| Title: | Information-Theoretic Measure of Causality | 
| Version: | 1.0 | 
| Description: | Methods for quantifying temporal and spatial causality through information flow, and decomposing it into unique, redundant, and synergistic components, following the framework described in Martinez-Sanchez et al. (2024) <doi:10.1038/s41467-024-53373-4>. | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.3 | 
| URL: | https://stscl.github.io/infocausality/, https://github.com/stscl/infocausality | 
| BugReports: | https://github.com/stscl/infocausality/issues | 
| Depends: | R (≥ 4.1.0) | 
| LinkingTo: | Rcpp | 
| Imports: | methods, reticulate (≥ 1.41.0), sdsfun, sf, terra | 
| Suggests: | gdverse, ggplot2, knitr, Rcpp, rmarkdown, spEDM, tEDM | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | yes | 
| Packaged: | 2025-10-29 11:25:13 UTC; 31809 | 
| Author: | Wenbo Lv  | 
| Maintainer: | Wenbo Lv <lyu.geosocial@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-11-03 18:30:08 UTC | 
synergistic-unique-redundant decomposition of causality
Description
synergistic-unique-redundant decomposition of causality
Usage
## S4 method for signature 'data.frame'
surd(
  data,
  target,
  agents,
  lag = 1,
  bin = 5,
  max.combs = NULL,
  cores = 1,
  backend = "threading"
)
## S4 method for signature 'sf'
surd(
  data,
  target,
  agents,
  lag = 1,
  bin = 5,
  max.combs = NULL,
  cores = 1,
  backend = "threading",
  nb = NULL
)
## S4 method for signature 'SpatRaster'
surd(
  data,
  target,
  agents,
  lag = 1,
  bin = 5,
  max.combs = NULL,
  cores = 1,
  backend = "threading"
)
Arguments
data | 
 observation data.  | 
target | 
 name of the target variable.  | 
agents | 
 names of agent variables.  | 
lag | 
 (optional) lag order.  | 
bin | 
 (optional) number of discretization bins.  | 
max.combs | 
 (optional) maximum combination order. If   | 
cores | 
 (optional) number of cores for parallel computation.  | 
backend | 
 (optional)   | 
nb | 
 (optional) neighbours list.  | 
Value
A list.
- unique
 Unique information contributions per variable.
- synergistic
 Synergistic information components by agent combinations.
- redundant
 Redundant information shared by agent subsets.
- mutual_info
 Mutual information measures for each combination.
- info_leak
 Information leak ratio.
References
Martinez-Sanchez, A., Arranz, G. & Lozano-Duran, A. Decomposing causality into its synergistic, unique, and redundant components. Nat Commun 15, 9296 (2024).
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
tryCatch(
  surd(columbus, "hoval", c("inc", "crime")),
  error = \(e) message("Skipping Python-dependent example: ", e$message)
)