
Package ‘musicMCT’
June 5, 2025

Title Analyze the Structure of Musical Scales

Version 0.1.2

Description Analysis of musical scales (& modes, grooves, etc.) in the vein of
Sherrill 2025 <https://collections.lib.utah.edu/ark:/87278/s6d2gr78>.
The initials MCT in the package title refer to the article's title: ``Modal
Color Theory.'' Offers support for conventional musical pitch class set
theory as developed by Forte (1973, ISBN: 9780300016109) and David Lewin
(1987, ISBN: 9780300034936), as well as for the continuous geometries of
Callender, Quinn, & Tymoczko (2008) <doi:10.1126/science.1153021>.
Identifies structural properties of scales and calculates derived values
(sign vector, color number, brightness ratio, etc.). Creates plots such as
``brightness graphs'' which visualize these properties.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5)

LazyData true

Imports igraph, utils, stats, graphics

Suggests grDevices, knitr, rmarkdown, testthat (>= 3.0.0), vdiffr,
withr,

VignetteBuilder knitr

URL https://satbq.github.io/musicMCT/

BugReports https://github.com/satbq/musicMCT/issues

Config/testthat/edition 3

NeedsCompilation no

Author Paul Sherrill [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0002-3617-016X>)

Maintainer Paul Sherrill <paul.sherrill@utah.edu>

Repository CRAN

Date/Publication 2025-06-05 09:50:02 UTC

1

https://collections.lib.utah.edu/ark:/87278/s6d2gr78
https://doi.org/10.1126/science.1153021
https://satbq.github.io/musicMCT/
https://github.com/satbq/musicMCT/issues
https://orcid.org/0009-0002-3617-016X

2 Contents

Contents
asword . 3
brightnessgraph . 4
brightness_comparisons . 6
carlos_step . 7
colornum . 8
comparesignvecs . 9
convert . 10
coord_to_edo . 10
edoo . 11
emb . 12
eps . 13
evenness . 14
flex_points . 16
fortenum . 17
fortenums . 18
fpunique . 18
get_relevant_rows . 19
howfree . 20
ifunc . 21
ineqmats . 23
ineqsym . 23
intervalspectrum . 25
isgwf . 26
isproper . 27
iswellformed . 28
isym . 29
ivec . 31
j . 32
makeineqmat . 34
make_roth_ineqmat . 35
make_white_ineqmat . 36
maxeven . 37
meantone_fifth . 38
minimize_vl . 39
optc_test . 40
populate_flat . 41
primary_hue . 43
primeform . 45
project_onto . 46
quantize_color . 47
quantize_hue . 48
readSCL . 50
realize_setword . 50
rotate . 51
same_hue . 52
saturate . 53

asword 3

sc . 54
scale_palette . 55
sc_comp . 56
set_from_signvector . 56
signed_interval_class . 58
signvector . 58
sim . 59
simplify_scale . 60
step_signvector . 62
subsetspectrum . 63
subset_multiplicities . 65
subset_varieties . 66
surround_set . 67
svzero_fingerprint . 68
tc . 69
tn . 70
tndists . 71
tnprime . 72
tsym . 73
vlsig . 74
vl_dist . 75
vl_generators . 76
vl_rolodex . 77
whichmodebest . 78
whichsvzeroes . 79
writeSCL . 81
z . 82
zmate . 83

Index 84

asword Algebraic word of a set’s step sizes

Description

Among others, Carey & Clampitt (1989) and Clampitt (1997) have shown that much can be learned
about a set by representing it as a word on m "letters" which represent the m distinct steps between
adjacent members of the set. This is more or less what is done in theory fundamentals classes when
a major scale is represented as TTSTTTS (if we temporarily forget that T and S represent specific
interval sizes). In scholarship the algebraic letters are usually represented as letters of the Latin
alphabet, but for some computational purposes it is useful for these to be explicitly ordered. That is,
the major scale should be represented as integers 2212221, which is distinct from 1121112. (Thus
asword makes finer distinctions than you might expect coming from a word-theoretic context.)

Usage

asword(set, edo = 12, rounder = 10)

4 brightnessgraph

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Vector of integers of the same length as set. 1 should always be the lowest value, representing the
smallest step size in the set.

Examples

dia_12edo <- c(0, 2, 4, 5, 7, 9, 11)
qcm_fifth <- meantone_fifth()
qcm_dia <- sort(((0:6)*qcm_fifth)%%12)
just_dia <- j(dia)
asword(dia_12edo)
asword(qcm_dia)
asword(just_dia)

asword() is less discriminating than colornum().
See "Modal Color Theory," 16
set1 <- c(0, 1, 4, 7, 8)
set2 <- c(0, 1, 3, 5, 6)
set1_word <- asword(set1)
set2_word <- asword(set2)
isTRUE(all.equal(set1_word, set2_word))
colornum(set1) == colornum(set2)
(Last line only works with representative_signvectors loaded.)

brightnessgraph Visualize brightness relationships among modes of a scale

Description

Discussed in "Modal Color Theory" (pp. 7-11), the brightness graph of a scale is a Hasse diagram
that represents the sum- and voice-leading brightness relationships between the modes of a scale.
Each node of the graph represents a mode. With default options, the large Roman numeral of each
node indicates which mode of the input scale it represents. (The input scale is roman numeral I.)
Small Arabic numerals beneath the Roman numeral indicate the pitch-classes of the mode (relative
to scale degree 1 as 0). In parentheses, the sum brightness of the mode is shown. Modes with higher
sum brightness are farther up on the graph. Arrows connect modes that can be compared by voice-
leading brightness. The arrows only show a transitive reduction of all VL-brightness comparisons,
so that if you can travel between two sets by only going "up" or "down" the arrows, the source and
destination are indeed related by voice-leading brightness.

brightnessgraph 5

Various visual parameters can be configured: numdigits determines how many digits of each pitch-
class to display; show_sums toggles on or off the sum brightness values; show_pitches toggles on
or off the individual pitch classes of each mode; fixed_do, if set to TRUE switches the graph from
showing "parallel" modes (e.g. C ionian vs C aeolian) to showing "relative" modes (e.g. C ionian
to A aeolian).

For now, the function doesn’t have a smart way to determine the horizontal positioning of modes in
the graph. It uses a heuristic that works well for many sets, but sometimes it will create too much
visual overlap or won’t clarify underlying structure particularly well. Think of these automatically
generated graphs as the starting point for manual fine tuning.

Usage

brightnessgraph(
set,
numdigits = 2,
show_sums = TRUE,
show_pitches = TRUE,
fixed_do = FALSE,
edo = 12,
rounder = 10

)

Arguments

set Numeric vector of pitch-classes in the set

numdigits Integer: how many digits of each pitch-class to show? Defaults to 2.

show_sums Boolean: should the graph show sum brightness values? Defaults to TRUE.

show_pitches Boolean: should the graph show values for each note of the scale? Defaults to
TRUE.

fixed_do Boolean: should the graph use only the fixed pitches of the input set? Defaults
to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

NULL and plots a brightness graph in the graphic device

Examples

brightnessgraph(c(0,2,4,5,7,9,11))
brightnessgraph(c(0,2,4,5,7,9,11), fixed_do=TRUE)
brightnessgraph(c(0,1,4,9,11),edo=15)

A more complicated graph
werck_ratios <- c(1, 256/243, 64*sqrt(2)/81, 32/27, (256/243)*2^(1/4), 4/3,

1024/729, (8/9)*2^(3/4), 128/81, (1024/729)*2^(1/4), 16/9, (128/81)*2^(1/4))

6 brightness_comparisons

werckmeister_3 <- z(werck_ratios)
brightnessgraph(werckmeister_3, show_sums=FALSE, show_pitches=FALSE)

brightness_comparisons

Voice-leading brightness relationships for a scale’s modes

Description

The essential step in creating the brightness graph of a scale’s modes is to compute the pairwise
comparisons between all the modes. Which ones are strictly brighter than others according to
"voice-leading brightness" (see "Modal Color Theory," 6-7)? This function makes those pairwise
comparisons in a manner that’s useful for more computation. If you want a human-readable version
of the same information, you should use brightnessgraph() instead.

Usage

brightness_comparisons(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

Note that the returned value shows all voice-leading brightness comparisons, not just the transi-
tive reduction of those comparisons. (That is, dorian is shown as darker than ionian even though
mixolydian intervenes in the brightness graph.)

Value

An n-by-n matrix where n is the size of the scale. Row i represents mode i of the scale in comparison
to all 7 modes. If the entry in row i, column j is -1, then mode i is "voice-leading darker" than mode
j. If 1, mode i is "voice-leading brighter". If 0, mode i is neither brighter nor darker, either because
contrary motion is involved or because mode i is identical to mode j. (Entries on the principal
diagonal are always 0.)

carlos_step 7

Examples

Because the diatonic scale, sc7-35, is non-degenerate well-formed, the only
0 entries should be on its diagonal.
brightness_comparisons(sc(7, 35))

mystic_chord <- sc(6,34)
colSums(sim(mystic_chord)) # The sum brightnesses of the mystic chord's 6 modes
brightness_comparisons(mystic_chord)
Almost all 0s because very few mode pairs are comparable.
That's because nearly all modes have the same sum, which means they have sum-brightness
ties, and voice-leading brightness can't break a sum-brightness tie.
(See "Modal Color Theory," 7.)

carlos_step Define a step size for one of Wendy Carlos’s scales

Description

For her album Beauty in the Beast, Wendy Carlos developed several non-octave scales whose step
sizes are calculated to optimize approximations of three intervals: the 3:2 fifth, the 5:4 major third,
and the 6:5 minor third. The alpha, beta, gamma, and delta scales differ in terms of how strongly
they privilege each of those just intervals. The basic step size for each scale is created by calling
this function with the appropriate name argument (e.g. "alpha"). You can also choose your own
weights for the three approximated just intervals, in which case the name argument is overridden.

Usage

carlos_step(name = "alpha", weights = NULL, edo = 12)

Arguments

name Which of Carlos’s four scales to create: "alpha", "beta", "gamma", or "delta".
Defaults to "alpha"

weights Numeric vector of length 3 assigning the number of steps that correspond to 3:2,
5:4, and 6:5, respectively. Overrides name if specified.

edo Number of unit steps in an octave. Defaults to 12.

Value

Single numeric value containing the step size for the desired scale

Examples

alpha_scale <- (0:31) * carlos_step()
practically_12tet <- (0:24) * carlos_step(weights=c(7, 4, 3))

8 colornum

colornum Reference numbers for scale structures

Description

As described on p. 28 of "Modal Color Theory," it’s convenient to have a systematic labeling system
("color numbers") to refer to the distinct colors in the hyperplane arrangements. This serves a sim-
ilar function as Forte’s set class numbers do in traditional pitch-class set theory. Color numbers are
defined with reference to a complete list of the possible sign vectors for each cardinality, so they de-
pend on the extensive prior computation that is stored in the object representative_signvectors.
(This is a large file that cannot be included in the package musicMCT itself. It needs to be down-
loaded separately, saved in your working directory, and loaded by entering representative_signvectors
<- readRDS("representative_signvectors.rds"). Color numbers are currently only defined
for scales with 7 or fewer notes.

Usage

colornum(set, ineqmat = NULL, signvector_list = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set
ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly

entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

signvector_list

A list of signvectors to use as the reference by which colornum assigns a value.
Defaults to NULL and will attempt to use representative_signvectors, which
needs to be downloaded and assigned separately from the package musicMCT.

edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Details

Note that the perfectly even "white" scale is number 0 for every cardinality by definition.

The function assumes that you don’t need to be reminded of the cardinality of the set you’ve entered.
That is, there’s a color number 2 for every cardinality, so you can get that value returned by entering
a trichord, tetrachord, etc.

Value

Single non-negative integer (the color number) if a signvector_list is specified or representative_signvectors
is loaded; otherwise NULL

comparesignvecs 9

Examples

colornum(edoo(5))
colornum(c(0, 3, 7))
colornum(c(0, 2, 7))
colornum(c(0, 1, 3, 7))
colornum(c(0, 1, 3, 6, 10, 15, 21), edo=33)
colornum(c(0, 2, 4, 5, 7, 9, 11))

comparesignvecs Do two sign vectors represent adjacent colors?

Description

As "Modal Color Theory" (pp. 31ff.) describes, it can be useful to know whether two colors are
adjacent to each other in the MCT space. That is, can one scalar color be continuously modified
until it becomes the other, without crossing through any third color? For instance, the 5-limit just
diatonic scale is a two-dimensional color that is adjacent to the 1-d line of meantone diatonic scales.
This means, in some sense, that the meantone structure is a good approximation of the 5-limit just
structure.

Usage

comparesignvecs(signvecX, signvecY)

Arguments

signvecX, signvecY
A pair of sign vectors to be compared. Note that these must be sign vectors, not
scales themselves.

Value

Integer: 0 if the sign vectors represent the same color, 1 if they are adjacent, and -1 if they are
neither adjacent nor identical.

Examples

meantone_major_sv <- signvector(c(0, 2, 4, 5, 7, 9, 11))
meantone_dorian_sv <- signvector(c(0, 2, 3, 5, 7, 9, 10))
just_major <- j(dia)
just_dorian <- sim(just_major)[,2]
just_major_sv <- signvector(just_major)
just_dorian_sv <- signvector(just_dorian)

comparesignvecs(meantone_major_sv, just_major_sv)
comparesignvecs(meantone_dorian_sv, just_major_sv)
comparesignvecs(meantone_dorian_sv, just_dorian_sv)

10 coord_to_edo

convert Convert between octave measurements

Description

By default the period of a scale (normally the octave) has a size of 12 units (semitones). But it can
be useful to convert to a different measurement unit, e.g. to compare a scale defined in 19-tone
equal temperament (19edo) to the size of its intervals when measured in normal 12edo semitones,
or vice versa.

Usage

convert(x, edo1, edo2)

Arguments

x The set to convert as a numeric vector.

edo1 The size of the period measured in the same units as the input x. Numeric.

edo2 The period size to convert to. Numeric.

Value

A numeric vector the same length as x representing the input set converted to the desired cardinality
(edo2).

Examples

maqam_rast <- c(0, 2, 3.5, 5, 7, 9, 10.5)
convert(maqam_rast, 12, 24)

perfect_fifth <- z(3/2)
lydian_scale <- sort((perfect_fifth * (0:6)) %% 12)
convert(lydian_scale, 12, 53)

coord_to_edo Coordinate systems for scale representation

Description

Usually, it is most intuitive to music theorists to represent a scale as a vector of the pitch-classes
it contains. However, for certain computations in the setting of Modal Color Theory, it is more
convenient to use a coordinate system with the "white" perfectly even scale as the origin (because
this is the point where all of the hyperplanes in the arrangement defining scalar "colors" intersect).
Therefore, these two functions convert between the two coordinate systems: coord_to_edo takes
in a scale represented by its pitch classes and returns its displacement vector from "white" and
coord_from_edo does the reverse.

edoo 11

Usage

coord_to_edo(set, edo = 12)

coord_from_edo(set, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.

Details

It should be noted that the representative "white" scale used is not necessarily the closest one to the
scale in question. Instead, it is the unique transposition of white that has 0 as its first coordinate. This
is natural in the context of Modal Color Theory, which essentially always assumes transpositional
equivalence with x0 = 0. The closest transposition of "white" to set will be the one that has
the same sum class as set, guaranteeing that the voice leading between them is "pure contrary"
(Tymoczko 2011, 81ff; explored further in Straus 2018 doi:10.1215/00222909-7127694).

Value

Numeric vector of same length as set. Same scale, new coordinate system.

Examples

dominant_seventh_chord <- c(0, 2, 6, 9)
coord_to_edo(dominant_seventh_chord)

ait1 <- c(0, 1, 4, 6)
ait2 <- c(0, 1, 3, 7)
coord_to_edo(ait1)
coord_to_edo(ait2) # !

weitzmann_pentachord <- coord_from_edo(c(0, -1, 0, 0, 0)) # See note 53 of "Modal Color Theory"
convert(weitzmann_pentachord, 12, 60)
coord_to_edo(weitzmann_pentachord)

edoo Perfectly even scales (the color white)

Description

Creates a perfectly even scale that divides the octave into n equal steps. Such scales serve as the
origin for the hyperplane arrangements of Modal Color Theory, whence the name edoo for "equal
division of the octave origin."

Usage

edoo(card, edo = 12)

doi:10.1215/00222909-7127694

12 emb

Arguments

card Number of notes in the scale. Numeric.

edo Number of unit steps in an octave. Defaults to 12.

Value

Numeric vector of length card representing a scale of card notes.

Examples

edoo(5)
edoo(5, edo=15)
octatonic_scale <- tc(edoo(4), c(0, 1))
print(octatonic_scale)

emb How many instances of a subset-type exist within a scale? How many
scales embed a subset?

Description

David Lewin’s EMB and COV functions: see Lewin, Generalized Musical Intervals and Trans-
formations (New Haven, CT: Yale University Press, 1987), 105-120. For EMB, given a group
("CANON") of transformations which are considered to preserve a set’s type, find the number of
instances of that type in a larger set (scale). Lewin characterizes this generally, but emb() only
offers Tn and Tn/TnI transformation groups as available canonical groups. Conversely, Lewin’s
COV function asks how many instances of a scale type include subset: this is implemented as
cover() (not cov()!).

Usage

emb(subset, scale, canon = c("tni", "tn"), edo = 12, rounder = 10)

cover(subset, scale, canon = c("tni", "tn"), edo = 12, rounder = 10)

Arguments

subset Numeric vector of pitch-classes in any representative of the subset type (Lewin’s
X)

scale Numeric vector of pitch-classes in the larger set to embed into (Lewin’s Y)

canon What transformations should be considered equivalent? Defaults to "tni" (using
standard set classes) but can be "tn" (using transposition classes)

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

eps 13

Value

Integer: count of subset or scale types satisfying the desired relation.

Examples

emb(c(0, 4, 7), sc(7, 35))
emb(c(0, 4, 7), sc(7, 35), canon="tn")

Works for continuous pc-space too:
emb(j(1, 3, 5), j(dia))
emb(j(1, 2, 3, 5, 6), j(dia))
emb(j(1, 2, 4, 5, 6), j(dia), canon="tn")

emb(c(0, 4, 7), c(0, 1, 3, 7))
emb(c(0, 4, 7), c(0, 1, 3, 7), canon="tn")

emb(c(0, 4), c(0, 4, 8))
cover(c(0, 4), c(0, 4, 8))

harmonic_minor <- c(0, 2, 3, 5, 7, 8, 11)
cover(c(0, 4, 8), harmonic_minor)
cover(c(0, 4, 8), harmonic_minor, canon="tn")

eps The brightness ratio

Description

Section 3.3 of "Modal Color Theory" describes a "brightness ratio" which characterizes the modes
of a scale in terms of how well "sum brightness" acts as a proxy for "voice-leading brightness."
Scales with a brightness ratio less than 1 are pretty well behaved from this perspective, while ones
with a brightness ratio greater than 1 are poorly behaved. When the brightness ratio is 0, sum
brightness and voice-leading brightness give exactly the same results. (This can happen for sets on
two extremes: those like the diatonic scale which are well formed and those like the Weitzmann
scales, which differ from "white" in only one scale degree.)

I wish I had come up with a more descriptive name than "brightness ratio" for this property, because
it’s not really a ratio of brightness in the sense you might expect (i.e. "this scale is 20% bright").
Rather, it’s a ratio of two brightness-related properties, delta and eps. "Modal Color Theory"
(p. 20) offers definitions of these. Delta is "the largest sum difference between (voice-leading)
incomparable modes," with value 0 by definition if all of the modes are comparable. ("This, in a
sense, is a measure of how badly voice-leading brightness breaks down from the perspective of sum
brightness.") Epsilon "represents the smallest sum difference between non-identical but comparable
modes." This is harder to give an intuitive gloss on, but my attempt in "MCT" was "Essentially,
epsilon measures the finest distinction that voice-leading brightness is capable of parsing."

The brightness ratio (ratio) itself is simply delta divided by epsilon.

14 evenness

Usage

eps(set, edo = 12, rounder = 10)

delta(set, edo = 12, rounder = 10)

ratio(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

Single non-negative numeric value

Examples

harmonic_minor <- c(0, 2, 3, 5, 7, 8, 11)
hypersaturated_harmonic_minor <- saturate(2, harmonic_minor)
c(delta(harmonic_minor), eps(harmonic_minor))
c(delta(hypersaturated_harmonic_minor), eps(hypersaturated_harmonic_minor))

Delta and epsilon depend on the precise scale, but ratio() is constant on a hue
ratio(harmonic_minor)
ratio(hypersaturated_harmonic_minor)

Sort all 12tet heptachords by brightness ratio
heptas12 <- unique(apply(combn(12, 7), 2, primeform),MARGIN=2)
hepta_ratios <- apply(heptas12, 2, ratio)
sorted_heptas <- heptas12[, order(hepta_ratios)]
colnames(sorted_heptas) <- apply(sorted_heptas, 2, fortenum)
sorted_heptas

Compare evenness to ratio for 12tet hetpachords
plot(apply(heptas12, 2, evenness), hepta_ratios, xlab="Evenness", ylab="Brightness Ratio")

evenness How even is a scale?

Description

Calculates the distance from a set to the nearest perfectly even division of the octave, which will
not be the one with a first entry of 0, unlike almost every other usage in this package. That’s
because, for most purposes, we do want to distinguish between different modes of a set, but it
seems counterintuitive to me to say that one mode of a scale is less even than another. Since this
value is a distance from the perfectly even ("white") scale, lower values indicate more evenness.

evenness 15

Usage

evenness(
set,
method = c("euclidean", "taxicab", "chebyshev", "hamming"),
edo = 12,
rounder = 10

)

Arguments

set Numeric vector of pitch-classes in the set

method What distance metric should be used? Defaults to "euclidean" (unlike most
functions with a method parameter in musicMCT) but can be "taxicab", "chebyshev",
or "hamming".

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

Note that the values this function returns depend on what measurement unit you’re using (i.e. are
you in 12edo or 16edo?). Their absolute value isn’t terribly significant: you should only make
relative comparisons between calculations done with the same value for edo.

Currently, methods other than "Euclidean" are somewhat experimental.

Value

Single non-negative numeric value

Examples

evenness(c(0, 4, 8))
evenness(c(0, 4, 7)) < evenness(c(0, 1, 2))

dim_triad <- c(0, 3, 6)
sus_2 <- c(0, 2, 7)
coord_to_edo(dim_triad)
coord_to_edo(sus_2)
evenness(dim_triad) == evenness(sus_2)

16 flex_points

flex_points Voice-leading inflection points

Description

When considering an n-note set’s potential voice leadings to transpositions of a goal (along the
lines of vl_rolodex() and tndists()), there will always be some transposition in continuous
pc-space for which a given modal rotation is the best potential target for voice leading. (That is,
there is always some x such that whichmodebest(set, tn(set, x)) == k for any k between 1 and
n.) Moreover, there will always be a transposition level at the boundary between two different
ideal modes, where both modes require the same amount of voice leading work. flex_points()
identifies those inflection points where one mode gives way to another. (Note: flex_points()
identifies these points by numerical approximation, so it may not give exact values. For more
precision, increase the value of subdivide.)

Usage

flex_points(
set,
goal = NULL,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
subdivide = 100,
edo = 12,
rounder = 10

)

Arguments

set Numeric vector of pitch-classes in the set

goal Numeric vector like set: what is the tn-type of the voice leading’s destination?
Defaults to NULL, in which case the function uses set as the tn-type.

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

subdivide Numeric: how many small amounts should each edo step be divided into? De-
faults to 100.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric vector of the transposition indices that are inflection points. Length of result matches size
of set, except in the case of some multisets, which can have fewer inflection points.

fortenum 17

Examples

major_triad_12tet <- c(0, 4, 7)
major_triad_just <- z(1, 5/4, 3/2)
major_triad_19tet <- c(0, 6, 11)

flex_points(major_triad_12tet, method="euclidean", subdivide=1000)
flex_points(major_triad_just, method="euclidean", subdivide=1000)

Note that the units of measurement correspond to edo.
The value 3.16 here corresponds to exactly 1/6 of an octave.
flex_points(major_triad_19tet, edo=19)

fortenum Forte number from set class

Description

Given a pitch-class set (in 12edo only), look up Forte 1973’s catalog number for the corresponding
set class.

Usage

fortenum(set)

Arguments

set Numeric vector of pitch-classes in the set

Value

Character string in the form "n-x" where n is the number of notes in the set and x is the ordinal
position in Forte’s list.

Examples

fortenum(c(0, 4, 7))
fortenum(c(0, 3, 7))
fortenum(c(4, 8, 11))

18 fpunique

fortenums Allen Forte’s list of set classes

Description

For compatibility with music theory’s traditional pitch-class set theory, whose landmark text is
Allen Forte’s 1973 The Structure of Atonal Music, the data set fortenums hard-codes the ordinal
positions of 12-equal pitch-class set classes from Allen Forte’s list. This allows us to look up
specific set classes from Forte numbers or vice versa. sc() does the former and fortenum() does
the latter. There’s very little need to ever interact with the file fortenums itself: you should be able
to get anything you need from this data through either sc() or fortenum().

Note that primeform() in musicMCT uses Rahn’s algorithm rather than Forte’s for finding a canon-
ical representative of each set class. Consequently, the entries of fortenums also use Rahn’s prime
forms rather than Forte’s.

Usage

fortenums

Format

A list of length 12. The nth entry of the list corresponds to set classes of cardinality n. Each list
entry is a vector of character strings; every element of the vector contains a Rahn prime form as a
comma-delimited string. These prime forms are ordered in the same sequence as Forte’s list. Thus,
for instance, the set class of the minor triad is represented by the string "0, 3, 7", which is the 11th
element in fortenums[[3]].

Source

Forte, Allen. 1973. The Structure of Atonal Music. New Haven, CT: Yale University Press. Ap-
pendix 1, pp. 179-181.

fpunique Unique real values up to some tolerance

Description

Working with scales in continuous pitch space, many pitches and intervals are irrationals repre-
sented as floating point numbers. This can cause arithmetic and rounding errors, leading to it
looking like there are more distinct pitches/intervals in the set than there really are. Use fpunique
rather than base::unique() whenever you handle scales in continuous pitch space.

Usage

fpunique(x, MARGIN = 0, rounder = 10)

get_relevant_rows 19

Arguments

x Numeric array whose unique elements are to be determined

MARGIN Numeric 0, 1, or 2 depending on whether you want unique individual numbers,
unique rows, or unique columns, respectively. Defaults to 0.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

Sometimes you may need to adjust the tolerance (rounder) to get correct results, especially if you
have done several operations in a row which may have introduced rounding errors.

Value

Numeric array of unique elements (vector if MARGIN is 0; matrix otherwise)

Examples

just_dia <- j(dia)
intervals_in_just_dia <- sort(as.vector(sim(just_dia)))
failed_unique_intervals <- unique(intervals_in_just_dia)
fpunique_intervals <- fpunique(intervals_in_just_dia)
length(failed_unique_intervals)
length(fpunique_intervals)

get_relevant_rows Which hyperplanes affect a given generic interval?

Description

Given an ineqmat (i.e. a matrix representing a hyperplane arrangement), this function tells us
which of those hyperplanes affect a specific generic interval size. (One specific application of this
is is step_signvector(), which pays attention only to the comparisons between step sizes in a
scale.)

Usage

get_relevant_rows(generic_intervals, ineqmat)

Arguments

generic_intervals

A vector of one or more integers representing generic intervals that can be found
within the scale. Unisons are 0, generic steps are 1, etc.

ineqmat The matrix of hyperplane normal vectors that you want to search.

20 howfree

Value

Vector of integers indicating the relevant hyperplanes from ineqmat

Examples

heptachord_ineqmat <- getineqmat(7)
heptachord_step_comparisons <- get_relevant_rows(1, heptachord_ineqmat)

Create an ineqmat that attends only to the quality of (024) trichordal
subsets in a heptachord.
heptachord_triads <- get_relevant_rows(c(0, 2, 4), heptachord_ineqmat)
triads_in_7_ineqmat <- heptachord_ineqmat[heptachord_triads,]

Now, the following two heptachords have different colors
but the same pattern of (024) trichordal subsets, so their signvector
using triads_in_7_ineqmat is identical:
heptachord_1 <- convert(c(0, 1, 3, 6, 8, 12, 13), 17, 12)
heptachord_2 <- convert(c(0, 1, 3, 5, 7, 10, 11), 14, 12)
colornum(heptachord_1) == colornum(heptachord_2)
sv_1 <- signvector(heptachord_1, ineqmat=triads_in_7_ineqmat)
sv_2 <- signvector(heptachord_2, ineqmat=triads_in_7_ineqmat)
isTRUE(all.equal(sv_1, sv_2))
subset_varieties(c(0, 2, 4), heptachord_1, unique=FALSE)
subset_varieties(c(0, 2, 4), heptachord_2, unique=FALSE)
Both have identical qualities for triads on scale degree 3, 5, and 7,
which you can see by comparing columns 3, 5, and 7 in the two
matrices above.

howfree Count a scale’s degrees of freedom

Description

Some scalar structures can vary their specific pitches much more flexibly than others while retaining
the same overall "color." For instance, the meantone family of diatonic scales is generated by a line
of fifths and can only vary along one dimension: the size of the generating fifth. This literally
defines a line in the MCT geometry, and if the scale moves off that line it ceases to have the same
structure as the diatonic scale. (Notably, it stops being non-degenerate well-formed.) By contrast,
the 5-limit just diatonic scale is defined by two distinct parameters: the size of its major third and
the size of its perfect fifth. See "Modal Color Theory," pp. 26-27, for more discussion.

Usage

howfree(set, ineqmat = NULL, edo = 12, rounder = 10)

ifunc 21

Arguments

set Numeric vector of pitch-classes in the set

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Single non-negative integer

Examples

c_natural_minor <- c(0, 2, 3, 5, 7, 8, 10)
c_melodic_minor <- c(0, 2, 3, 5, 7, 9, 11)
just_diatonic <- j(dia)
howfree(c_natural_minor)
howfree(c_melodic_minor)
howfree(just_diatonic)

howfree(c(0, 4, 7))
howfree(c(0, 4, 7), ineqmat="white")

howfree(c(0, 2, 6), ineqmat="mct")
howfree(c(0, 2, 6), ineqmat="roth")

ifunc All intervals from one set to another

Description

David Lewin’s interval function (IFUNC) calculates all the intervals from some source set x to some
goal set y. See Lewin, Generalized Musical Intervals and Transformations (New Haven, CT: Yale
University Press, 1987), 88. Lewin’s definition of the IFUNC depends on the GIS it applies to, but
this package’s ifunc() is less flexible. It uses only ordered pitch-class intervals as the group of
IVLS to be measured. Its intervals can, however, be any continuous value and are not restricted to
integers mod edo. The format of the result depends on whether non-integer intervals occur.

22 ifunc

Usage

ifunc(
x,
y = NULL,
edo = 12,
rounder = 10,
display_digits = 2,
show_zeroes = TRUE

)

Arguments

x The source set from which the intervals originate

y The goal set to which the intervals lead. Defaults to NULL, in which case ifunc()
gives the intervals from x to itself.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

show_zeroes Boolean: if x and y belong to a single mod edo universe, should 0 values be
listed for any intervals mod edo which do not occur in their IFUNC? Defaults to
TRUE.

Value

Numeric vector counting the number of occurrences of each interval. The names() of the result
indicate which interval size is counted by each entry. If x and y both belong to a single mod
edo universe (and show_zeroes=TRUE), the result is a vector of length edo and includes explicit
0 results for missing intervals. If x and y must be measured in continuous pitch-class space, no
missing intervals are identified (since there would be infinitely many to list).

Examples

ifunc(c(0, 3, 7))
ifunc(c(0, 3, 7), c(0, 4, 7))
ifunc(c(0, 4, 7), c(0, 3, 7))

ifunc(c(0, 2, 4, 7, 9), show_zeroes=FALSE)

just_dia <- j(dia)
ifunc(just_dia)
ifunc(just_dia, display_digits=4)

See Lewin, GMIT p. 89:
lewin_x <- c(4, 10)
lewin_y1 <- c(9, 1, 5)
lewin_y2 <- c(7, 11, 9)

ineqmats 23

isTRUE(all.equal(ifunc(lewin_x, lewin_y1), ifunc(lewin_x, lewin_y2)))
apply(cbind(lewin_y1, lewin_y2), 2, fortenum)

ineqmats Hyperplane arrangements for MCT spaces

Description

The data file ineqmats represents the hyperplane arrangements at the core of Modal Color The-
ory as matrices containing the hyperplanes’ normal vectors. See Appendix 1.2 of Sherrill (2025)
for a discussion of the format of these matrices. The matrices can be generated on the fly by
makeineqmat(), but for large computations it’s faster simply to call on precalculated data rather
than to run makeineqmat() many thousands of times. Thus the object ineqmats saves the inequal-
ity matrices for scales of cardinality 1-53, to be called upon by getineqmat().

Usage

ineqmats

Format

ineqmats A list with 53 entries. The nth entry of the list gives the inequality matrix for n-note
scales. Each inequality matrix itself is an m by (n+1) matrix, where m is an element of OEIS
A034828 (see Sherrill 2025, 40-42). The last column of the matrix contains an offset related to
whether any of the generic intervals "wrap around the octave," as e.g. the third from 7 to 2 does
in a heptachord. This column is linearly dependent on the previous n columns, which contain the
coefficients of the hyperplane’s normal vectors. That is, the first row of the matrix (dropping its last
entry) is the normal vector for the first hyperplane of the arrangement, and so on.

Source

The data in ineqmats can be recreated with the command sapply(2:53, makeineqmat) and then
appending integer(0) as the first element of the list (for the case of one-note scales which have
no pairwise interval comparisons and therefore need a matrix of size 0).

ineqsym Symmetries of hyperplane arrangements define equivalent scales

Description

Produces scales of different colors which have equivalent scalar properties. The hyperplane ar-
rangements of MCT have three types of symmetry, which allows us to find scales at different but
equivalent points in the arrangement. Such scales will be nearly structurally identical in most senses
although their specific intervals will be rather different. See details for a discussion of the symme-
tries involved.

https://oeis.org/A034828
https://oeis.org/A034828

24 ineqsym

Usage

ineqsym(set, a = 1, b = 0, involution = FALSE, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set

a Integer: controls permutations of generic intervals. Must be coprime to the size
of the set. Defaults to 1.

b Integer: controls modal rotation. Defaults to 0.

involution Boolean: controls involutional symmetry. Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

Details

Two symmetries of the MCT hyperplane arrangement are familiar. One is modal "rotation": two
modes of the same scale must have equivalent structures, by the defining relations of the theory. The
parameter b controls these rotations. The second familiar symmetry is involution (see "Modal Color
Theory," 32). Set parameter involution to TRUE to apply this symmetry. The more interesting
symmetry of the MCT arrangements is controlled by parameter a. This symmetry allows us to per-
mute the roles of the scale’s generic intervals in its scalar makeup. For instance, non-degenerate
well-formed scales (see iswellformed() are all generated by a particular generic interval. The
familiar diatonic scale is generated by its generic fourths, whereas another well-formed scale like
(0, 2, 3, 5, 6, 7, 9) in 10edo (with step-word LSLSSLS) is generated by its generic sixths. We can
permute the hyperplanes of the heptachordal MCT arrangement so that the overall structure is pre-
served but the diatonic scale is mapped onto LSLSSLS. In general, the permutations of ineqsym()
allow us to map any non-degenerate well-formed scale onto any other: they form an orbit under
the symmetries of the space. This gives another sense in which "well-formedness" is a large family
of scale structures. That sense generalizes to all scales, not just ones that are highly regular like
well-formed scales.

In short, ineqsym() preserves many scalar properties, including:

• countsvzeroes() and svzero_fingerprint()

• howfree()

• ratio(), delta(), and eps()

• brightnessgraph() structure

• evenness()

• isgwf() and a fortiori iswellformed()

• Number and respective properties of adjacent colors

• spectrumcount() up to permutation of the values

Value

Numeric vector representing a scale of same length as set. Default parameters determine the iden-
tity symmetry and will return set itself.

intervalspectrum 25

Examples

wt_plus_1 <- sc(7,33)
equiv_scale <- ineqsym(wt_plus_1, 3, 2)
both_scales <- cbind(wt_plus_1, equiv_scale)
freedoms <- apply(both_scales, 2, howfree)
evennesses <- round(apply(both_scales, 2, evenness), 3)
svzeroes <- apply(both_scales, 2, countsvzeroes)
ratios <- round(apply(both_scales, 2, ratio), 3)
spectra <- apply(apply(both_scales, 2, spectrumcount), 2, toString)
cbind(freedoms, evennesses, svzeroes, ratios, spectra)
brightnessgraph(wt_plus_1)
brightnessgraph(equiv_scale)

intervalspectrum Specific sizes corresponding to each generic interval

Description

As defined by Clough and Myerson 1986 (doi:10.1080/00029890.1986.11971924), an "interval
spectrum" is a list of all the specific (or "chromatic") intervals that occur as instances of a single
generic (or "diatonic") interval within some reference scale. For instance, in the usual diatonic
scale, the generic interval 1 (a "step" in the scale) comes in two specific sizes: 1 semitone and 2
semitones. Therefore its interval spectrum ⟨1⟩ = {1, 2}. These functions calculates the spectrum
for every generic interval within a set and return either a list of specific values in each spectrum or
a summary of how many distinct values there are.

Usage

intervalspectrum(set, edo = 12, rounder = 10)

spectrumcount(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

intervalspectrum returns a list of length one less than length(set). The nth entry of the list
represents the specific sizes of generic interval n. spectrumcount returns a vector that reports
the length of each entry in that list (i.e. the number of distinct specific intervals for each generic
interval).

doi:10.1080/00029890.1986.11971924

26 isgwf

Examples

intervalspectrum(sc(7,35))
qcm_fifth <- meantone_fifth()
qcm_dia <- sort(((0:6)*qcm_fifth)%%12)
intervalspectrum(qcm_dia)
just_dia <- 12 * log2(c(1, 9/8, 5/4, 4/3, 3/2, 5/3, 15/8))
intervalspectrum(just_dia)

spectrumcount(just_dia) # The just diatonic scale is trivalent.

Melodic minor nearly has "Myhill's Property" except for its 3 sizes of fourth and fifth
spectrumcount(sc(7,34))

isgwf Is a scale n-wise well formed?

Description

Tests whether a scale has a generalized type of well formedness (pairwise or n-wise well formed-
ness).

Usage

isgwf(set, setword = NULL, allow_de = FALSE, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

setword A vector representing the ranked step sizes of a scale (e.g. c(2, 2, 1, 2, 2, 2,
1) for the diatonic). The distinct values of the setword should be consecutive
integers. If you want to test a step word instead of a list of pitch classes, set
must be entered as NULL.

allow_de Should the function test for degenerate well-formed and distributionally even
scales too? Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

David Clampitt’s 1997 dissertation ("Pairwise Well-Formed Scales: Structural and Transforma-
tional Properties," SUNY Buffalo) offers a generalization of the notion of well-formedness from
1-dimensional structures with a single generator to 2-dimensional structures that mediate between
two well-formed scales. Ongoing research suggests that this can be extended further to "n-wise"
or "general" well-formedness, though n-wise well-formed scales are increasingly rare as n grows
larger.

isproper 27

Value

Boolean: is the set n-wise well formed?

Examples

meantone_diatonic <- c(0, 2, 4, 5, 7, 9, 11)
just_diatonic <- j(dia)
some_weird_thing <- convert(c(0, 1, 3, 6, 8, 12, 14), 17, 12)
example_scales <- cbind(meantone_diatonic, just_diatonic, some_weird_thing)

apply(example_scales, 2, howfree)
apply(example_scales, 2, isgwf)

isproper Rothenberg propriety

Description

Rothenberg (1978) doi:10.1007/BF01768477 identifies a potentially desirable trait for scales which
he calls "propriety." Loosely speaking, a scale is proper if its specific intervals are well sorted in
terms of the generic intervals they belong to. A scale is strictly proper if, given two generic sizes
g and h such that g < h, every specific size corresponding to g is smaller than every specific size
corresponding to h. A scale if improper if any specific size of g is larger than any specific size of
h. An ambiguity occurs if any size of g equals any size of h: scales with ambiguities are weakly but
not strictly proper.

Usage

isproper(set, strict = FALSE, edo = 12, rounder = 10)

has_contradiction(set, edo = 12, rounder = 10)

strictly_proper(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

strict Boolean: should only strictly proper scales pass?

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Boolean which answers whether the input satisfies the property named by the function

doi:10.1007/BF01768477

28 iswellformed

See Also

make_roth_ineqmat() creates an ineqmat for a hyperplane arrangement that lets you explore
propriety-related issues in finer detail.

Examples

c_major <- c(0, 2, 4, 5, 7, 9, 11)
has_contradiction(c_major)
strictly_proper(c_major)
isproper(c_major)
isproper(c_major, strict=TRUE)

isproper(j(dia), strict=TRUE)

pythagorean_diatonic <- sort(((0:6)*z(3/2))%%12)
isproper(pythagorean_diatonic)
has_contradiction(pythagorean_diatonic)

iswellformed Well-formedness, Myhill’s property, and/or moment of symmetry

Description

Tests whether a scale has the property of "well-formedness" or "moment of symmetry."

Usage

iswellformed(set, setword = NULL, allow_de = FALSE, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

setword A vector representing the ranked step sizes of a scale (e.g. c(2, 2, 1, 2, 2, 2,
1) for the diatonic). The distinct values of the setword should be consecutive
integers. If you want to test a step word instead of a list of pitch classes, set
must be entered as NULL.

allow_de Should the function test for degenerate well-formed and distributionally even
scales too? Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

isym 29

Details

The three concepts of "well-formedness," "Myhill’s property," and "moment of symmetry" refer
to nearly the same scalar property, generalizing one of the most important features of the familiar
diatonic scale. See Clough, Engebretsen, and Kochavi (1999, 77) doi:10.2307/745921 for a useful
discussion of their relationships. In short, except for a few edge cases, a scale possesses these
properties if it is generated by copies of a single interval (as the Pythagorean diatonic is generated by
the ratio 3:2) and all copies of the generator belong to the same generic interval (as the 3:2 generator
of the diatonic always corresponds to a "fifth" within the scale). Such a structure typically means
that all generic intervals come in 2 distinct sizes, which is the definition of "Myhill’s property." An
exception occurs if the generator manages to produce a perfectly even scale, e.g. when the whole
tone scale is generated by 6 copies of 1/6 of the octave. Such a scale lacks Myhill’s property and
Carey & Clampitt (1989, 200) doi:10.2307/745935 call such cases "degenerate well-formed."
Instead of Myhill’s property, such scales have only 1 specific value in each intervalspectrum().

Clough, Engebretsen, and Kochavi define a related concept, distributionally even scales, which
include the hexatonic and octatonic scales (Forte sc6-20 and sc8-28). Such scales are in some sense
halfway between "degenerate" and "non-degenerate well-formed" because some of their interval
spectra have 1 element while others have 2. From another perspective, distributionally even scales
are non-degenerate well formed with a period smaller than the octave (e.g. as the hexatonic scales
1-3 step pattern repeats every third of an octave).

The term "moment of symmetry" refers to the non-degenerate well-formed scales and was coined
by Erv Wilson 1975 (cited in Clough, Engebretsen, and Kochavi). It tends to be more widely used
in microtonal music theory, e.g. https://en.xen.wiki/w/MOS_scale.

Scales with this property have considerably interesting voice-leading properties and are some of the
most important landmarks in the geometry of MCT. See "Modal Color Theory," pp. 14, 17, 29, 33-
34, and 36-37. A substantial portion of MCT amounts to an attempt to generalize ideas developed
for MOS/NDWF scales to all scale structures.

Value

Boolean answering "Is the scale MOS (with equivalence interval equal to the period)?" (if al-
low_de=FALSE) or "Is the scale well-formed in any sense?" (if allow_de=TRUE).

Examples

iswellformed(sc(7, 35))
iswellformed(c(0, 2, 4, 6))
iswellformed(c(0, 1, 6, 7))
iswellformed(c(0, 1, 6, 7), allow_de=TRUE)
iswellformed(NULL, setword=c(2, 2, 1, 2, 1, 2, 1))

isym Test for inversional symmetry

doi:10.2307/745921
doi:10.2307/745935
https://en.xen.wiki/w/MOS_scale

30 isym

Description

Is the pc-set inversionally symmetrical? That is, does it map onto itself under TnI for some appro-
priate n? isym() can return either TRUE/FALSE or an index of symmetry but defaults to the former.
isym_index() is a simple wrapper for isym() that returns the latter. isym_degree() counts the
total number of inversional symmetries (i.e. the number of distinct inversional axes of symmetry).

Usage

isym(set, return_index = FALSE, edo = 12, rounder = 10)

isym_index(set, ...)

isym_degree(set, ...)

Arguments

set Numeric vector of pitch-classes in the set

return_index Should the function return a specific index at which the set is symmetrical?
Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

... Arguments to be passed to isym()

Details

isym() is evaluated by asking whether, for some appropriate rotation, the step-interval series of the
given set is equal to the step-interval series of the set’s inversion. This is designed to work for sets
in continuous pc-space, not just integers mod k. Note also that this calculates abstract pitch-class
symmetry, not potential symmetry in pitch space. (See the second example.)

Value

isym() returns the Boolean value from testing for symmetry, unless return_index=TRUE, in which
case isym() and isym_index() return a numeric value for one index of inversion at which the set is
symmetrical. If the set is not inversionally symmetrical, they will return NA. isym_degree() gives
the degree of inversional symmetry.

Examples

Mod 12
isym(c(0, 1, 5, 8))
isym(c(0, 2, 4, 8))

Continuous Values
qcm_fifth <- meantone_fifth()
qcm_dia <- sort(((0:6)*qcm_fifth)%%12)
just_dia <- j(dia)
isym(qcm_dia)

ivec 31

isym(just_dia)

Rounding matters:
isym(qcm_dia, rounder=15)

Index and Degree
hexatonic_scale <- c(0, 1, 4, 5, 8, 9)
isym_index(hexatonic_scale) # Only returns one suitable index
isym_degree(hexatonic_scale)

ivec Interval-class vector

Description

The classic summary of a set’s dyadic subset content from pitch-class set theory. The name ivec is
short for interval-class vector.

Usage

ivec(set, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

Value

Numeric vector of length floor(edo/2)

Examples

ivec(c(0, 1, 4, 6))
ivec(c(0, 1, 3, 7))

Z-related sextuple in 24edo:
sextuple <- matrix(

c(0, 1, 2, 6, 8, 10, 13, 16,
0, 1, 3, 7, 9, 11, 12, 17,
0, 1, 6, 8, 10, 13, 14, 16,
0, 1, 7, 9, 11, 12, 15, 17,
0, 1, 2, 4, 8, 10, 13, 18,
0, 2, 3, 4, 8, 10, 15, 18), nrow=6, byrow=TRUE)

apply(sextuple, 1, ivec, edo=24) # The ic-vectors are the 6 identical columns of the output matrix

32 j

j Convenient just-intonation intervals and scales

Description

It’s not hard to define a just interval from a frequency ratio: it only requires an input like 12*log2(freq_ratio).
That gets pretty tiresome if you’re doing this a lot, though, so for convenience musicMCT includes a
j() function (not related to Clough and Douthett’s J function but it wishes it was). j() is designed
to behave a lot like base R’s c() in the way that you’d use it to define a scale (see the examples
below). The inputs that this can take are limited and hard-coded, since there’s no systematic way to
define short hands for every potential just interval. In general, the logic is that individual digits refer
to major intervals up from the tonic in the 5-limit just diatonic scale. The prefix "m" to a number
(e.g. "m3") gives the equivalent minor version of the interval. If you just want the entire 5-limit
diatonic, you can enter dia.

Usage

j(..., edo = 12)

Arguments

... One or more names that will be matched to just intervals. You can enter these as
strings, but for convenience sake you needn’t. Here are the currently accepted
inputs, their meaning, and their return value:

• 1: perfect 1th (0 semitones)
• u: unison (0 semitones)
• synt: syntonic comma (~.215 semitones)
• pyth: Pythagorean comma (~.235 semitones)
• l: Pythagorean limma (256:243 or ~.9 semitones)
• s: 5-limit just semitone (16:15 or ~1.12 semitones)
• st: 5-limit just semitone (16:15 or ~1.12 semitones)
• m2: 5-limit minor second (16:15 or ~1.12 semitones)
• h: half step (16:15 or ~1.12 semitones)
• a: Pythagorean apotome (2187:2048 or ~1.14 semitones)
• mt: 5-limit minor tone (10:9 or ~1.82 semitones)
• 2: 3-limit major second (9:8 or ~2.04 semitones)
• t: 3-limit whole tone (9:8 or ~2.04 semitones)
• w: whole tone (9:8 or ~2.04 semitones)
• wt: whole tone (9:8 or ~2.04 semitones)
• sept: 7-limit (septimal) whole tone (8:7 or ~2.31 semitones)
• sdt: 3-limit semiditone (32/27 or ~2.94 semitones)
• pm3: Pythagorean minor third (32/27 or ~2.94 semitones)
• m3: 5-limit minor third (6:5 or ~3.16 semitones)
• 3: 5-limit major third (5:4 or ~3.86 semitones)

https://www.jstor.org/stable/843811

j 33

• M3: 5-limit major third (5:4 or ~3.86 semitones)

• dt: 3-limit ditone (81/64 or ~4.08 semitones)

• 4: 3-limit perfect fourth (4:3 or ~4.98 semitones)

• utt: 11-limit tritone (11:8 or ~5.51 semitones)

• stt: 7-limit tritone (7:5 or ~5.83 semitones)

• jtt: 5-limit tritone (45:32 or ~5.90 semitones)

• ptt: 3-limit tritone (729:512 or ~6.12 semitones)

• pd5: 3-limit diminished fifth (1024/729 or ~5.88 semitones)

• 5: 3-limit perfect fifth (3:2 or ~7.02 semitones)

• m6: 5-limit minor sixth (8:5 or ~8.14 semitones)

• 6: 5-limit major sixth (5:3 or ~8.84 semitones)

• pm7: Pythagorean minor seventh (16:9 or ~9.96 semitones)

• m7: 5-limit minor seventh (9:5 or ~10.18 semitones)

• 7: 5-limit major seventh (15:8 or ~10.88 semitones)

• 8: 2-limit perfect octave (2:1 or 12 semitones)

• dia: the complete 5-limit diatonic scale

edo Number of unit steps in an octave. Defaults to 12.

Value

Numeric vector representing the input just intervals converted to edo unit steps per octave

See Also

z() as a shortcut for 12*log2(x) when a just interval you need isn’t defined for j().

Examples

major_triad <- j(1,3,5)
isTRUE(all.equal(major_triad, j(u, M3, "5")))

isTRUE(all.equal(j(dia), j(1,2,3,4,5,6,7)))

How far is the twelve-equal major scale from the 5-limit just diatonic?
dist(rbind(c(0,2,4,5,7,9,11), j(dia)))

Is 53-equal temperament a good approximation of the 5-limit just diatonic?
j(dia, edo=53)

34 makeineqmat

makeineqmat Define hyperplanes for the Modal Color Theory arrangements

Description

As described in Appendix 1.2 of "Modal Color Theory," information about the defining hyperplane
arrangements is stored as a matrix containing the hyperplanes’ normal vectors as rows. (Because
these are matrices and they correspond ultimately to the intervallic inequalities that define MCT
geometry, this package refers to them as ineqmats, and sometimes to the individual hyperplanes
as ineqs.) These have already been computed and are stored as data in this package (ineqmats)
for cardinalities up to 53, but they can be recreated from scratch with makeineqmat. This might
be useful if for some reason you need to deal with a huge scale and therefore want to use an
arrangement whose matrix isn’t already saved. Note that a call like makeineqmat(60) may take
a dozen or more seconds to run (and at sizes that large, the arrangement is terribly complex, with
~17K distinct hyperplanes).

getineqmat tests whether the matrix already exists for the desired cardinality. If so, it is retrieved;
if not, it is created using makeineqmat.

Usage

makeineqmat(card)

getineqmat(card)

Arguments

card The cardinality of the scale(s) to be studied

Value

A matrix with card+1 columns and roughly card^(3)/8 rows

Examples

makeineqmat(2) # Cute: is step 1 > step 2?
makeineqmat(3) # Cute: step 1 > step 2? step 1 > step 3? step 2 > step 3?
makeineqmat(7) # Okay...
ineqmat20 <- makeineqmat(20)
dim(ineqmat20) # Yikes!

make_roth_ineqmat 35

make_roth_ineqmat Define hyperplanes for Rothenberg arrangements

Description

Although the Rothenberg propriety of a single scale can be computed directly with isproper(),
propriety is a scalar feature (like modal "color") which is defined by a scale’s position in the ge-
ometry of continuous pc-set space. That is, propriety, contradictions, and ambiguities are all de-
termined by a scale’s relationship to a hyperplane arrangement, but the arrangements which define
these properties are different from the ones of Modal Color Theory. make_roth_ineqmat() creates
the ineqmats needed to study those arrangements, similar to what makeineqmat() does for MCT
arrangements. make_rosy_ineqmat() creates the combination of Rothenberg and MCT arrange-
ments. (The name puns on the "Roth" of Rothenberg meaning "red," lending a reddish or rosy tint
to the "colors" of the MCT arrangement.)

Usage

make_roth_ineqmat(card)

make_rosy_ineqmat(card)

Arguments

card The cardinality of the scale(s) to be studied

Details

Each row of a Rothenberg ineqmat represents a hyperplane, just like the rows produced by makeineqmat().
The rows are normalized so that their first non-zero entry is either 1 or -1, and their orientations are
assigned so that a strictly proper set will return only -1s for its sign vector relative to the Rothenberg
arrangement. A 0 in a Rothenberg sign vector represents an ambiguity. Note that the Rothenberg ar-
rangements are never "central," which means that the hyperplanes do not all intersect at the perfectly
even scale. (It is clear that they must not, because perfectly even scales have no ambiguities.) These
arrangements also grow in complexity much faster than the MCT arrangements do: for tetrachords,
MCT arrangements have 8 hyperplanes while Rothenberg arrangements have 22. For heptachords,
those numbers increase to 42 and 259, respectively. Thus, this function runs slowly when called on
cardinalities of only modest size (e.g. 12-24).

Value

A matrix with card+1 columns and k rows, where k is the number of hyperplanes in the arrange-
ment.

Examples

c_major <- c(0, 2, 4, 5, 7, 9, 11)
hepta_roth_ineqmat <- make_roth_ineqmat(7)
isproper(c_major)

36 make_white_ineqmat

cmaj_roth_sv <- signvector(c_major, ineqmat=hepta_roth_ineqmat)
table(cmaj_roth_sv)
hepta_roth_ineqmat[which(cmaj_roth_sv==0),]
This reveals that c_major has one ambiguity, which results from
the interval from 4 to 7 being exactly half an octave.

make_white_ineqmat Define hyperplanes for quasi-white arrangements

Description

Although the hyperplane arrangements of Modal Color Theory determine most scalar properties,
there are some potentially interesting questions which require different arrangements. This function
makes "quasi-white" arrangements which consider how many of a scale’s intervals correspond ex-
actly to the "white" or perfectly even color for their generic size. That is, for an interval x belonging
to generic size g in an n note scale, does x = g · edo

n ? This may be relevant, for instance, because
two modes have identical sum brightnesses when the interval that separates their tonics is "white"
in this way. Mostly you will want to use these matrices as inputs to functions with an ineqmat
parameter.

Usage

make_white_ineqmat(card)

make_pastel_ineqmat(card)

Arguments

card The cardinality of the scale(s) to be studied

Details

In many cases, it is desirable to use a combination of the MCT ineqmat from makeineqmat() and
the quasi-white ineqmat from make_white_ineqmat(). Generally these are distinct, but they do
have some shared hyperplanes in even cardinalities related to formal tritones (intervals that divide
the scale exactly in half). Therefore, the function make_pastel_ineqmat() exists to give the result
of combining them with duplicates removed. (The moniker "pastel" is meant to suggest combining
the colors of MCT arrangements with a white pigment from quasi-white arrangements.)

Value

A matrix with card+1 columns and k rows, where k is the nth triangular number

maxeven 37

Examples

major_triad <- c(0, 4, 7)
howfree(major_triad)
howfree(major_triad, ineqmat=make_white_ineqmat(3))
Because it's now constrained to preserve its step of exactly 1/3 the octave.

just_major_triad <- j(1, 3, 5)
howfree(just_major_triad)
howfree(just_major_triad, ineqmat=make_white_ineqmat(3))
Because this triad's major third isn't identical to 400 cents which equally
divide the octave.

ait1 <- c(0, 1, 4, 6)
quantize_color(ait1, reconvert=TRUE)
quantize_color() doesn't match (0146) exactly because it's only looking for
any set in the same 3-dimensional color as 0146.

quantize_color(ait1, ineqmat=make_white_ineqmat(4), reconvert=TRUE)
Now that it's constrained to respect ait1's minor third from 1 to 4, the set 0146
is now the first satisfactory result that quantize_color() finds.

maxeven Maximally even scales

Description

Scales which are "maximally even" divisions of some equal-tempered universe have several mu-
sically interesting properties. When a maximally even scale has a number of notes (card) that
is coprime to the size of the equal-tempered universe, the maximally even scale is called a "non-
degenerate well-formed" or "moment of symmetry" scale. When its size divides the equal temper-
ament, it is a perfectly even scale. When it is neither coprime nor a divisor, it produces a scale with
a structure like the octatonic (i.e. a union of perfectly even scales, or a well-formed scale with a
period smaller than the octave). The scale is generated by quantizing a perfectly even scale to the
chosen chromatic cardinality. Two quantization options are offered (rounding down and rounding
to the nearest value).

Usage

maxeven(card, edo = 12, floor = TRUE)

Arguments

card Number of notes in the scale. Numeric.

edo Number of unit steps in an octave. Defaults to 12.

floor Boolean determining how to quantize. Defaults to TRUE causing the quantization
to round down. If FALSE rounds to the nearest value.

38 meantone_fifth

Value

Numeric vector of length card representing a scale of card notes.

Examples

maxeven(7, 12)
maxeven(6, 15)
maxeven(6, 15, floor=FALSE)

diatonic_in_19 <- maxeven(7, 19)
tresillo <- maxeven(3,8)

meantone_fifth Define a tempered fifth for various meantone scales

Description

Creates an interval that approximates a pure 3:2 fifth which has been tempered smaller by some
fraction of a syntonic comma, making it easy to construct diatonic meantone scales. The default is
to create a quarter-comma meantone fifth (i.e. about 697 cents).

Usage

meantone_fifth(frac = 1/4)

Arguments

frac The fraction of a syntonic comma that the fifth should be tempered by. Defaults
to 1/4. Numeric.

Value

Single numeric value of the tempered fifth measured in 12edo semitones.

Examples

zarlino_fifth <- meantone_fifth(2/7)
zarlino_diatonic <- sort((0:6 * zarlino_fifth) %% 12)
print(zarlino_diatonic)

fifth_in_19edo <- convert(11, 19, 12)
meantone_fifth(1/3) - fifth_in_19edo

minimize_vl 39

minimize_vl Smallest voice leading between two sets

Description

Given a source set and a goal to move to, find the "strongly crossing-free" voice leading from
source to goal with smallest size.

Usage

minimize_vl(
source,
goal,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
no_ties = FALSE,
edo = 12,
rounder = 10

)

Arguments

source Numeric vector, the pitch-class set at the start of your voice leading

goal Numeric vector, the pitch-class set at the end of your voice leading

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric array. In most cases, a vector the same length as source; or a vector of NA the same
length as source if goal and source have different lengths. If no_ties=FALSE and multiple voice
leadings are equivalent, the array can be a matrix with m rows where m is the number of equally
small voice leadings.

Examples

c_major <- c(0, 4, 7)
ab_minor <- c(8, 11, 3)
minimize_vl(c_major, ab_minor)

diatonic_scale <- c(0, 2, 4, 5, 7, 9, 11)
minimize_vl(diatonic_scale, tn(diatonic_scale, 7))

40 optc_test

d_major <- c(2, 6, 9)
minimize_vl(c_major, d_major)
minimize_vl(c_major, d_major, no_ties=TRUE)
minimize_vl(c_major, d_major, method="euclidean", no_ties=FALSE)

minimize_vl(c(0, 4, 7, 10), c(7, 7, 11, 2), method="euclidean")
minimize_vl(c(0, 4, 7, 10), c(7, 7, 11, 2), method="euclidean", no_ties=TRUE)

optc_test Does a scale lie in the canonical fundamental domain for OPTC sym-
metries?

Description

Modal Color Theory is capable of describing "scales" (perhaps "melodies" might be more accurate)
which do all sorts of non-scalar things, like repeating notes, ascending and descending inconsis-
tently, not observing octave equivalence, and so on. This function tests whether an input has a
’well-behaved’ form in that it starts on 0, only ascends, doesn’t repeat pitches, and doesn’t go
above the octave. If you find an interesting scale structure represented by a set that doesn’t satisfy
these constraints, you can always desaturate it until it does (i.e. call something like saturate(.1,
my_scale_with_bad_OPTCs)).

Usage

optc_test(set, edo = 12, rounder = 10, single_answer = TRUE)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

single_answer Should the function return a single value of TRUE or FALSE? Defaults to TRUE. If
set to FALSE, returns a vector of 4 Boolean values that indicate whether the scale
individually passes O, P, T, and C criteria for being in the fundamental domain.

Value

Either a single Boolean value or a vector of 4 Boolean values, depending on the single_answer
argument.

populate_flat 41

Examples

major_triad_normal_form <- c(0, 4, 7)
major_triad_open_spacing <- c(0, 7, 16)
major_triad_voice_crossing <- c(0, 7, 4)
major_triad_on_des <- c(1, 5, 8)
major_triad_doubled_third_omit_5 <- c(0, 4, 4)
example_triads <- cbind(major_triad_normal_form,

major_triad_open_spacing,
major_triad_voice_crossing,
major_triad_on_des,
major_triad_doubled_third_omit_5)

apply(example_triads, 2, optc_test)
optc_test(major_triad_voice_crossing, single_answer=FALSE)

populate_flat Randomly generate scales on a flat

Description

Sometimes it’s useful to explore a flat or a color by testing small differences that result from different
positions within the flat. This function generates random points on the desired flat to test, similar
to surround_set() but constrained to lie on a target flat. Requires a base set that serves as an
"origin" around which the random scales are to be generated (before being projected onto the target
flat).

Usage

populate_flat(
set,
target_scale = NULL,
target_rows = NULL,
start_zero = TRUE,
ineqmat = NULL,
edo = 12,
rounder = 10,
magnitude = 2,
distance = 1

)

Arguments

set Numeric vector of pitch-classes in the set

target_scale A numeric vector which represents a scale on the target flat.

target_rows An integer vector: each integer specifies a row of ineqmat which helps to deter-
mine the target flat. The rows must be linearly independent.

42 populate_flat

start_zero Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

magnitude Numeric value specifying how many sets to return. Defaults to 2.

distance How far (in units of voice leading work, using the Euclidean metric) should the
sampled scales be from the input set?

Details

The target flat can be specified by naming the target_rows that determine the flat (in the manner
of project_onto()) or by naming a target_scale on the desired flat. Both parameters default to
NULL, in which case the function populates the flat that set itself lies on.

Value

A matrix whose columns represent scales on the desired flat. The matrix has n rows (where n is the
number of notes in set) and n * 10^magnitude columns.

Examples

Let's sample several scales on the same flat as j(dia):
major <- c(0, 2, 4, 5, 7, 9, 11)
jdia_flat_scales <- populate_flat(major, j(dia))
unique(apply(jdia_flat_scales, 2, whichsvzeroes), MARGIN=2)

So all the scales do lie on one flat, but they may be different colors.
Let's plot them using different literal colors to represent the scalar "colors."
jdia_flat_svs <- apply(apply(jdia_flat_scales, 2, signvector), 2, toString)
unique_svs <- sort(unique(jdia_flat_svs))
match_sv <- function(sv) which(unique_svs == sv)
sv_colors <- grDevices::hcl.colors(length(unique_svs),

palette="Green-Orange")[sapply(jdia_flat_svs, match_sv)]
plot(jdia_flat_scales[2,], jdia_flat_scales[3,], pch=20, col=sv_colors,

xlab = "Height of scale degree 2", ylab = "Height of scale degree 3",
asp=1)

abline(0, 2, lty="dashed", lwd=2)
points(j(2), j(3), cex=2, pch="x")
points(2, 4, cex=2, pch="o")

Most of our sampled sets belong to two colors separated by the dashed
line on the plot. The dashed line represents the inequality that determines

primary_hue 43

the size of a scale's second step in relation to its first step. This is
hyperplane #1 in the space, so it corresponds to the first entry in each
scale's sign vector. The point labeled "x" represents the just diatonic scale
itself, which has a larger first step than second step. The point labeled
"o" represents the 12-equal diatonic, whose whole steps are all equal and which
therefore lies directly on hyperplane #1. Finally, note that our sampled scales
also touch on a few other colors at the bottom & left fringes of the scatter plot.

primary_hue Primary colors

Description

In traditional pitch-class set theory, concepts like normal order and primeform() establish a canon-
ical representative for each equivalence class of pitch-class sets. It’s useful to do something similar
in MCT as well: given a family of scales, such as the collection of modes or a scale_palette(),
we can define the "primary color" of the family as the one that comes first when the scales’ sign
vectors are ordered lexicographically. primary_hue() uses ineqsym() to return a specific repre-
sentative of the primary color which belongs to the same palette of hues as the input. Because
primary_hue() focuses on hues rather than colors, it may not highlight the fact that two scales
have the same primary color. Thus, for information about broader families, primary_colornum()
returns the color number of the primary color, primary_signvector() returns the sign vector, and
primary_color() itself uses quantize_color() to return a consistent representative of each color.

Usage

primary_hue(
set,
type = c("all", "half_palette", "modes"),
ineqmat = NULL,
edo = 12,
rounder = 10

)

primary_colornum(set, type = "all", ...)

primary_signvector(set, type = "all", ...)

primary_color(set, type = "all", nmax = 12, reconvert = FALSE, ...)

Arguments

set Numeric vector of pitch-classes in the set

type How broad of an equivalence class should be considered? May be one of three
options:

• "all", the default, uses the full range of scale_palette() relationships

44 primary_hue

• "half_palette" uses scale_palette() with include_involution=FALSE

• "modes" uses only the n modes of set

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

... Arguments to be passed to primary_hue()

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to 12edo? Defaults to FALSE.

Value

A numeric vector representing a scale for primary_hue(); a single integer for primary_colornum();
a signvector() for primary_signvector(); and a list like quantize_color() for primary_color().

Examples

major_64 <- c(0, 5, 9)
primary_hue(major_64)
primary_hue(major_64, type="modes")

viennese_trichord <- c(0, 6, 11)
Same primary color as major_64:
apply(cbind(major_64, viennese_trichord), 2, primary_signvector)

But a different primary hue:
primary_hue(viennese_trichord)

Only works with representative_signvectors loaded:
primary_colornum(major_64) == primary_colornum(viennese_trichord)

primary_color(major_64)
primary_color(viennese_trichord)

primeform 45

primeform Prime form of a set using Rahn’s algorithm

Description

Takes a set (in any order, inversion, and transposition) and returns the canonical ("prime") form that
represents the Tn/TnI-type to which the set belongs. Uses the algorithm from Rahn 1980 rather
than Forte 1973.

Usage

primeform(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

In principle this should work for sets in continuous pitch-class space, not just those in a mod k
universe. But watch out for rounding errors: if you can manage to work with integer values, that’s
probably safer. Otherwise, try rounding your set to various decimal places to test for consistency of
result.

Value

Numeric vector of same length as set

Examples

primeform(c(0, 3, 4, 8))
primeform(c(0, 1, 3, 7, 8))
primeform(c(0, 3, 6, 9, 12, 14), edo=16)

46 project_onto

project_onto Closest point on a given flat

Description

Projects a scale onto the nearest point that lies on a target flat of the hyperplane arrangement.
project_onto() determines the target flat from a list of linearly independent rows in ineqmat
which define the flat. match_flat() determines the target by extrapolating from a given scale on
that flat. Note that while the projection lies on the desired flat (i.e. it will have all of the necessary 0s
in its sign vector), it will not necessarily belong to any particular color. (That is, projection doesn’t
give you control over the 1s and -1s of the sign vector.)

Usage

project_onto(
set,
target_rows,
ineqmat = NULL,
start_zero = TRUE,
edo = 12,
rounder = 10

)

match_flat(
set,
target_scale,
start_zero = TRUE,
ineqmat = NULL,
edo = 12,
rounder = 10

)

Arguments

set Numeric vector of pitch-classes in the set

target_rows An integer vector: each integer specifies a row of ineqmat which helps to deter-
mine the target flat. The rows must be linearly independent.

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

start_zero Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.

edo Number of unit steps in an octave. Defaults to 12.

quantize_color 47

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

target_scale A numeric vector which represents a scale on the target flat.

Value

A numeric vector of same length as set, representing the projection of set onto the flat determined
by target_rows or target_scale.

Examples

minor_triad <- c(0, 3, 7)
project_onto(minor_triad, 3)
project_onto(minor_triad, 1)
project_onto(minor_triad, c(1, 3))
This last projection results in the perfectly even scale
because that's the only scale on both hyperplanes 1 and 3.

major_scale <- c(0, 2, 4, 5, 7, 9, 11)
projected_just_dia <- match_flat(j(dia), major_scale)
print(projected_just_dia)

This is very close to fifth-comma meantone:
fifth_comma_meantone <- sim(sort(((0:6) * meantone_fifth(1/5))%%12))[,5]
vl_dist(projected_just_dia, fifth_comma_meantone)

quantize_color Find a scale mod k that matches a given color

Description

Modal Color Theory is useful for analyzing scales in continuous pitch-class space with irrational
values, but sometimes those irrational values can be inconvenient to work with. Therefore it’s often
quite useful to find a scale that has the same color as the one you’re studying, but which can be
represented by integers in some mod k universe. See "Modal Color Theory," 27.

Usage

quantize_color(
set,
nmax = 12,
reconvert = FALSE,
ineqmat = NULL,
edo = 12,
rounder = 10

)

48 quantize_hue

Arguments

set Numeric vector of pitch-classes in the set

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to 12edo? Defaults to FALSE.

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the quantized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector measured relative to the unit step size input as
edo: these generally will not be integers. May also return a vector of NAs the same length as set if
no suitable quantization was found beneath the limit given by nmax.

Examples

qcm_fifth <- meantone_fifth()
qcm_lydian <- sort(((0:6)*qcm_fifth)%%12)
quantize_color(qcm_lydian)

Let's approximate the Werckmeister III well-temperament
werck_ratios <- c(1, 256/243, 64*sqrt(2)/81, 32/27, (256/243)*2^(1/4), 4/3,

1024/729, (8/9)*2^(3/4), 128/81, (1024/729)*2^(1/4), 16/9, (128/81)*2^(1/4))
werck3 <- z(werck_ratios)
quantize_color(werck3)
quantize_color(werck3, reconvert=TRUE)

quantize_hue Find a scale mod k that matches a given hue

quantize_hue 49

Description

Given any scale, attempts to find a scale defined as integers mod k which belongs to the same hue as
the input (i.e. would return TRUE when same_hue() is applied). This function thus is similar in spirit
to quantize_color() but seeks a more precise structural match between input and quantization.
Note, though, that while quantize_color() should always be able to find a suitable quantization
(if nmax is set high enough), this is not necessarily true for quantize_hue(). There are lines in
Rn which pass through no rational points but the origin, so some hues (including ones of musical
interest like the 5-limit just diatonic scale) may not have any quantization.

Usage

quantize_hue(set, nmax = 12, reconvert = FALSE, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

nmax Integer, essentially a limit to how far the function should search before giving
up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to 12edo? Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the quantized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector measured relative to the unit step size input as
edo: these generally will not be integers. May also return a vector of NAs the same length as set if
no suitable quantization was found beneath the limit given by nmax.

Examples

meantone_diatonic <- sort(((0:6)*meantone_fifth())%%12)
quantize_hue(meantone_diatonic) # Succeeds
quantize_hue(j(dia), nmax=15) # Fails no matter how high you set nmax.

quasi_guido <- convert(c(0, 2, 4, 5, 7, 9), 13, 12)
quantize_color(quasi_guido)
quantize_hue(quasi_guido)

50 realize_setword

readSCL Import a Scala (.scl) file as a scale

Description

This function allows you to import scales that have been defined in the Scala tuning format (*.scl)
into R to analyze with the functions of musicMCT. Scales can be defined in .scl files in different
ways, some of which may lack the precision that computations in musicMCT normally assume. If
you import a scale that seems to have less regularity than you expected (i.e. it’s on 0 hyperplanes
even though it seems to be very regular), try increasing your rounding tolerance (i.e. lower the value
of rounder arguments in the functions you apply to the imported scale).

Usage

readSCL(filename, scaleonly = TRUE, edo = 12)

Arguments

filename String with the path to the file to be imported
scaleonly Boolean: should readSCL return only a vector of pitches, not additional infor-

mation from the file? Defaults to TRUE

edo Number of unit steps in an octave. Defaults to 12.

Value

A numeric vector with the scale’s pitches if scaleonly=TRUE; else a list in which the scale’s pitches
are the first entry, the length of the scale is the second, and the size of the period is the third.

Examples

We'll read a sample .scl file that comes with the `musicMCT` package.
demo_filepath <- system.file("extdata", "sample_pentachord.scl", package="musicMCT")
fun_pentachord <- readSCL(demo_filepath)
sim(fun_pentachord)
brightnessgraph(fun_pentachord)

realize_setword Define scale by entering its relative step sizes

Description

Where asword() takes you from a scale to a ranked list of its step sizes, realize_setword does
the opposite: given a list of ranked step sizes, it defines a scale with those steps. It does not attempt
to define a scale that exists in 12-tone equal temperament or another mod k universe, though the
result will have integral values in some mod k setting. If you want that information, set reconvert
to FALSE.

rotate 51

Usage

realize_setword(setword, edo = 12, reconvert = TRUE)

Arguments

setword A numeric vector (intended to be nonnegative integers) of ranked step sizes;
should be the same length as desired output set.

edo Number of unit steps in an octave. Defaults to 12.

reconvert Boolean. Should the result be expressed measured in terms of semitones (or a
different mod k step if edo is not set to 12)?

Value

Numeric vector of same length as set, if reconvert is TRUE. If reconvert is FALSE, returns a list
with two elements. The first element (set) expresses the defined set as integer values in some edo.
The second element (edo) tells you which edo (mod k universe) the set is defined in.

Examples

dim7 <- realize_setword(c(1,1,1,1))
four_on_the_floor <- realize_setword(c(1,1,1,1), edo=16)
my_luggage <- realize_setword(c(1,2,3,4,5))
my_luggage_in_15edo <- realize_setword(c(1,2,3,4,5),reconvert=FALSE)
dim7
four_on_the_floor
my_luggage
my_luggage_in_15edo

pwf_scale <- realize_setword(c(3,2,1,3,2,3,1))
asword(pwf_scale)

rotate Circular rotation of an ordered tuple

Description

Changes which element of a circularly-ordered series is in the first position without otherwise
changing the order. Used primarily to generate the modes of a scale. Single application moves
one element from the beginning of a tuple to the end.

Usage

rotate(x, n = 1, transpose_up = FALSE, edo = 12)

52 same_hue

Arguments

x Vector to be rotated

n Number of positions the vector should be rotated left. Defaults to 1. May be
negative.

transpose_up Boolean, defaults to FALSE which leaves entries unchanged. If set to TRUE, el-
ements moved from the head to the tail of the vector are increased in value by
edo.

edo Number of unit steps in an octave. Defaults to 12.

Value

(Rotated) vector of same length as x

Examples

rotate(c(0, 2, 4, 5, 7, 9, 11), n=2)
rotate(c(0, 2, 4, 5, 7, 9, 11), n=-2)
rotate(c(0, 2, 4, 5, 7, 9, 11), n=2, transpose_up=TRUE)
rotate(c(0, 2, 4, 5, 7, 9, 11), n=2, transpose_up=TRUE, edo=15)
rotate(c("father", "charles", "goes", "down", "and", "ends", "battle"),

n=4)

same_hue Do two scales lie on the same ray?

Description

Two scales which lie on the same ray from edoo() (the perfectly even scale) differ only in their
saturation and are said to belong to the same "hue." They are not only members of a large "color"
but also a much more specific structure which preserves properties such as ratio() and the precise
shape of brightnessgraph(). same_hue() tests whether two scales have this close relationship.

Usage

same_hue(set_1, set_2, edo = 12, rounder = 10)

Arguments

set_1, set_2 Numeric vectors of pitch-classes in the sets. Must be of same length.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Boolean: are the sets of the same hue? NB: TRUE for identical sets (even perfectly even scales);
FALSE for scales which are related by "involution."

saturate 53

Examples

set39 <- c(0, 5, 9, 10, 14, 16, 21)
set53 <- c(0, 7, 13, 16, 22, 26, 33)
set39 <- convert(set39, 39, 12)
set53 <- convert(set53, 53, 12)
same_hue(set39, set53)
Since they have the same hue, we can resaturate one to become the other:
relative_evenness <- evenness(set53)/evenness(set39)
set53
saturate(relative_evenness, set39)

These two hexachords belong to the same quasi-pairwise well formed
color (see "Modal Color Theory," p. 37), but not to the same hue:
guidonian_1 <- c(0, 2, 4, 5, 7, 9)
guidonian_2 <- convert(guidonian_1, 13, 12)
isTRUE(all.equal(signvector(guidonian_1), signvector(guidonian_2)))
same_hue(guidonian_1, guidonian_2)

saturate Modify evenness without changing hue

Description

Saturation parameterizes scale structures along a single degree of freedom which corresponds to
size of the vector from the "white" perfectly even scale to the scale in question. Variation in a
scale’s saturation minimally affects its structural properties. The function saturate() takes in a
scale and a saturation parameter (r) and returns another scale along the same line (i.e. including the
scale’s hue and its scalar involution–see "Modal Color Theory," 32).

Usage

saturate(r, set, edo = 12)

Arguments

r Numeric: the relative proportion to (de)saturate the set by. If r is set to 0, returns
white; if r = 1, returns the input set. If 0 < r < 1, the saturation is decreased. If r
> 1, the saturation is increased, potentially to the point where the set moves past
some OPTIC boundary. If r < 0, the result is an "involution" of the set.

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

Value

Numeric vector of same length as set (another scale on the same hue)

54 sc

Examples

lydian <- c(0, 2, 4, 6, 7, 9, 11)
qcm_fifth <- meantone_fifth()
qcm_dia <- sort(((0:6)*qcm_fifth)%%12)
evenness_ratio <- evenness(qcm_dia) / evenness(lydian)
desaturated_lydian <- saturate(evenness_ratio, lydian)
desaturated_lydian
qcm_dia

ionian <- c(0, 2, 4, 5, 7, 9, 11)
involution_of_ionian <- saturate(-2, ionian)
convert(involution_of_ionian, 12, 42)
asword(ionian)
asword(involution_of_ionian)

sc Set class from Forte’s list

Description

Given a cardinality and ordinal position, returns the (Rahn) prime form of the set class from Allen
Forte’s list in The Structure of Atonal Music (1973). Draws the information from hard-coded values
in the package’s data.

Usage

sc(card, num)

Arguments

card Integer value between 1 and 12 (inclusive) that indicates the number of distinct
pitch-classes in the set class.

num Ordinal number of the desired set class in Forte’s list

Value

Numeric vector of length card representing a pc-set of card notes.

Examples

ait1 <- sc(4, 15)
ait2 <- sc(4, 29)

NB_rahn_prime_form <- sc(6, 31)
print(NB_rahn_prime_form)

scale_palette 55

scale_palette Orbit of a scale under symmetries of hyperplane arrangement

Description

Given an input scale, return a "palette" of related scalar colors. All the returned scales are the image
of the input under some ineqsym().

Usage

scale_palette(set, include_involution = TRUE, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

include_involution

Should involutional symmetry be included in the applied transformation group?
Defaults to TRUE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

A matrix whose columns represent the colors in set’s palette.

Examples

The palette of a minor triad is all inversions of major and minor:
minor_triad <- c(0, 3, 7)
scale_palette(minor_triad)

But 12edo is a little too convenient. The palette of the just minor triad
involves some less-consonant intervals:
just_minor <- j(1, m3, 5)
scale_palette(just_minor)

The palette of the diatonic scale includes all 42 well-formed heptachord colors:
dia_palette <- scale_palette(sc(7, 35))
dim(dia_palette)
table(apply(dia_palette, 2, iswellformed))

56 set_from_signvector

sc_comp Set class complement

Description

Find the complement of a set class in a given mod k universe. Complements have long been rec-
ognized in pitch-class set theory as sharing many properties with each other. This is true to some
extent when considering scales in continuous pc-space, but sometimes it is not! Therefore whenever
you’re exploring an odd property that a scale has, it can be useful to check that scale’s complement
(if you’ve come across the scale in some mod k context, of course).

Usage

sc_comp(set, canon = c("tni", "tn"), edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set
canon What transformations should be considered equivalent? Defaults to "tni" (using

standard set classes) but can be "tn" (using transposition classes)
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

Numeric vector representing a set class of length edo - n where n is the length of the input set

Examples

diatonic19 <- c(0, 3, 6, 9, 11, 14, 17)
chromatic19 <- sc_comp(diatonic19, edo=19)
icvecs_19 <- rbind(ivec(diatonic19, edo=19), ivec(chromatic19, edo=19))
rownames(icvecs_19) <- c("diatonic ivec", "chromatic ivec")
icvecs_19

set_from_signvector Create a scale from a sign vector

Description

This function attempts to take in a sign vector (and associated cardinality and ineqmat) and create
a scale whose sign vector matches the input. This is not always possible because not all sign vectors
correspond to colors that actually exist (just like there is no Fortean set class with the interval-class
vector <1 1 0 1 0 0>). The function will do its best but may eventually time out, using a similar
process as quantize_color(). You can increase the search time by increasing nmax, but in some
cases you could search forever and still find nothing. I don’t advise trying to use this function on
many sign vectors at the same time.

set_from_signvector 57

Usage

set_from_signvector(
signvec,
card,
nmax = 12,
reconvert = FALSE,
ineqmat = NULL,
edo = 12,
rounder = 10

)

Arguments

signvec Vector of 0, -1, and 1s: the sign vector that you want to realize.
card Integer: the number of notes in your desired scale.
nmax Integer, essentially a limit to how far the function should search before giving

up. Although every real color should have a rational representation in some mod
k universe, for some colors that k must be very high. Increasing nmax makes the
function run longer but might be necessary if small chromatic universes don’t
produce a result. Defaults to 12.

reconvert Boolean. Should the scale be converted to 12edo? Defaults to FALSE.
ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly

entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

If reconvert=FALSE, a list of two elements: element 1 is set with a vector of integers representing
the realized scale; element 2 is edo representing the number k of unit steps in the mod k universe.
If reconvert=TRUE, returns a single numeric vector converted to measurement relative to 12-tone
equal tempered semitones. May also return a vector of NAs of length card if no suitable scale was
found beneath the limit given by nmax.

Examples

This first command produces a real tetrachord:
set_from_signvector(c(-1, 1, 1, -1, -1, -1, 0, -1), 4)

But this one, which changes only the last entry of the previous sign vector
has no solution so will return four `NA` values.
set_from_signvector(c(-1, 1, 1, -1, -1, -1, 0, 1), 4)

58 signvector

signed_interval_class Ordered pitch-class interval represented as interval class with sign

Description

Represents an ordered interval between two pitch-classes as a value between -edo/2 and edo/2,
i.e. with an absolute value that matches its interval class as well as a sign (plus or minus) that
disambiguates between the two OPCIs included in the interval-class. That is, C->D is 2 whereas
C->B-flat is -2. Exactly half the octave is represented as a positive value.

Usage

signed_interval_class(x, edo = 12)

Arguments

x Single numeric value, representing an ordered pitch-class interval

edo Number of unit steps in an octave. Defaults to 12.

Value

Single numeric value

Examples

signed_interval_class(8)
signed_interval_class(6)
signed_interval_class(-6)
signed_interval_class(3*pi)

signvector Detect a scale’s location relative to a hyperplane arrangement

Description

As "Modal Color Theory" describes (pp. 25-26), each distinct scalar "color" is determined by its
relationships to the hyperplanes that define the space. For any scale, this function calculates a sign
vector that compares the scale to each hyperplane and returns a vector summarizing the results. If
the scale lies on hyperplane 1, then the first entry of its sign vector is 0. If it lies below hyperplane
2, then the second entry of its sign vector is -1. If it lies above hyperplane 3, then the third entry of
its sign vector is 1. Two scales with identical sign vectors belong to the same "color".

Usage

signvector(set, ineqmat = NULL, edo = 12, rounder = 10)

sim 59

Arguments

set Numeric vector of pitch-classes in the set
ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly

entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

A vector whose entries are 0, -1, or 1. Length of vector equals the number of hyperplanes in
ineqmat.

Examples

037 and 016 have identical sign vectors because they belong to the same trichordal color
signvector(c(0, 3, 7))
signvector(c(0, 1, 6))

Just and equal-tempered diatonic scales have different sign vectors because they have
different internal structures (e.g. 12edo dia is generated but just dia is not).
dia_12edo <- c(0, 2, 4, 5, 7, 9, 11)
just_dia <- j(dia)
isTRUE(all.equal(signvector(dia_12edo), signvector(just_dia)))

sim Scalar interval matrix

Description

As defined by Tymoczko 2008 ("Scale Theory, Serial Theory and Voice Leading") https://onlinelibrary.
wiley.com/doi/10.1111/j.1468-2249.2008.00257.x, the scalar interval matrix represents the
"rotations" of a set, transposed to begin on 0, in its columns. Its nth row represents the specific
intervals which represent its generic interval of size n.

Usage

sim(set, edo = 12)

Arguments

set Numeric vector of pitch-classes in the set
edo Number of unit steps in an octave. Defaults to 12.

https://onlinelibrary.wiley.com/doi/10.1111/j.1468-2249.2008.00257.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1468-2249.2008.00257.x

60 simplify_scale

Value

Numeric n by n matrix where n is the number of notes in set

Examples

diatonic_modes <- sim(c(0, 2, 4, 5, 7, 9, 11))
print(diatonic_modes)

miyakobushi_modes <- sim(c(0, 1, 5, 7, 8)) # rows show trivalence
print(miyakobushi_modes)

simplify_scale Best ways to regularize a scale

Description

Given an input scale, identify which adjacent colors represent good approximations of it, in a sense
consistent with "Modal Color Theory," pp. 31-32.

Usage

simplify_scale(
set,
start_zero = TRUE,
ineqmat = NULL,
scales = NULL,
signvector_list = NULL,
adjlist = NULL,
method = c("euclidean", "taxicab", "chebyshev", "hamming"),
display_digits = 2,
edo = 12,
rounder = 10

)

best_simplification(set, ...)

Arguments

set Numeric vector of pitch-classes in the set

start_zero Boolean: should the result be transposed so that its pitch initial is zero? Defaults
to TRUE.

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

simplify_scale 61

scales List of scales representing the faces of your hyperplane arrangement. Defaults
to NULL in which case the function looks for representative_scales in the
global environment.

signvector_list

A list of signvectors to use as the reference by which colornum assigns a value.
Defaults to NULL and will attempt to use representative_signvectors, which
needs to be downloaded and assigned separately from the package musicMCT.

adjlist Adjacency list structured in the same way as color_adjacencies. Defaults to
NULL in which case the function looks for color_adjacencies in the global
environment.

method What distance metric should be used? Defaults to "euclidean" (unlike most
functions with a method parameter in musicMCT) but can be "taxicab", "chebyshev",
or "hamming".

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

... Other arguments to be passed from best_simplification() to simplify_scale().

Details

Suppose that you’ve gathered data on how a particular instrument is tuned. Two intervals in its
scale differ by about 12 cents: does it make sense to consider those intervals to be essentially the
same, up to some combination of measurement error and the permissiveness of cognitive categories?
simplify_scale() helps to answer such a question by considering whether eliding a precisely
measured difference results in a significant simplification of the overall scale structure.

It accomplishes this by starting from two premises:

• Any simplification should move to an adjacent color with fewer degrees of freedom.

• There’s a tradeoff between moving farther (i.e. requiring more measurement fuzziness) and
achieving greater regularity. Therefore it starts by projecting the input scale onto all neigh-
boring flats with fewer degrees of freedom. Some projections can be rejected immediately
because the closest point on the flat isn’t actually an adjacent color. The non-rejected projec-
tions can therefore be ranked by calculating the "cost" of each additional regularity: for every
1 or -1 in the sign vector that is converted to a 0, how far does one have to move in voice
leading space?

To answer this question, simplify_signvector needs access to data about the hyperplane ar-
rangement in question. For the basic "Modal Color Theory" arrangements, this is the data in
representative_scales.rds, representative_signvectors.rds, and color_adjacencies.rds.
The function assumes that, if you don’t specify other data, you have those three files loaded into
your workspace. It can’t function without them.

62 step_signvector

Value

A matrix with n+6 rows, where n is the number of notes in the scale. Each column represents a
scale which is a potential simplification of the input set, together with details about that simplified
scale. The first n entries of the column represent the pitches of the scale itself:

• The n+1th row indicates the color number of the simplification.

• The n+2th row shows how many degrees of freedom the simplification has (always between 0
and d-1 where d is set’s degree of freedom).

• The n+3th row calculates the voice-leading distance from set to the simplified scale (accord-
ing to the chosen method, for which Euclidean distance is the default because it corresponds
to the assumption that orthogonal projection finds the closest point on a neighboring flat).

• The n+4th row counts how many more hyperplanes the simplified scale lies on compared to
set.

• The n+5th row is a quotient of the previous two rows (distance divided by number of new
regularities).

• The n+6th row calculates a final "score" which is used to order the columns from best (first) to
worst (last) simplifications. This score is the inverse of the previous row divided by the total
number of hyperplanes in the arrangement. (Without this normalization, scores for higher
cardinalities quickly become much larger than scores for low cardinalities.)

If display_digits is a value other than NULL, the function prints to console a suitably rounded
representation of the data, while invisibly returning the unrounded information.

best_simplification() returns simply a numeric vector with the scale judged optimal by simplify_scale()
(i.e. the first n entries of its first column, without all the other information).

Examples

For this example to run, you need the necessary data files loaded.
Let's see what happens if we try to simplify the 5-limit just diatonic:

simplify_scale(j(dia))

So the best option is color number 942659, which is the "well-formed"
structure of the familiar diatonic scale. The particular saturation of
that meantone structure is very close to 1/5-comma meantone:

simplified_jdia <- best_simplification(j(dia))
fifth_comma_dia <- sim(sort((meantone_fifth(1/5)*(0:6))%%12))[,5]
vl_dist(simplified_jdia, fifth_comma_dia)

step_signvector Specify a scale’s step pattern with a sign vector

subsetspectrum 63

Description

Rather than calculate the full sign vector from the "modal color" hyperplane arrangement, some-
times it’s advantageous to use a sign vector that reflects only the pairwise comparisons on a scale’s
steps. This function does that.

Usage

step_signvector(set, ineqmat = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

A vectors of signs, -1, 0, and 1, corresponding to the step-related hyperplanes in the defined
ineqmat.

Examples

step_signvector(sc(7, 35)) # Half the length of a full sign vector for heptachords:
signvector(sc(7, 35))

subsetspectrum Subset varieties for all subsets of a fixed size

Description

Applies subset_varieties() not just to a particular subset shape but to all possible subset shapes
given a fixed cardinality. For example, finds the specific varieties of all trichordal subsets of the
major scale, not than just the varieties of the tonal triad. Comparable to intervalspectrum() but
for subsets larger than dyads.

64 subsetspectrum

Usage

subsetspectrum(
set,
subsetcard,
simplify = TRUE,
mode = "tn",
edo = 12,
rounder = 10

)

Arguments

set The scale to find subsets of, as a numeric vector

subsetcard Single integer defining the cardinality of subsets to consider

simplify Should "inversions" of a subset be ignored? Boolean, defaults to TRUE

mode String "tn" or "tni". When defining subset shapes, use transposition or trans-
position & inversion to reduce the number of shapes to consider? Defaults to
"tn".

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Details

The parameter simplify lets you control whether to consider different "inversions" of a subset
shape independently. For instance, with simplify=TRUE, only root position triads (0, 2, 4) would
be considered; but with simplify=FALSE, the first inversion (0, 2, 5) and second inversion (0, 3, 5)
subset shapes would also be displayed.

Value

A list whose length matches the number of distinct subset shapes (given the chosen options). Each
entry of the list is a matrix displaying the varieties of some particular subset type.

Examples

c_major_scale <- c(0, 2, 4, 5, 7, 9, 11)
subsetspectrum(c_major_scale, 3)
subsetspectrum(c_major_scale, 3, simplify=FALSE)
subsetspectrum(c_major_scale, 3, mode="tni") # Note the absence of a "0, 2, 3" matrix

subset_multiplicities 65

subset_multiplicities Count the multiplicities of a subset-type’s varieties

Description

Given the varieties of a subset type returned by subset_varieties(), subset_multiplicities()
counts how many times each one occurs in the scale. These are the multiplicities of the subsets in
the sense of Clough and Myerson (1985)’s result "structure yields multiplicity" for well-formed
scales.

Usage

subset_multiplicities(
subsetdegrees,
set,
edo = 12,
rounder = 10,
display_digits = 2

)

Arguments

subsetdegrees Vector of integers indicating the generic shape to use, e.g. c(0, 2, 4) for tertian
triads in a heptachord. Expected to begin with 0 and must have length > 1.

set The scale to find subsets of, as a numeric vector

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

Value

Numeric vector whose names indicate the k varieties of the subset type and whose entries count
how often each variety occurs.

Examples

subset_multiplicities(c(0, 2, 4), sc(7, 35))
subset_multiplicities(c(0, 1, 4), sc(7, 35))

subset_multiplicities(c(0, 2, 4), j(dia))

https://www.jstor.org/stable/843615

66 subset_varieties

subset_varieties Specific varieties of scalar subsets given a generic shape

Description

Considered mod 7, the traditional triads of a diatonic scale are all instances of the generic shape (0,
2, 4). They come in three varieties: major, minor, and diminished. This function lists the distinct
varieties of any similarly defined generic shape which occur as subsets in some specified scale (or
larger set).

Usage

subset_varieties(subsetdegrees, set, unique = TRUE, edo = 12, rounder = 10)

Arguments

subsetdegrees Vector of integers indicating the generic shape to use, e.g. c(0, 2, 4) for tertian
triads in a heptachord. Expected to begin with 0 and must have length > 1.

set The scale to find subsets of, as a numeric vector

unique Should each variety be listed only once? Defaults to TRUE. If FALSE, each spe-
cific variety will be listed corresponding to how many times it occurs as a subset.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

A numeric matrix whose columns represent the specific varieties of the subset

Examples

c_major_scale <- c(0, 2, 4, 5, 7, 9, 11)
double_harmonic_scale <- c(0, 1, 4, 5, 7, 8, 11)

subset_varieties(c(0, 2, 4), c_major_scale)
subset_varieties(c(0, 2, 4), c_major_scale, unique=FALSE)
subset_varieties(c(0, 2, 4), double_harmonic_scale)

surround_set 67

surround_set Random scales uniformly distributed on a hypersphere around an in-
put

Description

Sometimes you want to explore what other scale structures a given scale is close to. This can be
done by studying the network of color adjacencies in suitably low cardinalities (see "Modal Color
Theory," 31-37), but it can also be rewarding simply to randomly sample scales that are suitably
close to the one you started with.

The larger your starting scale, the more complicated is the geometry of the color space it lives
in. Therefore this function generates a larger number of random scales for larger cardinalities: by
default, if the length of the input set is card, surround_set gives card * 100 output scales. The
parameter magnitude controls the order of magnitude of your sample (i.e. if you want ~1000 scales
rather than ~100, set magnitude=3).

The size of the hypersphere which the function samples is, by default, 1. When we’re working with
a unit of 12 semitones per octave, 1 semitone of voice leading work can get you pretty far away
from the original set, especially in higher cardinalities. (For instance, C major to C melodic minor
is just 1 semitone of motion, but there are 3 other colors that intervene between these two scales
along a direct path.) Depending on your goals, you might want to try a couple different orders of
magnitude for distance.

Usage

surround_set(set, magnitude = 2, distance = 1)

Arguments

set Numeric vector of pitch-classes in the set

magnitude Numeric value specifying how many sets to return. Defaults to 2.

distance How far (in units of voice leading work, using the Euclidean metric) should the
sampled scales be from the input set?

Value

a Matrix with length(set) rows and 10^magnitude columns, representing 10^magnitude differ-
ent scales

Examples

First we sample 30 trichords surrounding the minor triad 037.
chords_near_minor <- surround_set(c(0,3,7), magnitude=1, distance=.5)
chords_near_minor

The next two commands will plot the sampled trichords on an x-y plane as
circles; the minor triad that they surround is marked with a "+" sign.
plot(chords_near_minor[2,], chords_near_minor[3,],

68 svzero_fingerprint

xlab="Third", ylab="Fifth", asp=1)
points(3, 7, pch="+")

The following two commands will plot the two lines (i.e. hyperplanes) that
demarcate the boundaries of the minor triad's color. Most but not all
of our randomly generated points should fall in the space between the
two lines, in the same region as the "+" representing 037.
abline(0, 2)
abline(6, 1/2)

svzero_fingerprint Distinguish different types of interval equalities

Description

Not all hyperplanes are made equal. Those which represent "formal tritone" comparisons and those
which are "exceptional" because they check a scale degree twice ("Modal Color Theory," 40-41)
play a different role in the structure of the hyperplane arrangement than the rest. This function
returns a "fingerprint" of a scale which is like countsvzeroes() but which counts the different
types of hyperplane separately.

Usage

svzero_fingerprint(set, ineqmat = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric vector with 3 entries: the number of ’normal’ hyperplanes the set lies on, the number of
’exceptional’ hyperplanes, and the number of hyperplanes which compare a formal tritone to itself.

tc 69

Examples

Two hexachords on the same number of hyperplanes but with different fingerprints
hex1 <- c(0, 1, 3, 5, 8, 9)
hex2 <- c(0, 1, 3, 5, 6, 9)
countsvzeroes(hex1) == countsvzeroes(hex2)
svzero_fingerprint(hex1)
svzero_fingerprint(hex2)

Their brightness graphs make their difference more apparent:
brightnessgraph(hex1)
brightnessgraph(hex2)

tc Transpositional combination & pitch multiplication

Description

Cohn (1988) doi:10.2307/745790 defines transpositional combination as a procedure that gen-
erates a pc-set as the union of two (or more) transpositions of some smaller set. tc() takes
the small set and a vector of transposition levels, returning the larger pc-set that results. (Pierre
Boulez referred to this procedure as pitch "multiplication", which Amiot (2016) doi:10.1007/
978-3-319-45581-5 shows to be not at all fanciful, as a convolution of two pitch-class sets.)

Usage

tc(set, multiplier = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

multiplier Numeric vector of transposition levels to apply to set. If not specified, defaults
to set.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric vector of length ≤ length(set) · length(multiplier)

doi:10.2307/745790
doi:10.1007/978-3-319-45581-5
doi:10.1007/978-3-319-45581-5

70 tn

Examples

tc(c(0, 4), c(0, 7))
tc(c(0, 7), c(0, 4))

pyth_tetrachord <- j(1, t, dt, 4)
pyth_dia <- tc(pyth_tetrachord, j(1, 5))
same_hue(pyth_dia, c(0, 2, 4, 5, 7, 9, 11))

tn Transposition and Inversion

Description

Calculate the classic operations on pitch-class sets Tn and TnI . That is, tn adds a constant to all
elements in a set modulo the octave, and tni essentially multiplies a set by -1 (modulo the octave)
and then adds a constant (modulo the octave). If sorted is TRUE (as is default), the resulting set is
listed in ascending order, but sometimes it can be useful to track transformational voice leadings, in
which case you should set sorted to FALSE.

startzero transposes a set so that its first element is 0. (Note that this is different from tnprime()
because it doesn’t attempt to find the most compact form of the set. See examples for the contrast.)

Sometimes you just want to invert a set and you don’t care what the index is. charm is a quick way
to do this, giving a name to the transposition-class of T0I of the set. (The name charm is a reference
to "strange" and "charm" quarks in particle physics: I like these as names for the "a" and "b" forms
of a set class, i.e. the strange common triad is 3-11a = (0, 3, 7) and the charm common triad is
3-11b = (0, 4, 7). The name of the function charm means that if you input a strange set, you get out
a charm set, but NB also vice versa.)

Usage

tn(set, n, sorted = TRUE, edo = 12, rounder = 10)

tni(set, n, edo = 12, sorted = TRUE)

startzero(set, sorted = TRUE, edo = 12, rounder = 10)

charm(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set
n Numeric value (not necessarily an integer!) representing the index of transposi-

tion or inversion.
sorted Do you want the result to be in ascending order? Boolean, defaults to TRUE.
edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

tndists 71

Value

Numeric vector of same length as set

Examples

c_major <- c(0, 4, 7)
tn(c_major, 2)
tn(c_major, -10)
tni(c_major, 7)
tni(c_major, 7, sorted=FALSE)
tn(c(0, 1, 6, 7), 6)
tn(c(0, 1, 6, 7), 6, sorted=FALSE)

Difference between startzero and tnprime
e_maj7 <- c(4, 8, 11, 3)
startzero(e_maj7)
tnprime(e_maj7)
isTRUE(all.equal(tnprime(e_maj7), charm(e_maj7))) # True because inversionally symmetrical

Derive minimal voice leading from ionian to lydian
ionian <- c(0, 2, 4, 5, 7, 9, 11)
lydian <- rotate(tn(ionian, 7, sorted=FALSE), 3)
lydian - ionian

tndists Distances between continuous transpositions of a set

Description

One way to think about the voice-leading potential of a set is to consider the minimal voice-leadings
by which it can move to transpositions of itself (or another set). For instance, the major triad’s clos-
est transpositions are T4 and T8 while its most distant transposition is T6, and potentially also T±2

depending on the distance metric you use. For the major triad restricted to 12-tone equal tempera-
ment, this set of relationships is well modeled by Richard Cohn’s discussion of Douthett & Stein-
bach’s "Cube Dance" in Audacious Euphony (102-106). The behavior of other sets is not always
what you might expect extrapolating from the case of tertian sonorities. For instance, the trichord
(027) has different minimal neighbors depending on the metric chosen: its nearest neighbors are
T±4 under the Euclidean metric but T±5 under the taxicab metric.

This function allows us to visualize such relationships by plotting the minimal voice leading dis-
tance from a set to transpositions of its goal in continuous pc-space. (In spirit, it is like a continuous
version of vl_rolodex() except that it visualizes a voice-leading distance rather than reporting the
specific motions of the set’s individual voices.) The main intended use of the function is the plot
that it produces, which represents many discrete Tns of the set (for a sampling of each edo step
divided into subdivide amounts) on the x axis and voice-leading distance on the y axis. Secon-
darily, tndists() invisibly returns the distance values that it plots, named according to the Tn they
correspond to.

https://www.jstor.org/stable/843877
https://www.jstor.org/stable/843877

72 tnprime

Usage

tndists(
set,
goal = NULL,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
subdivide = 100,
edo = 12,
rounder = 10

)

Arguments

set Numeric vector of pitch-classes in the set

goal Numeric vector like set: what is the tn-type of the voice leading’s destination?
Defaults to NULL, in which case the function uses set as the tn-type.

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

subdivide Numeric: how many small amounts should each edo step be divided into? De-
faults to 100.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric vector of length edo * subdivide representing distances of the transpositions. Names
indicate the transposition index that corresponds to each distance.

Examples

major_triad <- c(0, 4, 7)
taxicab_dists <- tndists(major_triad)
euclidean_dists <- tndists(major_triad, method="euclidean")
tns_to_display <- c("1.9", "1.92", "1.95", "2", "2.05", "2.08", "2.1")
taxicab_dists[tns_to_display]
euclidean_dists[tns_to_display]

tnprime Transposition class of a given pc-set

Description

Uses Rahn’s algorithm to calculate the best normal order for the transposition class represented by
a given set. Reflects transpositional but not inversional equivalence, i.e. all major triads return (0,
4, 7) and all minor triads return (0, 3, 7).

tsym 73

Usage

tnprime(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric vector of same length as set representing the set’s Tn-prime form

Examples

tnprime(c(2, 6, 9))
tnprime(c(0, 3, 6, 9, 14), edo=16)

tsym Test for transpositional symmetry

Description

Does the set map onto itself at some transposition other than T0? That is, does it map onto itself
under Tn for some appropriate n? tsym() can return either TRUE/FALSE or an index of symmetry
but defaults to the former. tsym_index() is a simple wrapper for tsym() that returns the latter.
tsym_degree() counts the total number of transpositional symmetries.

Usage

tsym(set, return_index = FALSE, edo = 12, rounder = 10)

tsym_index(set, ...)

tsym_degree(set, ...)

Arguments

set Numeric vector of pitch-classes in the set

return_index Should the function return a specific index at which the set is symmetrical?
Defaults to FALSE.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

... Arguments to be passed to tsym()

74 vlsig

Value

By default, tsym() returns TRUE if the set has non-trivial transpositional symmetry, FALSE other-
wise. If return_index is TRUE, returns a vector of transposition levels at which the set is sym-
metric, including 0. tsym_index() is a wrapper for tsym() which sets return_index to TRUE.
tsym_degree() gives the degree of symmetry, which is simply the length of tsym_index()’s value.

Examples

tsym(sc(6, 34))
tsym(sc(6, 35))
tsym(edoo(5))

Works for continuous values:
tsym(tc(j(dia), edoo(3)))

Index and Degree:
tsym_index(c(0, 1, 3, 6, 7, 9))
tsym_degree(edoo(7))

vlsig Elementary voice leadings

Description

Calculates the "voice-leading signature" of the set’s elementary transpositions as determined by
vl_generators().

Usage

vlsig(set, index = 1, display_digits = 2, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

index Integer: which voice-leading generator should be displayed? Defaults to 1, the
one which induces the least amount of motion.

display_digits Integer: how many digits to display when naming any non-integral interval sizes.
Defaults to 2.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

vl_dist 75

Details

Note that the voice leadings determined by vlsig() can be different from the corresponding ones
at the same Tn level in vl_rolodex(). The latter function prioritizes minimal voice leadings,
whereas vlsig() prioritizes elementary voice leadings derived from a set’s brightnessgraph().
In particular, this means that vlsig() voice leadings will always be ascending, involve at least
one common tone, and involve no contrary motion. See the odd_pentachord voice leadings in the
Examples.

Value

List with three elements:

• "vl" which shows the distance (in edo steps) that each voice moves

• "tn" which indicates the (chromatic) transposition achieved by the voice leading

• "rotation" which indicates the scalar transposition caused by the voice leading

Examples

major_scale <- c(0, 2, 4, 5, 7, 9, 11)
vlsig(major_scale) # Hook's elementary signature transformation

pure_major_triad <- j(1, 3, 5)
vlsig(pure_major_triad, index=1)
vlsig(pure_major_triad, index=2)

odd_pentachord <- c(0, 1, 4, 9, 11) # in 15-edo
vlsig(odd_pentachord, index=2, edo=15)
vl_rolodex(odd_pentachord, edo=15)$"8"

vl_dist How far apart are two scales?

Description

Using the chosen method to measure distance, determines how far apart two scales are in voice-
leading space.

Usage

vl_dist(
set_1,
set_2,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
rounder = 10

)

76 vl_generators

Arguments

set_1, set_2 Numeric vectors of pitch-classes in the sets. Must be of same length.

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric: distance between set_1 and set_2

Examples

c_major <- c(0, 4, 7)
a_minor_63 <- c(0, 4, 9)
f_minor_64 <- c(0, 5, 8)
vl_dist(c_major, a_minor_63)
vl_dist(c_major, f_minor_64)
vl_dist(c_major, a_minor_63, method="euclidean")
vl_dist(c_major, f_minor_64, method="euclidean")

vl_generators Which transpositions give elementary voice leadings?

Description

Just as the transpositions of the diatonic scale can be generated by Hook (2008)’s doi:10.1515/
9781580467476-008 elementary "signature transformation," the transpositional voice leadings of
any set can generally be decomposed into a small number of basic motions. These motions corre-
spond to the arrows in a set’s brightnessgraph(). (The qualifier "generally" is needed because of
certain problematic edge cases, such as the perfectly even scales of edoo() whose minimal voice
leadings always involve entirely parallel motion, which cannot be derived from "mode shift" voice
leadings represented on a brightness graph.) vl_generators() identifies these basic voice-leading
motions.

Usage

vl_generators(set, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

doi:10.1515/9781580467476-008
doi:10.1515/9781580467476-008

vl_rolodex 77

Value

2-by-m matrix whose m columns represent the m distinct voice-leading generators. The top row
indicates the generic size of each interval; the bottom row indicates the specific size. Results are
sorted so that the first row (generic intervals) is strictly increasing.

Examples

diatonic_scale <- c(0, 2, 4, 5, 7, 9, 11)
melodic_minor <- c(0, 2, 3, 5, 7, 9, 11)
vl_generators(diatonic_scale)
vl_generators(melodic_minor)
vl_generators(j(dia))

maj7 <- c(0, 4, 7, 11)
vl_generators(maj7)

vl_rolodex Minimal voice leadings to all transpositions of some Tn-type mod k

Description

Given a starting set (source) and some tn-type as a voice leading goal (goal_type), find the min-
imal voice leading to every transposition (in some mod k universe) of the goal. If a goal is not
specified, the goal is assumed to be the tn-type of the source set. This lets you see, for example,
the minimal voice leading from C7 to other dominant seventh chords mod 12. I couldn’t think of a
suitably serious and clear name for this information, so the metaphor behind "rolodex" is that these
voice leadings are the contact information that source has for all its acquaintances in goal_type.

Usage

vl_rolodex(
source,
goal_type = NULL,
reorder = TRUE,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
edo = 12,
rounder = 10,
no_ties = FALSE

)

Arguments

source Numeric vector, the pitch-class set at the start of your voice leading

goal_type Numeric vector, any pitch-class set representing the tn-type of your voice lead-
ing goal

78 whichmodebest

reorder Should the results be listed from smallest to largest voice leading size? Defaults
to TRUE. If FALSE results are listed in transposition order (i.e. T1, T2, ..., Tedo−1,
T0).

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.

Value

A list of length edo, each entry of which represents a voice leading (or group of tied voice leadings).
List entries are named by their transposition level.

Examples

vl_rolodex(c(0, 4, 7))

vl_rolodex(c(0, 4, 7), reorder=FALSE)

#Multisets sort of work! Best resolutions from dom7 to triads with doubled root:
vl_rolodex(c(0, 4, 7, 10), c(0, 0, 4, 7))

whichmodebest Smallest crossing-free voice leading between two pitch-class sets

Description

Given source and goal pitch-class sets, which mode of the goal is closest to the source (assuming
crossing-free voice leadings and the given method for determining distance).

Usage

whichmodebest(
source,
goal,
method = c("taxicab", "euclidean", "chebyshev", "hamming"),
no_ties = FALSE,
edo = 12,
rounder = 10

)

whichsvzeroes 79

Arguments

source Numeric vector, the pitch-class set at the start of your voice leading

goal Numeric vector, the pitch-class set at the end of your voice leading

method What distance metric should be used? Defaults to "taxicab" but can be "euclidean",
"chebyshev", or "hamming".

no_ties If multiple VLs are equally small, should only one be returned? Defaults to
FALSE, which is generally what an interactive user should want.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Numeric value(s) identifying the modes of goal. Single value if no_ties is TRUE, otherwise n
values for an n-way tie.

Examples

c_53 <- c(0, 4, 7)
c_64 <- c(7, 0, 4)
d_53 <- c(2, 6, 9)
e_53 <- c(4, 8, 11)

whichmodebest(c_53, c_64)
whichmodebest(c_64, c_53)
whichmodebest(c_53, e_53)
whichmodebest(c_53, d_53)
whichmodebest(c_53, d_53, method="euclidean")

See "Modal Color Theory," p. 12, note 21
pyth_dia_modes <- sim(sort((j(5) * 0:6)%%12))
pyth_lydian <- pyth_dia_modes[,1]
pyth_locrian <- pyth_dia_modes[,4]
whichmodebest(pyth_locrian, pyth_lydian)

whichsvzeroes Which interval-comparison equalities does a scale satisfy?

Description

As "Modal Color Theory" (p. 26) describes, one useful measure of a scale’s regularity is the number
of zeroes in its sign vector. This indicates how many hyperplanes a scale lies on, a geometrical fact
whose musical interpretation is, roughly speaking, how many times two generic intervals equal each
other in specific size. (I say only "roughly speaking" because one hyperplane usually represents
multiple comparisons: see Appendix 1.1.) Scales with a great degree of symmetry or other forms
of regularity such as well-formedness tend to be on a very high number of hyperplanes compared
to all sets of a given cardinality.

80 whichsvzeroes

musicMCT offers two convenience functions that return pertinent information from signvector().
countsvzeroes returns this count of the number of sign-vector zeroes, while whichsvzeroes
gives a list of the specific hyperplanes the scale lines on (numbered according to their position on the
given ineqmat). The specific information in whichsvzeroes can be useful because it determines
the "flat" of the hyperplane arrangement that the scale lies on, which is a more general kind of scalar
structure than color (as determined by the entire sign vector).

Usage

whichsvzeroes(set, ineqmat = NULL, edo = 12, rounder = 10)

countsvzeroes(set, ineqmat = NULL, edo = 12, rounder = 10)

Arguments

set Numeric vector of pitch-classes in the set
ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly

entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.
rounder Numeric (expected integer), defaults to 10: number of decimal places to round

to when testing for equality.

Value

Single numeric value for countsvzeroes and a numeric vector for whichsvzeroes

Examples

Sort 12edo heptachords by how many sign vector zeroes they have (from high to low)
heptas12 <- unique(apply(utils::combn(12, 7), 2, primeform), MARGIN=2)
heptas12_svzeroes <- apply(heptas12, 2, countsvzeroes)
colnames(heptas12) <- apply(heptas12, 2, fortenum)
heptas12[, order(heptas12_svzeroes, decreasing=TRUE)]

Multiple hexachords on the same flat but of different colors
hex1 <- c(0, 2, 4, 5, 7, 9)
hex2 <- convert(c(0, 1, 2, 4, 5, 6), 9, 12)
hex3 <- convert(c(0, 3, 6, 8, 11, 14), 15, 12)
hex_words <- rbind(asword(hex1), asword(hex2), asword(hex3))
rownames(hex_words) <- c("hex1", "hex2", "hex3")
c(colornum(hex1), colornum(hex2), colornum(hex3))
whichsvzeroes(hex1)
whichsvzeroes(hex2)
whichsvzeroes(hex3)
hex_words

writeSCL 81

writeSCL Create a Scala tuning file from a given scale

Description

You mean you don’t want to play around in R forever? This function lets you export any scale
you’ve defined in R as a .scl tuning file for use in Scala or by any synth that can read .scl files. Will
write to your working directory.

In addition to saving the necessary tuning data, the function will attempt to add as comments extra
information that can be derived from MCT functions, like the color number, degrees of freedom,
number of sign-vector zeroes, etc.

Usage

writeSCL(x, path, filename, period = 2, ineqmat = NULL, edo = 12, rounder = 10)

Arguments

x Numeric vector: the scale to export

path String specifying path where Scala file should be saved. No default and cannot
be missing.

filename String (in quotation marks): what to name your Scala file. Defaults to using the
name of x as the file name if you enter nothing.

period The frequency ratio at which your scale repeats; defaults to 2 which indicates an
octave-repeating scale.

ineqmat Specifies which hyperplane arrangement to consider. By default (or by explicitly
entering "mct") it supplies the standard "Modal Color Theory" arrangements of
getineqmat(), but can be set to "white," "roth", "pastel," or "rosy", giving the
ineqmats of make_white_ineqmat(), make_roth_ineqmat(), make_pastel_ineqmat(),
and make_rosy_ineqmat(). For other arrangements, the desired inequality ma-
trix can be entered directly.

edo Number of unit steps in an octave. Defaults to 12.

rounder Numeric (expected integer), defaults to 10: number of decimal places to round
to when testing for equality.

Value

Invisible NULL

Examples

neat_pentachord <- convert(c(0, 1, 4, 9, 11), 15, 12)

writeSCL(neat_pentachord, path=tempdir(), "neat_pentachord.scl")

82 z

z Frequency ratios to logarithmic pitch intervals (e.g. semitones)

Description

Simple convenience function for converting frequency ratios to semitones. Useful to have in ad-
dition to j() because j() is only defined for specific common values. Defaults to 12-tone equal
temperament but edo parameter allows other units.

Usage

z(..., edo = 12)

Arguments

... One or more numerics values which represent frequency ratios.

edo Number of unit steps in an octave. Defaults to 12.

Details

The name z() doesn’t make a lot of sense but has the virtue of being a letter that isn’t otherwise
very common. r (for ratio) and q (for the rationals) were both avoided because they’re already used
for other functions.

Value

Numeric vector representing the input ratios converted to edo unit steps per octave

See Also

j() is a more convenient input method for the most common frequency ratios.

Examples

z(81/80) == j(synt)

mod_jdia <- z(1, 10/9, 5/4, 4/3, 3/2, 5/3, 15/8)
minimize_vl(j(dia), mod_jdia)

z(1, 5/4, 3/2, edo=53)

zmate 83

zmate Twin set in the Z-relation (Z mate)

Description

For the standard 12edo sets of Fortean pitch-class set theory, given one pitch-class set, finds a set
class whose interval-class vector is the same as the input set but which does not include the input
set. Not all set classes participate in the Z-relation, in which case the function returns NA.

Usage

zmate(set)

Arguments

set Numeric vector of pitch-classes in the set

Details

These values are hard-coded from Forte’s list for non-hexachords and only work for subsets of the
standard chromatic scale. zmate() doesn’t even give you an option to work in a different edo. If it
were to do so, I can’t see a better solution than calculating all the set classes of a given cardinality
on the spot, which can be slow for higher edos.

Value

NA or numeric vector of same length as set

Examples

zmate(c(0, 4, 7))
zmate(c(0, 1, 4, 6))

Index

∗ datasets
fortenums, 18
ineqmats, 23

asword, 3
asword(), 50

base::unique(), 18
best_simplification (simplify_scale), 60
brightness_comparisons, 6
brightnessgraph, 4
brightnessgraph(), 6, 24, 52, 75, 76

c(), 32
carlos_step, 7
charm (tn), 70
colornum, 8
comparesignvecs, 9
convert, 10
coord_from_edo (coord_to_edo), 10
coord_to_edo, 10
countsvzeroes (whichsvzeroes), 79
countsvzeroes(), 24, 68
cov(), 12
cover (emb), 12

delta (eps), 13
delta(), 24

edoo, 11
edoo(), 52, 76
emb, 12
eps, 13
eps(), 24
evenness, 14
evenness(), 24

flex_points, 16
fortenum, 17
fortenum(), 18
fortenums, 18

fpunique, 18

get_relevant_rows, 19
getineqmat (makeineqmat), 34
getineqmat(), 8, 21, 23, 42, 44, 46, 48, 57,

59, 60, 63, 68, 80, 81

has_contradiction (isproper), 27
howfree, 20
howfree(), 24

ifunc, 21
ineqmats, 23
ineqsym, 23
ineqsym(), 43, 55
intervalspectrum, 25
intervalspectrum(), 29, 63
isgwf, 26
isgwf(), 24
isproper, 27
isproper(), 35
iswellformed, 28
iswellformed(), 24
isym, 29
isym_degree (isym), 29
isym_index (isym), 29
ivec, 31

j, 32
j(), 82

make_pastel_ineqmat
(make_white_ineqmat), 36

make_pastel_ineqmat(), 8, 21, 42, 44, 46,
48, 57, 59, 60, 63, 68, 80, 81

make_rosy_ineqmat (make_roth_ineqmat),
35

make_rosy_ineqmat(), 8, 21, 42, 44, 46, 48,
57, 59, 60, 63, 68, 80, 81

make_roth_ineqmat, 35

84

INDEX 85

make_roth_ineqmat(), 8, 21, 28, 42, 44, 46,
48, 57, 59, 60, 63, 68, 80, 81

make_white_ineqmat, 36
make_white_ineqmat(), 8, 21, 42, 44, 46, 48,

57, 59, 60, 63, 68, 80, 81
makeineqmat, 34
makeineqmat(), 23, 35, 36
match_flat (project_onto), 46
maxeven, 37
meantone_fifth, 38
minimize_vl, 39

names(), 22

optc_test, 40

populate_flat, 41
primary_color (primary_hue), 43
primary_colornum (primary_hue), 43
primary_hue, 43
primary_signvector (primary_hue), 43
primeform, 45
primeform(), 18, 43
project_onto, 46
project_onto(), 42

quantize_color, 47
quantize_color(), 43, 44, 49, 56
quantize_hue, 48

ratio (eps), 13
ratio(), 24, 52
readSCL, 50
realize_setword, 50
rotate, 51

same_hue, 52
same_hue(), 49
saturate, 53
sc, 54
sc(), 18
sc_comp, 56
scale_palette, 55
scale_palette(), 43, 44
set_from_signvector, 56
signed_interval_class, 58
signvector, 58
signvector(), 44, 80
sim, 59
simplify_scale, 60

spectrumcount (intervalspectrum), 25
spectrumcount(), 24
startzero (tn), 70
step_signvector, 62
step_signvector(), 19
strictly_proper (isproper), 27
subset_multiplicities, 65
subset_varieties, 66
subset_varieties(), 63, 65
subsetspectrum, 63
surround_set, 67
surround_set(), 41
svzero_fingerprint, 68
svzero_fingerprint(), 24

tc, 69
tn, 70
tndists, 71
tndists(), 16
tni (tn), 70
tnprime, 72
tnprime(), 70
tsym, 73
tsym_degree (tsym), 73
tsym_index (tsym), 73

vl_dist, 75
vl_generators, 76
vl_generators(), 74
vl_rolodex, 77
vl_rolodex(), 16, 71, 75
vlsig, 74

whichmodebest, 78
whichsvzeroes, 79
writeSCL, 81

z, 82
z(), 33
zmate, 83

	asword
	brightnessgraph
	brightness_comparisons
	carlos_step
	colornum
	comparesignvecs
	convert
	coord_to_edo
	edoo
	emb
	eps
	evenness
	flex_points
	fortenum
	fortenums
	fpunique
	get_relevant_rows
	howfree
	ifunc
	ineqmats
	ineqsym
	intervalspectrum
	isgwf
	isproper
	iswellformed
	isym
	ivec
	j
	makeineqmat
	make_roth_ineqmat
	make_white_ineqmat
	maxeven
	meantone_fifth
	minimize_vl
	optc_test
	populate_flat
	primary_hue
	primeform
	project_onto
	quantize_color
	quantize_hue
	readSCL
	realize_setword
	rotate
	same_hue
	saturate
	sc
	scale_palette
	sc_comp
	set_from_signvector
	signed_interval_class
	signvector
	sim
	simplify_scale
	step_signvector
	subsetspectrum
	subset_multiplicities
	subset_varieties
	surround_set
	svzero_fingerprint
	tc
	tn
	tndists
	tnprime
	tsym
	vlsig
	vl_dist
	vl_generators
	vl_rolodex
	whichmodebest
	whichsvzeroes
	writeSCL
	z
	zmate
	Index

