

matrix where rows are samples from multivariate normal or t distribution where columns have covariance specified by ecl

Examples

```
library(Rfast)
n <- 800 # number of samples</pre>
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)</pre>
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma, seed = 1)
# perform eclairs decomposition
ecl <- eclairs(Y)</pre>
# draw from multivariate normal
n <- 10000
mu <- rep(0, ncol(Y))</pre>
# using eclairs decomposition
X.draw1 <- rmvnorm_eclairs(n, mu, ecl)</pre>
# using full covariance matrix implied by eclairs model
X.draw2 <- rmvnorm(n, mu, getCov(ecl))</pre>
# assess difference betweeen covariances from two methods
range(cov(X.draw1) - cov(X.draw2))
# compare covariance to the covariance matrix used to simulated the data
range(cov(X.draw1) - getCov(ecl))
```

sv_threshold

Singular value thresholding

Description

Singular value thresholding evaluates the optimal number of singular values to retain

whiten

Usage

sv_threshold(n, p, d)

Arguments

n	number of samples
р	number of features
d	singular values

Value

Number of singular values to retain

References

Gavish, M., & Donoho, D. L. (2014). The optimal hard threshold for singular values is 4/sqrt(3). IEEE Transactions on Information Theory, 60(8), 5040-5053.

Examples

```
# simulate data
n <- 500
p <- 5000
Y <- Rfast::matrnorm(n, p, seed = 1)
# SVD
dcmp <- svd(Y)
# how many components to retain
sv_threshold(n, p, dcmp$d)
# in this case the data has no structure, so no components are retained</pre>
```

whiten

Decorrelation projection + eclairs

Description

Efficient decorrelation projection using eclairs decomposition

Usage

whiten(X, k = ncol(X), lambda = NULL)

whiten

Arguments

Х	matrix to be transformed so *columns* are independent
k	the rank of the low rank component
lambda	specify lambda and override value estimated by eclairs()

Value

data rotated and scaled according to the regularized sample covariance of the input data

Examples

library(Rfast)

```
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)
# whitened Y
Y.transform <- decorrelate(Y, ecl)
# Combine eclairs and decorrelate into one step
```

```
Y.transform2 <- whiten(Y)
```

Index

autocorr.mat, 2 averageCorr, 3 averageCorrSq (averageCorr), 3 cov_transform, 5 decorrelate, 7, 15 dmult,8 eclairs, 5-7, 9, 10, 12, 15, 17, 18, 20, 22, 25, 26, 28, 29 eclairs-class, 11 eclairs_corMat, 12 eclairs_sq, 13 effVariance (averageCorr), 3 fastcca-class, 14 getCor (getCov), 15 getCor,eclairs-method(getCov), 15 getCov, 15 getCov,eclairs-method(getCov), 15 getShrinkageParams, 16 getWhiteningMatrix, 17 kappa,eclairs-method, 18 lm, 20, 22 lm_each_eclairs, 19 lm_eclairs, 21 logDet, 23 mahalanobisDistance, 24 mult_eclairs, 15, 25 optimal_SVHT_coef, 26 plot, eclairs-method, 27 quadForm, 27 reform_decomp, 28

rmvnorm_eclairs, 29

sumInverseCorr (averageCorr), 3
sv_threshold, 30

tr (averageCorr), 3

whiten, 31