Specify rate models of \(N_1(t)\).
Under simple randomization we can estimate the rate Cox model
Under two-stage randomization we can estimate the rate Cox model
Starting point is that Cox’s partial likelihood score can be used for estimating parameters \[\begin{align*} U(\beta) & = \int (A(t) - e(t)) dN_1(t) \end{align*}\] where \(A(t)\) is the combined treatments over time.
The estimator can be agumented in different ways using additional
covariates at the time of randomization and a censoring augmentation.
The solved estimating eqution is \[\begin{align*}
\sum_i U_i - AUG_0 - AUG_1 + AUG_C = 0
\end{align*}\] using the covariates from augmentR0 to augment
with \[\begin{align*}
AUG_0 = ( A_0 - \pi_0(X_0) ) X_0 \gamma_0
\end{align*}\] where possibly \(P(A_0=1|X_0)=\pi_0(X_0)\) but does not
depend on covariates under randomization, and furhter using the
covariates from augmentR1, to augment with R indiciating that the
randomization takes place or not, \[\begin{align*}
AUG_1 = R ( A_1 - \pi_1(X_1)) X_1 \gamma_1
\end{align*}\] and the dynamic censoring augmenting
\[\begin{align*}
AUG_C = \int_0^t \gamma_c(s)^T (e(s) - \bar e(s)) \frac{1}{G_c(s) }
dM_c(s)
\end{align*}\] where \(\gamma_c(s)\) is chosen to minimize the
variance given the dynamic covariates specified by augmentC.
The propensity score models are always estimated unless it is requested to use some fixed number \(\pi_0=1/2\) for example, but always better to be adaptive and estimate \(\pi_0\). Also \(\gamma_0\) and \(\gamma_1\) are estimated to reduce variance of \(U_i\).
Standard errors are estimated using the influence function of all estimators and tests of differences can therefore be computed subsequently.
The times of randomization is specified by
Data must be given on start,stop,status survival format with
The phreg_rct can be used for counting process style data, and thus covers situations with
and will in all cases compute augmentations
library(mets)
set.seed(100)
## Lu, Tsiatis simulation
data <- mets:::simLT(0.7,100)
dfactor(data) <- Z.f~Z
out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X)
summary(out)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-Z.f1 0.29263400 0.2739159 -0.2442313 0.8294993 0.2853693
#> R0_C:Z.f1 0.07166242 0.2234066 -0.3662065 0.5095313 0.7483838
#> R0_dynC:Z.f1 0.08321604 0.2221710 -0.3522312 0.5186633 0.7079889
#> attr(,"class")
#> [1] "summary.phreg_rct"
###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~X)
###out <- phreg_rct(Surv(time,status)~Z.f,data=data,augmentR0=~X,augmentC=~factor(Z):X,cens.model=~+1)
Results consitent with speff of library(speff2trial)
###library(speff2trial)
library(mets)
data(ACTG175)
###
data <- ACTG175[ACTG175$arms==0 | ACTG175$arms==1, ]
data <- na.omit(data[,c("days","cens","arms","strat","cd40","cd80","age")])
data$days <- data$days+runif(nrow(data))*0.01
dfactor(data) <- arms.f~arms
notrun <- 1
if (notrun==0) {
fit1 <- speffSurv(Surv(days,cens)~cd40+cd80+age,data=data,trt.id="arms",fixed=TRUE)
summary(fit1)
}
#
# Treatment effect
# Log HR SE LowerCI UpperCI p
# Prop Haz -0.70375 0.12352 -0.94584 -0.46165 1.2162e-08
# Speff -0.72430 0.12051 -0.96050 -0.48810 1.8533e-09
out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~cd40+cd80+age,augmentC=~cd40+cd80+age)
summary(out)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-arms.f1 -0.7036460 0.1224406 -0.9436251 -0.4636669 9.092786e-09
#> R0_C:arms.f1 -0.7265342 0.1197607 -0.9612610 -0.4918075 1.306891e-09
#> R0_dynC:arms.f1 -0.7204699 0.1196158 -0.9549125 -0.4860272 1.710025e-09
#> attr(,"class")
#> [1] "summary.phreg_rct"
The study is actually block-randomized according (?) so the standard should be computed with an adjustment that is equivalent to augmenting with this block as factor
dtable(data,~strat+arms)
#>
#> arms 0 1
#> strat
#> 1 223 213
#> 2 96 106
#> 3 213 203
dfactor(data) <- strat.f~strat
out <- phreg_rct(Surv(days,cens)~arms.f,data=data,augmentR0=~strat.f)
summary(out)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-arms.f1 -0.7036460 0.1224406 -0.9436251 -0.4636669 9.092786e-09
#> R0_none:arms.f1 -0.7009844 0.1217138 -0.9395390 -0.4624298 8.447051e-09
#> attr(,"class")
#> [1] "summary.phreg_rct"
We here illustrate some analysis of one SMART conducted by Cancer and Leukemia Group B Protocol 8923 (CALGB 8923), Stone and others (2001). 388 patients were randomized to an initial treatment of GM-CSF (A1 ) or standard chemotherapy (A2 ). Patients with complete remission and informed consent to second stage were then re-randomized to only cytarabine (B1 ) or cytarabine plus mitoxantrone (B2 ).
We first compute the weighted risk-set estimator based on estimated weights \[\begin{align*} \Lambda_{A1,B1}(t) & = \sum_i \int_0^t \frac{w_i(s)}{Y^w(s)} dN_i(s) \end{align*}\] where \(w_i(s) = I(A0_i=A1) + (t>T_R) I(A1_i=B1)/\pi_1(X_i)\), that is 1 when you start on treatment \(A1\) and then for those that changes to \(B1\) at time \(T_R\) then is scaled up with the proportion doing this. This is equivalent to the IPTW (inverse probability of treatment weighted estimator). We estimate the treatment regimes \(A1, B1\) and \(A2, B1\) by letting \(A10\) indicate those that are consistent with ending on \(B1\). \(A10\) then starts being \(1\) and becomes \(0\) if the subject is treated with \(B2\), but stays \(1\) if the subject is treated with \(B1\). We can then look at the two strata where \(A0=0,A10=1\) and \(A0=1,A10=1\). Similary, for those that end being consistent with \(B2\). Thus defining \(A11\) to start being \(1\), then stays \(1\) if \(B2\) is taken, and becomes \(0\) if the second randomization is \(B1\).
We here use the propensity score model \(P(A1=B1|A0)\) that uses the observed frequencies on arm \(B1\) among those starting out on either \(A1\) or \(A2\).
data(calgb8923)
calgt <- calgb8923
tm=At.f~factor(Count2)+age+sex+wbc
tm=At.f~factor(Count2)
tm=At.f~factor(Count2)*A0.f
head(calgt)
#> id V X Z TR R U delta stop age wbc sex race time status start
#> 1 1 0 0 0 0.00 0 13.33 1 13.33 64 128.0 1 1 13.338219 1 0.00
#> 2 2 1 1 0 0.00 0 17.80 1 17.80 71 4.3 2 1 17.802995 1 0.00
#> 3 3 1 0 0 0.00 0 1.27 1 1.27 71 43.6 2 1 1.271527 1 0.00
#> 4 4 1 0 1 0.00 0 24.77 1 24.77 63 72.3 2 1 0.730000 2 0.00
#> 5 4 1 0 1 0.73 1 24.77 1 24.77 63 72.3 2 1 24.772515 1 0.73
#> 6 5 0 1 0 0.00 0 10.37 1 10.37 65 1.4 1 1 10.374479 1 0.00
#> A0.f A0 A1 A11 A12 A1.f A10 At.f lbnr__id Count1 Count2 consent trt2 trt1
#> 1 0 0 0 1 0 0 0 0 1 0 0 -1 -1 1
#> 2 1 1 0 1 0 0 0 1 1 0 0 -1 -1 2
#> 3 0 0 0 1 0 0 0 0 1 0 0 -1 -1 1
#> 4 0 0 0 1 0 0 0 0 1 0 0 -1 -1 1
#> 5 0 0 1 1 1 1 1 1 2 0 1 1 1 1
#> 6 1 1 0 1 0 0 0 1 1 0 0 -1 -1 2
ll0 <- phreg_IPTW(Event(start,time,status==1)~strata(A0,A10)+cluster(id),calgt,treat.model=tm)
pll0 <- predict(ll0,expand.grid(A0=0:1,A10=0,id=1))
ll1 <- phreg_IPTW(Event(start,time,status==1)~strata(A0,A11)+cluster(id),calgt,treat.model=tm)
pll1 <- predict(ll1,expand.grid(A0=0:1,A11=1,id=1))
plot(pll0,se=1,lwd=2,col=1:2,lty=1,xlab="time (months)",xlim=c(0,30))
plot(pll1,add=TRUE,col=3:4,se=1,lwd=2,lty=1,xlim=c(0,30))
abline(h=0.25)
legend("topright",c("A1B1","A2B1","A1B2","A2B2"),col=c(1,2,3,4),lty=1)
summary(pll1,times=1:10)
#> $pred
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.8022569 0.7119656 0.6675967 0.6471848 0.6369788 0.6164021 0.5770105
#> [2,] 0.8568499 0.7871414 0.7456444 0.7133504 0.6878999 0.6623719 0.6400970
#> [,8] [,9] [,10]
#> [1,] 0.5427705 0.5154506 0.5103024
#> [2,] 0.6109335 0.5646244 0.5543596
#>
#> $se.pred
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.02861524 0.03101141 0.03283701 0.03265187 0.03255301 0.03229413
#> [2,] 0.02491113 0.02819870 0.02918381 0.03134551 0.03175905 0.03205534
#> [,7] [,8] [,9] [,10]
#> [1,] 0.03387985 0.03486639 0.03785952 0.03806234
#> [2,] 0.03345603 0.03601502 0.03946837 0.03959668
#>
#> $lower
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.7480876 0.6537066 0.6062423 0.5862506 0.5762674 0.5562481 0.5142857
#> [2,] 0.8093900 0.7337687 0.6905840 0.6544855 0.6283866 0.6024322 0.5777713
#> [,8] [,9] [,10]
#> [1,] 0.4785606 0.4463411 0.4408982
#> [2,] 0.5442707 0.4923330 0.4819390
#>
#> $upper
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.8603486 0.7754168 0.7351604 0.7144523 0.7040864 0.6830613 0.6473856
#> [2,] 0.9070927 0.8443964 0.8050947 0.7775096 0.7530497 0.7282753 0.7091460
#> [,8] [,9] [,10]
#> [1,] 0.6155957 0.5952608 0.5906319
#> [2,] 0.6857613 0.6475306 0.6376627
#>
#> $times
#> [1] 1 2 3 4 5 6 7 8 9 10
#>
#> attr(,"class")
#> [1] "summarypredictrecreg"
summary(pll0,times=1:10)
#> $pred
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.8017327 0.7008265 0.6523029 0.6158134 0.5923768 0.5659830 0.5329907
#> [2,] 0.8560743 0.7740713 0.7153512 0.6690102 0.6272139 0.5642496 0.5412531
#> [,8] [,9] [,10]
#> [1,] 0.4856035 0.4751084 0.4580125
#> [2,] 0.5244200 0.5014231 0.4784263
#>
#> $se.pred
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.02874374 0.03363964 0.03593932 0.03745772 0.03849765 0.03905568
#> [2,] 0.02508408 0.03053222 0.03382459 0.03662354 0.03831324 0.04083119
#> [,7] [,8] [,9] [,10]
#> [1,] 0.03953451 0.04080406 0.04110910 0.04157512
#> [2,] 0.04145722 0.04203299 0.04238077 0.04269490
#>
#> $lower
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.7473298 0.6379004 0.5855331 0.5466050 0.5215305 0.4943860 0.4608737
#> [2,] 0.8082955 0.7164839 0.6520354 0.6009461 0.5564424 0.4896381 0.4658035
#> [,8] [,9] [,10]
#> [1,] 0.4118674 0.4009976 0.3833640
#> [2,] 0.4481818 0.4248738 0.4016554
#>
#> $upper
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 0.8600959 0.7699599 0.7266867 0.6937847 0.6728470 0.6479486 0.6163926
#> [2,] 0.9066774 0.8362873 0.7848152 0.7447834 0.7069865 0.6502305 0.6289239
#> [,8] [,9] [,10]
#> [1,] 0.5725404 0.5629159 0.5471966
#> [2,] 0.6136267 0.5917643 0.5698710
#>
#> $times
#> [1] 1 2 3 4 5 6 7 8 9 10
#>
#> attr(,"class")
#> [1] "summarypredictrecreg"
The propensity score mode can be extended to use covariates to get increased efficiency. Note also that the propensity scores for \(A0\) will cancel out in the different strata.
We now illustrate how to fit a Cox model of the form \[\begin{align*} & \lambda_{A0}(t) \exp( B1(t) \beta_1 + B2(t) \beta_2) \end{align*}\] where \(\beta_0\) is the effect of treatment \(A2\) and the effect of \(B1\)
Now comparing only those starting on A1/A2 to compare the effect of B1 versus B2
library(mets)
data(calgb8923)
calgt <- calgb8923
calgt$treatvar <- 1
## making time-dependent indicators of going to B1/B2
calgt$A10t <- calgt$A11t <- 0
calgt <- dtransform(calgt,A10t=1,A1==0 & Count2==1)
calgt <- dtransform(calgt,A11t=1,A1==1 & Count2==1)
calgt0 <- subset(calgt,A0==0)
ss0 <- phreg_rct(Event(start,time,status)~A10t+A11t+cluster(id),data=subset(calgt,A0==0),
typesR=c("non","R1"),typesC=c("non","dynC"),
treat.var="treatvar",treat.model=At.f~factor(Count2),
augmentR1=~age+wbc+sex+TR,augmentC=~age+wbc+sex+TR+Count2)
summary(ss0)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-A10t -1.570250 0.2433389 -2.047185 -1.0933143 1.097054e-10
#> Marginal-A11t -1.407287 0.2193924 -1.837289 -0.9772861 1.413090e-10
#> non_dynC:A10t -1.583146 0.2418997 -2.057260 -1.1090311 5.963963e-11
#> non_dynC:A11t -1.406682 0.2190539 -1.836020 -0.9773442 1.348264e-10
#> R1_non:A10t -1.544312 0.2396152 -2.013949 -1.0746751 1.156250e-10
#> R1_non:A11t -1.423064 0.2087465 -1.832199 -1.0139282 9.284039e-12
#> R1_dynC:A10t -1.557021 0.2381534 -2.023793 -1.0902486 6.239330e-11
#> R1_dynC:A11t -1.422360 0.2083906 -1.830798 -1.0139218 8.764919e-12
#> attr(,"class")
#> [1] "summary.phreg_rct"
ss1 <- phreg_rct(Event(start,time,status)~A10t+A11t+cluster(id),data=subset(calgt,A0==1),
typesR=c("non","R1"),typesC=c("non","dynC"),
treat.var="treatvar",treat.model=At.f~factor(Count2),
augmentR1=~age+wbc+sex+TR,augmentC=~age+wbc+sex+TR+Count2)
summary(ss1)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-A10t -0.8968608 0.2312067 -1.350018 -0.4437039 1.048683e-04
#> Marginal-A11t -0.9754528 0.2215523 -1.409687 -0.5412181 1.068580e-05
#> non_dynC:A10t -0.8312901 0.2263294 -1.274888 -0.3876925 2.397942e-04
#> non_dynC:A11t -1.0165973 0.2211108 -1.449967 -0.5832280 4.272177e-06
#> R1_non:A10t -0.9310307 0.2299136 -1.381653 -0.4804083 5.133147e-05
#> R1_non:A11t -0.9361199 0.2204289 -1.368153 -0.5040872 2.168342e-05
#> R1_dynC:A10t -0.8634407 0.2250083 -1.304449 -0.4224326 1.243576e-04
#> R1_dynC:A11t -0.9753885 0.2199851 -1.406551 -0.5442256 9.255029e-06
#> attr(,"class")
#> [1] "summary.phreg_rct"
and a more structured model with both A0 and A1, that does not seem very reasonable based on the above,
Recurrents events simulation with death and censoring.
n <- 1000
beta <- 0.15;
data(base1cumhaz)
data(base4cumhaz)
data(drcumhaz)
dr <- scalecumhaz(drcumhaz,1)
base1 <- scalecumhaz(base1cumhaz,1)
base4 <- scalecumhaz(base4cumhaz,0.5)
cens <- rbind(c(0,0),c(2000,0.5),c(5110,3))
ce <- 3; betao1 <- 0
varz <- 1; dep=4; X <- z <- rgamma(n,1/varz)*varz
Z0 <- NULL
px <- 0.5
if (betao1!=0) px <- lava::expit(betao1*X)
A0 <- rbinom(n,1,px)
r1 <- exp(A0*beta[1])
rd <- exp( A0 * 0.15)
rc <- exp( A0 * 0 )
###
rr <- mets:::simLUCox(n,base1,death.cumhaz=dr,r1=r1,Z0=X,dependence=dep,var.z=varz,cens=ce/5000)
rr$A0 <- A0[rr$id]
rr$z1 <- attr(rr,"z")[rr$id]
rr$lz1 <- log(rr$z1)
rr$X <- rr$lz1
rr$lX <- rr$z1
rr$statusD <- rr$status
rr <- dtransform(rr,statusD=2,death==1)
rr <- count.history(rr)
rr$Z <- rr$A0
data <- rr
data$Z.f <- as.factor(data$Z)
data$treattime <- 0
data <- dtransform(data,treattime=1,lbnr__id==1)
dlist(data,start+stop+statusD+A0+z1+treattime+Count1~id|id %in% c(4,5))
#> id: 4
#> start stop statusD A0 z1 treattime Count1
#> 4 0.000 9.565 1 0 0.471 1 0
#> 1003 9.565 372.057 1 0 0.471 0 1
#> 1468 372.057 389.831 0 0 0.471 0 2
#> ------------------------------------------------------------
#> id: 5
#> start stop statusD A0 z1 treattime Count1
#> 5 0 213.9 2 1 2.338 1 0
Now we fit the model
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data,
treat.var="treattime",typesR=c("non","R0"),typesC=c("non","C","dynC"),
augmentR0=~z1,augmentC=~z1+Count1)
summary(fit2)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-Z.f1 0.2870649 0.09632565 0.09827011 0.4758597 0.0028810700
#> non_C:Z.f1 0.2826049 0.09631924 0.09382262 0.4713871 0.0033457707
#> non_dynC:Z.f1 0.1926888 0.08864883 0.01894025 0.3664373 0.0297337758
#> R0_non:Z.f1 0.3110880 0.08049844 0.15331399 0.4688621 0.0001113067
#> R0_C:Z.f1 0.3066141 0.08049078 0.14885504 0.4643731 0.0001393570
#> R0_dynC:Z.f1 0.2164684 0.07113356 0.07704922 0.3558877 0.0023413376
#> attr(,"class")
#> [1] "summary.phreg_rct"
n <- 500
beta=c(0.3,0.3);betatr=0.3;betac=0;betao=0;betao1=0;ce=3;fixed=1;sim=1;dep=4;varz=1;ztr=0; ce <- 3
## take possible frailty
Z0 <- rgamma(n,1/varz)*varz
px0 <- 0.5; if (betao!=0) px0 <- expit(betao*Z0)
A0 <- rbinom(n,1,px0)
r1 <- exp(A0*beta[1])
#
px1 <- 0.5; if (betao1!=0) px1 <- expit(betao1*Z0)
A1 <- rbinom(n,1,px1)
r2 <- exp(A1*beta[2])
rtr <- exp(A0*betatr[1])
rr <- mets:::simLUCox(n,base1,death.cumhaz=dr,cumhaz2=base1,rtr=rtr,betatr=0.3,A0=A0,Z0=Z0,
r1=r1,r2=r2,dependence=dep,var.z=varz,cens=ce/5000,ztr=ztr)
rr$z1 <- attr(rr,"z")[rr$id]
rr$A1 <- A1[rr$id]
rr$A0 <- A0[rr$id]
rr$lz1 <- log(rr$z1)
rr <- count.history(rr)
rr$A1t <- 0
rr <- dtransform(rr,A1t=A1,Count2==1)
rr$At.f <- rr$A0
rr$A0.f <- factor(rr$A0)
rr$A1.f <- factor(rr$A1)
rr <- dtransform(rr, At.f = A1, Count2 == 1)
rr$At.f <- factor(rr$At.f)
dfactor(rr) <- A0.f~A0
rr$treattime <- 0
rr <- dtransform(rr,treattime=1,lbnr__id==1)
rr$lagCount2 <- dlag(rr$Count2)
rr <- dtransform(rr,treattime=1,Count2==1 & (Count2!=lagCount2))
dlist(rr,start+stop+statusD+A0+A1+A1t+At.f+Count2+z1+treattime+Count1~id|id %in% c(5,10))
#> id: 5
#> start stop statusD A0 A1 A1t At.f Count2 z1 treattime Count1
#> 5 0 132.3 3 1 1 0 1 0 0.2316 1 0
#> ------------------------------------------------------------
#> id: 10
#> start stop statusD A0 A1 A1t At.f Count2 z1 treattime Count1
#> 10 0.00 33.12 2 1 0 0 1 0 0.06891 1 0
#> 509 33.12 1363.53 0 1 0 0 0 1 0.06891 1 0
Now fitting the model and computing different augmentations (true values 0.3 and 0.3)
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr,
typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"),treat.var="treattime",
treat.model=At.f~factor(Count2),
augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t)
summary(sse)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-A0.f1 0.3179631 0.1418023 0.04003574 0.5958904 0.0249420566
#> Marginal-A1t 0.3290147 0.1472363 0.04043683 0.6175925 0.0254434247
#> non_C:A0.f1 0.3002782 0.1391490 0.02755115 0.5730053 0.0309308283
#> non_C:A1t 0.4151190 0.1405664 0.13961382 0.6906241 0.0031451130
#> non_dynC:A0.f1 0.3104992 0.1314476 0.05286660 0.5681318 0.0181692114
#> non_dynC:A1t 0.4374223 0.1300991 0.18243265 0.6924119 0.0007731772
#> R0_non:A0.f1 0.4142867 0.1176773 0.18364338 0.6449300 0.0004306830
#> R0_non:A1t 0.3382185 0.1470378 0.05002979 0.6264072 0.0214360247
#> R0_C:A0.f1 0.3962505 0.1144662 0.17190089 0.6206002 0.0005367253
#> R0_C:A1t 0.4242165 0.1403584 0.14911904 0.6993140 0.0025079567
#> R0_dynC:A0.f1 0.4066624 0.1049692 0.20092652 0.6123983 0.0001070147
#> R0_dynC:A1t 0.4464941 0.1298744 0.19194497 0.7010432 0.0005862621
#> R1_non:A0.f1 0.3269008 0.1416813 0.04921043 0.6045911 0.0210383383
#> R1_non:A1t 0.2104421 0.1254571 -0.03544923 0.4563335 0.0934636201
#> R1_C:A0.f1 0.3092275 0.1390258 0.03674199 0.5817130 0.0261319083
#> R1_C:A1t 0.2976811 0.1175580 0.06727171 0.5280905 0.0113347106
#> R1_dynC:A0.f1 0.3194771 0.1313171 0.06210024 0.5768540 0.0149798139
#> R1_dynC:A1t 0.3202318 0.1048176 0.11479297 0.5256706 0.0022496121
#> R01_non:A0.f1 0.4092668 0.1176428 0.17869115 0.6398424 0.0005034879
#> R01_non:A1t 0.2280764 0.1243165 -0.01557936 0.4717322 0.0665584775
#> R01_C:A0.f1 0.3912859 0.1144307 0.16700576 0.6155659 0.0006275647
#> R01_C:A1t 0.3150865 0.1163399 0.08706445 0.5431086 0.0067623432
#> R01_dynC:A0.f1 0.4016977 0.1049305 0.19603760 0.6073577 0.0001290708
#> R01_dynC:A1t 0.3375831 0.1034497 0.13482542 0.5403408 0.0011013908
#> attr(,"class")
#> [1] "summary.phreg_rct"
We take interest in \(N_1\) but also have death \(N_d\).
Now we need that given \(X_0\)
and given \(\bar X_1\) the history accumulated at time \(T_R\) of 2nd randomization
and
to link the counterfactual quantities to observed data.
We must use IPTW weighted Cox score and augment as before
In addition we need that the censoring is independent given for example \(A_0\)
To use the phreg_rct in this situation
fit2 <- phreg_rct(Event(start,stop,statusD)~Z.f+cluster(id),data=data,
typesR=c("non","R0"),typesC=c("non","C","dynC"),
RCT=FALSE,treat.model=Z.f~z1,augmentR0=~z1,augmentC=~z1+Count1,
treat.var="treattime")
summary(fit2)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-Z.f1 0.3111195 0.08058494 0.15317593 0.4690631 0.0001130326
#> non_C:Z.f1 0.3067348 0.08057748 0.14880581 0.4646637 0.0001408301
#> non_dynC:Z.f1 0.2169383 0.07119837 0.07739205 0.3564845 0.0023117164
#> R0_non:Z.f1 0.3111195 0.08058494 0.15317593 0.4690631 0.0001130326
#> R0_C:Z.f1 0.3067348 0.08057748 0.14880581 0.4646637 0.0001408301
#> R0_dynC:Z.f1 0.2169383 0.07119837 0.07739205 0.3564845 0.0023117164
#> attr(,"class")
#> [1] "summary.phreg_rct"
and for twostage randomization
sse <- phreg_rct(Event(start,time,statusD)~A0.f+A1t+cluster(id),data=rr,
typesR=c("non","R0","R1","R01"),typesC=c("non","C","dynC"),
treat.var="treattime",
RCT=FALSE,treat.model=At.f~z1*factor(Count2),
augmentR0=~z1,augmentR1=~z1,augmentC=~z1+Count1+A1t)
summary(sse)
#> Estimate Std.Err 2.5% 97.5% P-value
#> Marginal-A0.f1 0.3817476 0.13188068 0.12326622 0.6402290 0.0037958891
#> Marginal-A1t 0.2259319 0.12344157 -0.01600910 0.4678730 0.0672089296
#> non_C:A0.f1 0.3765255 0.12594711 0.12967369 0.6233773 0.0027938653
#> non_C:A1t 0.3187675 0.11256529 0.09814361 0.5393914 0.0046280182
#> non_dynC:A0.f1 0.3797091 0.11214290 0.15991306 0.5995051 0.0007093493
#> non_dynC:A1t 0.3514300 0.09297578 0.16920079 0.5336591 0.0001569535
#> R0_non:A0.f1 0.3817476 0.13188068 0.12326622 0.6402290 0.0037958891
#> R0_non:A1t 0.2259319 0.12344157 -0.01600910 0.4678730 0.0672089296
#> R0_C:A0.f1 0.3765255 0.12594711 0.12967369 0.6233773 0.0027938653
#> R0_C:A1t 0.3187675 0.11256529 0.09814361 0.5393914 0.0046280182
#> R0_dynC:A0.f1 0.3797091 0.11214290 0.15991306 0.5995051 0.0007093493
#> R0_dynC:A1t 0.3514300 0.09297578 0.16920079 0.5336591 0.0001569535
#> R1_non:A0.f1 0.3817476 0.13188068 0.12326622 0.6402290 0.0037958891
#> R1_non:A1t 0.2259319 0.12344157 -0.01600910 0.4678730 0.0672089296
#> R1_C:A0.f1 0.3765255 0.12594711 0.12967369 0.6233773 0.0027938653
#> R1_C:A1t 0.3187675 0.11256529 0.09814361 0.5393914 0.0046280182
#> R1_dynC:A0.f1 0.3797091 0.11214290 0.15991306 0.5995051 0.0007093493
#> R1_dynC:A1t 0.3514300 0.09297578 0.16920080 0.5336591 0.0001569535
#> R01_non:A0.f1 0.3817476 0.13185641 0.12331378 0.6401814 0.0037894525
#> R01_non:A1t 0.2259319 0.12307282 -0.01528637 0.4671502 0.0663934395
#> R01_C:A0.f1 0.3765255 0.12592170 0.12972349 0.6233275 0.0027883528
#> R01_C:A1t 0.3187675 0.11216079 0.09893641 0.5385986 0.0044823275
#> R01_dynC:A0.f1 0.3797091 0.11211436 0.15996900 0.5994492 0.0007071245
#> R01_dynC:A1t 0.3514300 0.09248564 0.17016144 0.5326985 0.0001447938
#> attr(,"class")
#> [1] "summary.phreg_rct"
sessionInfo()
#> R version 4.4.3 (2025-02-28)
#> Platform: aarch64-apple-darwin24.3.0
#> Running under: macOS Sequoia 15.4.1
#>
#> Matrix products: default
#> BLAS: /Users/kkzh/.asdf/installs/R/4.4.3/lib/R/lib/libRblas.dylib
#> LAPACK: /Users/kkzh/.asdf/installs/R/4.4.3/lib/R/lib/libRlapack.dylib; LAPACK version 3.12.0
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: Europe/Copenhagen
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] timereg_2.0.6 survival_3.8-3 mets_1.3.6
#>
#> loaded via a namespace (and not attached):
#> [1] cli_3.6.4 knitr_1.49 rlang_1.1.5
#> [4] xfun_0.51 jsonlite_1.9.1 future.apply_1.11.3
#> [7] listenv_0.9.1 lava_1.8.1 htmltools_0.5.8.1
#> [10] sass_0.4.9 rmarkdown_2.29 grid_4.4.3
#> [13] evaluate_1.0.3 jquerylib_0.1.4 fastmap_1.2.0
#> [16] numDeriv_2016.8-1.1 yaml_2.3.10 mvtnorm_1.3-3
#> [19] lifecycle_1.0.4 compiler_4.4.3 codetools_0.2-20
#> [22] ucminf_1.2.2 Rcpp_1.0.14 future_1.40.0
#> [25] lattice_0.22-6 digest_0.6.37 R6_2.6.1
#> [28] parallelly_1.43.0 parallel_4.4.3 splines_4.4.3
#> [31] Matrix_1.7-2 bslib_0.9.0 tools_4.4.3
#> [34] globals_0.17.0 cachem_1.1.0