mRMRe: Parallelized Minimum Redundancy, Maximum Relevance (mRMR)
Computes mutual information matrices from continuous, categorical 
  and survival variables, as well as feature selection with minimum redundancy, 
  maximum relevance (mRMR) and a new ensemble mRMR technique. Published in
  De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>.
| Version: | 2.1.2.2 | 
| Depends: | R (≥ 3.5), survival, igraph, methods | 
| Published: | 2024-11-05 | 
| DOI: | 10.32614/CRAN.package.mRMRe | 
| Author: | Nicolas De Jay [aut],
  Simon Papillon-Cavanagh [aut],
  Catharina Olsen [aut],
  Gianluca Bontempi [aut],
  Bo Li [aut],
  Christopher Eeles [ctb],
  Benjamin Haibe-Kains [aut, cre] | 
| Maintainer: | Benjamin Haibe-Kains  <benjamin.haibe.kains at utoronto.ca> | 
| License: | Artistic-2.0 | 
| URL: | https://www.pmgenomics.ca/bhklab/ | 
| NeedsCompilation: | yes | 
| Citation: | mRMRe citation info | 
| CRAN checks: | mRMRe results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=mRMRe
to link to this page.