fdaoutlier: Outlier Detection Tools for Functional Data Analysis
A collection of functions for outlier detection in functional data analysis. 
  Methods implemented include directional outlyingness by 
  Dai and Genton (2019) <doi:10.1016/j.csda.2018.03.017>,
  MS-plot by Dai and Genton (2018) <doi:10.1080/10618600.2018.1473781>,
  total variation depth and modified shape similarity index by 
  Huang and Sun (2019) <doi:10.1080/00401706.2019.1574241>, and sequential transformations by
  Dai et al. (2020) <doi:10.1016/j.csda.2020.106960 among others. Additional outlier detection
  tools and depths for functional data like functional boxplot, (modified) band depth etc.,
  are also available. 
| Version: | 
0.2.1 | 
| Depends: | 
R (≥ 2.10) | 
| Imports: | 
MASS | 
| Suggests: | 
testthat (≥ 2.1.0), covr, spelling, knitr, rmarkdown | 
| Published: | 
2023-09-30 | 
| DOI: | 
10.32614/CRAN.package.fdaoutlier | 
| Author: | 
Oluwasegun Taiwo Ojo
      [aut, cre,
    cph],
  Rosa Elvira Lillo [aut],
  Antonio Fernandez Anta [aut, fnd] | 
| Maintainer: | 
Oluwasegun Taiwo Ojo  <seguntaiwoojo at gmail.com> | 
| BugReports: | 
https://github.com/otsegun/fdaoutlier/issues | 
| License: | 
GPL-3 | 
| URL: | 
https://github.com/otsegun/fdaoutlier | 
| NeedsCompilation: | 
yes | 
| Language: | 
en-US | 
| Materials: | 
README, NEWS  | 
| In views: | 
AnomalyDetection, FunctionalData | 
| CRAN checks: | 
fdaoutlier results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=fdaoutlier
to link to this page.