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Abstract

Applications integrating analysis components require a programmable interface which defines sta-

tistical operations independently of any programming language. By separating concerns of scientific

computing from application and implementation details we can derive an interoperable API for data

analysis. But what exactly are the concerns of scientific computing? To answer this question, the paper

starts with an exploration of the purpose, problems, characteristics, struggles, culture, and community

of this unique branch of computing. By mapping out the domain logic, we try to unveil the fundamental

principles and concepts behind statistical software. Along the way we highlight important problems and

bottlenecks that need to be addressed by the system in order to facilitate reliable and scalable analysis

units. Finally, the OpenCPU software is introduced as an example implementation that builds on HTTP

and R to expose a simple, abstracted interface for scientific computing.

1 Introduction

Methods for scientific computing are traditionally implemented in specialized software packages assisting

the statistician in all facets of the data analysis process. A single product typically includes a wealth of

functionality to interactively manage, explore and analyze data, and often much more. Products such as

R or STATA are optimized for use via a command line interface (CLI) whereas others such as SPSS focus

mainly on the graphical user interface (GUI). However, increasingly many users and organizations wish to

integrate statistical computing into third party software. Rather than working in a specialized statistical

environment, methods to analyze and visualize data get incorporated into pipelines, web applications and

big data infrastructures. This way of doing data analysis requires a different approach to statistical software

which emphasizes interoperability and programmable interfaces rather than UI interaction. Throughout the

paper we refer to this approach to statistical software as embedded scientific computing.

Early pioneering work in this area was done by Temple Lang (2000) and Chambers et al. (1998) who devel-

oped an environment for integration of statistical software in Java based on the CORBA standard (Henning,

2006). Recent work in embedded scientific computing has mostly aimed at low-level tools for directly con-

necting statistical software to general purpose environments. For R, bindings and bridges are available to

execute an R script or process from inside all popular languages. For example, JRI (Urbanek, 2013a), RInside
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(Eddelbuettel and Francois, 2011), rpy2 (Gautier, 2012) or RinRuby (Dahl and Crawford, 2009) can be used

to call R from respectively Java, C++, Python or Ruby. Heiberger and Neuwirth (2009) provide a set of tools

to run R code from DCOM clients on Windows, mostly to support calling R in Microsoft Excel. The rApache

module (mod R) makes it possible to execute R scripts from the Apache2 web server (Horner, 2013). Similarly,

the littler program provides hash-bang capability for R, as well as simple command-line and piping use

on UNIX (Horner and Eddelbuettel, 2011). Finally, Rserve is TCP/IP server which provides low level access

to an R process over a socket (Urbanek, 2013b).

Even though these language-bridging tools have been available for several years, they have not been able

to facilitate the big breakthrough of R as a ubiquitous statistical engine. Given the enormous demand for

analysis and visualization these days, the adoption of R for embedded scientific computing is actually quite

underwhelming. In my experience, the primary cause for the limited success is that these bridges are hard to

implement, do not scale very well, and leave the most challenging problems unresolved. Substantial plumbing

and expertise of R internals is required for building actual applications on these tools. Clients are supposed

to generate and push R syntax, make sense of R’s internal C structures and write their own framework for

managing requests, graphics, security, data interchange, etc. Thereby, scientific computing gets intermingled

with other parts of the system resulting in highly coupled software which is complex and often unreliable.

High coupling is also problematic from a human point of view. Building a web application with for example

Rserve requires a web developer that is also an expert in R, Java and Rserve. Because R is a very domain

specific language, this combination of skills is very rare and expensive.

1.1 Separation of concerns

What is needed to scale up embedded scientific computing is a system that decouples data analysis from

other system components in such a way that applications can integrate statistical methods without detailed

understanding of R or statistics. Component based software engineering advocates the design principle of

separation of concerns (Heineman and Councill, 2001), which states that a computer program is split up

into distinct pieces that each encapsulate a logical set of functionality behind a well-defined interface. This

allows for independent development of various components by different people with different background and

expertise. Separation of concerns is fundamental to the functional programming paradigm (Reade, 1989) as

well as the design of service oriented architectures on distributed information systems such as the internet

(Fielding, 2000). The principle lies at the heart of this research and holds the key to advancing embedded

scientific computing.

In order to develop a system that separates concerns of scientific computing from other parts of the system,

we need to ask ourselves: what are the concerns of scientific computing? This question does not have a

straightforward answer. Over the years, statistical software has gotten highly convoluted by the inclusion

of complementary tools that are useful but not necessarily an integral part of computing. Separation of

concerns requires us to extract the core logic and divorce it from all other apparatus. We need to form

a conceptual model of data analysis that is independent of any particular application or implementation.

Therefore, rather than discussing technical problems, this paper focuses entirely on studying the domain

logic of the discipline along the lines of Evans (2003). By exploring the concepts, problems, and practices of
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the field we try to unveil the fundamental principles behind statistical software. Along the way we highlight

important problems and bottlenecks that require further attention in order to facilitate reliable and scalable

analysis modules.

The end goal of this paper is to work towards an interface definition for embedded scientific computing. An

interface is the embodiment of separation of concerns and serves as a contract that formalizes the boundary

across which separate components exchange information. The interface definition describes the concepts

and operations that components agree upon to cooperate and how the communication is arranged. In the

interface we specify the functionality that a server has to implement, which parts of the interaction are

fixed and which choices are specifically left at the discretion of the implementation. Ideally the specification

should provide sufficient structure to develop clients and server components for scientific computing while

minimizing limitations on how these can be implemented. An interface that carefully isolates components

along the lines of domain logic allows developers to focus on their expertise using their tools of choice. It gives

clients a universal point of interaction to integrate statistical programs without understanding the actual

computing, and allows statisticians to implement their methods for use in applications without knowing

specifics about the application layer.

1.2 The OpenCPU system

The OpenCPU system is an example that illustrates what an abstracted interface to scientific computing could

look like. OpenCPU defines an HTTP API that builds on The R Project for Statistical Computing, for short: R

(R Core Team, 2014). The R language is the obvious candidate for a first implementation of this kind. It is

currently the most popular statistical software package and considered by many statisticians as the de facto

standard of data analysis. The huge R community provides both the tools and use-cases needed to develop

and experiment with this new approach to scientific computing. It is fair to say that currently only R has

the required scale and foundations to really put our ideas to the test. However, although the research and

OpenCPU system are colored by and tailored to the way things work in R, the approach should generalize quite

naturally to other computational back-ends. The API is designed to describe general logic of data analysis

rather than that of a particular language. The main role of the software is to put this new approach into

practice and get firsthand experience with the problems and opportunities in this unexplored field.

As part of the research, two OpenCPU server implementations were developed. The R package opencpu

uses the httpuv web server (RStudio Inc., 2014a) to implement a single-user server which runs within an

interactive R session on any platform. The cloud server on the other hand is a multi-user implementation

based on Ubuntu Linux and rApache. The latter yields much better performance and has advanced security

and configuration options, but requires a dedicated Linux server. Another major difference between these

implementations is how they handle concurrency. Because R is single threaded, httpuv handles only a single

request at a time. Additional incoming requests are automatically queued and executed in succession using

the same process. The cloud server on the other hand takes advantage of multi-processing in the Apache2

web server to handle concurrency. This implementation uses forks of the R process to serve concurrent

requests immediately with little performance overhead. The differences between the cloud server and single

user server are invisible the client. The API provides a standard interface to either implementation and other
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than varying performance, applications will behave the same regardless of which server is used. This already

hints at the benefits of a well defined interface.

1.3 History of OpenCPU

The OpenCPU system builds on several years of work dating back to 2009. The software evolved through many

iterations of trial and error by which we identified the main concerns and learned what works in practice.

Initial inspirations were drawn from recurring problems in developing R web applications with rApache,

including van Buuren and Ooms (2009). Accumulated experiences from these projects shaped a vision on

what is involved with embedded scientific computing. After a year of internal development, the first public

beta of OpenCPU appeared in August 2011. This version was picked up by early adopters in both industry

and academia, some of which are still in production today. The problems and suggestions generated from

early versions were a great source of feedback and revealed some fundamental problems. At the same time

exciting developments were going on in the R community, in particular the rise of the RStudio IDE and

introduction of powerful new R packages knitr, evaluate and httpuv. After a redesign of the API and a

complete rewrite of the code, OpenCPU 1.0 was released in August 2013. By making better use of native

features in HTTP, this version is more simple, flexible, and extensible than before. Subsequent releases within

the 1.x series have introduced additional server configurations and optimizations without major changes to

the API.

2 Practices and domain logic of scientific computing

This section provides a helicopter view of the practices and logic of scientific computing that are most relevant

in the context of this research. The reader should get a sense of what is involved with scientific computing,

what makes data analysis unique, and why the software landscape is dominated by domain specific languages

(DSL). The topics are chosen and presented somewhat subjectively based on my experiences in this field.

They are not intended to be exhaustive or exclusive, but rather identify the most important concerns for

developing embedded analysis components.

2.1 It starts with data

The role and shape of data is the main characteristic that distinguishes scientific computing. In most general

purpose programming languages, data structures are instances of classes with well-defined fields and methods.

Similarly, databases use schemas or table definitions to enforce the structure of data. This ensures that a

table returned by a given SQL query always contains exactly the same structure with the requested fields;

the only varying property between several executions of a query is the number of returned rows. Also the

time needed for the database to process the request usually depends only on the amount of records in the

database. Strictly defined structures make it possible to write code implementing all required operations in

advance without knowing the actual content of the data. It also creates a clear separation between developers
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and users. Most applications do not give users direct access to raw data. Developers focus in implementing

code and designing data structures, whereas users merely get to execute a limited set of operations.

This paradigm does not work for scientific computing. Developers of statistical software have relatively little

control over the structure, content, and quality of the data. Data analysis starts with the user supplying

a dataset, which is rarely pretty. Real world data come in all shapes and formats. They are messy, have

inconsistent structures, and invisible numeric properties. Therefore statistical programming languages define

data structures relatively loosely and instead implement a rich lexicon for interactively manipulating and

testing the data. Unlike software operating on well-defined data structures, it is nearly impossible to write

code that accounts for any scenario and will work for every possible dataset. Many functions are not

applicable to every instance of a particular class, or might behave differently based on dynamic properties

such as size or dimensionality. For these reasons there is also less clear of a separation between developers

and users in scientific computing. The data analysis process involves simultaneously debugging of code and

data where the user iterates back and forth between manipulating and analyzing the data. Implementations

of statistical methods tend to be very flexible with many parameters and settings to specify behavior for

the broad range of possible data. And still the user might have to go through many steps of cleaning and

reshaping to give data the appropriate structure and properties to perform a particular analysis.

Informal operations and loosely defined data structures are typical characteristics of scientific computing.

They give a lot of freedom to implement powerful and flexible tools for data analysis, but complicate interfac-

ing of statistical methods. Embedded systems require a degree of type-safety, predictability, and consistency

to facilitate reliable I/O between components. These features are native to databases or many object oriented

languages, but require substantial effort for statistical software.

2.2 Functional programming

Many different programming languages and styles exists, each with their own strengths and limitations.

Scientific computing languages typically use a functional style of programming, where methods take a role

and notation similar to functions in mathematics. This has obvious benefits for numerical computing.

Because equations are typically written as y = f(g(x)) (rather than y = x.g().f() notation), a functional

syntax results in intuitive code for implementing algorithms.

Most popular general purpose languages take a more imperative and object oriented approach. In many ways,

object-oriented programming can be considered the opposite of functional programming (A. M. Kuchling,

2014). Here methods are invoked on an object and modify the state of this particular object. Object-oriented

languages typically implement inheritance of fields and methods based on object classes or prototypes.

Many software engineers prefer this style of programming because it is more powerful to handle complex

data structures. The success of object oriented languages has also influenced scientific computing, resulting

in multi-paradigm systems. Languages such as Julia and R use multiple dispatch to dynamically assign

function calls to a particular function based on the type of arguments. This brings certain object oriented

benefits to functional languages, but also complicates scoping and inheritance.

A comparative review on programming styles is beyond the scope of this research. But what is relevant to
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us is how conflicting paradigms affect interfacing of analysis components. In the context of web services, the

Representational State Transfer style (for short: REST) described by Fielding (2000) is very popular among

web developers. A restful API maps every URL to a resource and HTTP requests are used to modify the state

of a resource, which results in a simple and elegant API. Unfortunately, REST does not map very naturally

to the functional paradigm of statistical software. Languages where functions are first class citizens suggest

more RPC flavored interfaces, which according to Fielding are by definition not restful (Fielding, 2008). This

does not mean that such a component is incompatible with other pieces. As long as components honor the

rules of the protocol (i.e. HTTP) they will work together. However, conflicting programming styles can be

a source of friction for embedded scientific computing. Strongly object-oriented frameworks or developers

might require some additional effort to get comfortable with components implementing a more functional

paradigm.

2.3 Graphics

Another somewhat domain specific feature of scientific computing is native support for graphics. Most

statistical software packages include programs to draw plots and charts in some form or another. In contrast

to data and functions which are language objects, the graphics device is considered a separate output stream.

Drawings on the canvas are implemented as a side effect rather than a return value of function calls. This

works a bit similar to manipulating document object model (DOM) elements in a browser using JavaScript.

In most interactive statistical software, graphics appear to the user in a new window. The state of the

graphics device cannot easily be stored or serialized as is the case for functions and objects. We can export

an image of the graphics device to a file using png, svg or pdf format, but this image is merely a snapshot.

It does not contain the actual state of the device cannot be reloaded for further manipulation.

First class citizenship of graphics is an important concern of interfacing scientific computing. Yet output

containing both data and graphics makes the design of a general purpose API more difficult. The system

needs to capture the return value as well as graphical side effects of a remote function call. Furthermore

the interface should allow for generating graphics without imposing restrictions on the format or formatting

parameters. Users want to utilize a simple bitmap format such as png for previewing a graphic, but have the

option to export the same graphic to a high quality vector based format such as pdf for publication. Because

statistical computation is expensive and non-deterministic, the graphic cannot simply reconstructed from

scratch only to retrieve it in another format. Hence the API needs to incorporate the notion of a graphics

device in a way independent of the imaging format.

2.4 Numeric properties and missing values

It was already mentioned how loosely defined data structures in scientific computing can impede type safety

of data I/O in analysis components. In addition, statistical methods can choke on the actual content of

data as well. Sometimes problematic data can easily be spotted, but often it is nearly impossible to detect

these ahead of time. Applying statistical procedures to these data will then result in errors, even though the

code and structure of the data are perfectly fine. These problems frequently arise for statistical models that
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build on matrix decompositions which require the data to follow certain numeric properties. The rank of a

matrix is one such property which measures the nondegenerateness of the system of linear equations. When

a matrix A is rank deficient, the equation Ax = b does not have a solution when b does not lie in the range

of A. Attempting to solve this equation will eventually lead to division by zero. Accounting for such cases

of time is nearly impossible because numeric properties are invisible until they are actually calculated. But

perhaps just as difficult is explaining the user or software engineer that these errors are not a bug, and can

not be fixed. The procedure just does not work for this particular dataset.

Another case of problematic data is presented by missing values. Missingness in statistics means that the

value of a field is unknown. Missing data should not be confused with no data or null. Missing values

are often non ignorable, meaning that the missingness itself is information that needs to be accounted for

in the modeling. A standard textbook example is when we perform a survey asking people about their

salary. Because some people might refuse to provide this information, the data contains missing values. This

missingness is probably not completely at random: respondents with high salaries might be more reluctant

to provide this information than respondents with a median salary. If we calculate the mean salary from our

data ignoring the missing values, the estimate is likely biased. To obtain a more accurate estimate of the

average salary, missing values need to be incorporated in the estimation using a more sophisticated model.

Statistical programming languages can define several types of missing or non-finite values such as NA, NaN

or Inf. These are usually implemented as special primitives, which is one of the benefits of using a DSL.

Functions in statistical software have built-in procedures and options to specify how to handle missing values

encountered in the data. However, the notion of missingness is foreign to most languages and software outside

of scientific computing. They are a typical domain-specific phenomenon that can cause technical problems in

data exchange with other systems. And like numeric properties, the concept of values containing no actual

value is likely to cause confusion among developers or users with limited experience in data analysis. Yet

failure to properly incorporate missing values in the data can easily lead to errors or incorrect results, as the

example above illustrated.

2.5 Non deterministic and unpredictable behavior

Most software applications are expected to produce consistent output in a timely manner, unless something

is very wrong. This does not generally hold for scientific computing. The previous section explained how

problematic data can cause exceptions or unexpected results. But many analysis methods are actually

non-deterministic or unpredictable by nature.

Statistical algorithms often repeat some calculation until a particular convergence criterion is reached. Start-

ing values and minor fluctuations in the data can have snowball effect on the course of the algorithm. There-

fore several runs can result in wildly varying outcomes and completion times. Moreover, convergence might

not be guaranteed: unfortunate input can get a process stuck in a local minimum or send it off into the wrong

direction. Predicting and controlling for such scenarios a-priori in the implementation is very difficult. Monte

Carlo techniques are even less predictable because they are specifically designed to behave randomly. For

example, MCMC methods use a Markov-Chain to simulate random walk through a (high-dimensional) space

such as a multivariate probability density. These methods are a powerful tool for simulation studies and
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numerical integration in Bayesian analysis. Each execution of the random walk yields different outcomes,

but under general conditions the process will converge to the value of interest. However, due to randomness

it is possible that some of the runs or chains get stuck and need to be terminated or disregarded.

Unpredictability of statistical methods underlies many technical problems for embedded scientific computing

that are not present when interacting with a database. This can sometimes surprise software engineers

expecting deterministic behavior. Statistical methods are rarely absolutely guaranteed to be successful for

arbitrary data. Assuming that a procedure will always return timely and consistently because it did so with

testing data is very dangerous. In a console, the user can easily intervene or recover, and retry with different

options or starting values. For embedded modules, unpredictability needs to be accounted for in the design

of the system. At a very minimum, the system should be able to detect and terminate a process that has not

completed when some timeout is reached. But preferably we need a layer or meta functionality to control

and monitor executions, either manually or automatically.

2.6 Managing experimental software

In scientific computing, we usually need to work with inventive, volatile, and experimental software. This

is a big cultural difference with many general purpose languages such as python, Java, C++ or JavaScript.

The latter communities include professional organizations and engineers committed to implementing and

maintaining production quality libraries. Most authors of open source statistical software do not have the

expertise and resources to meet such standards. Contributed code in languages like R was often written by

academics or students to accompany a scientific article proposing novel models, algorithms, or programming

techniques. The script or package serves as an illustration of the presented ideas, but needs needs to be

tweaked and tailored to fit a particular problem or dataset. The quality of such contributions varies a lot,

no active support or maintenance should be expected from the authors. Furthermore, package updates can

sometimes introduce radical changes based on new insights.

Because traditional data analysis does not really have a notion of production, this has never been a major

problem. The emphasis in statistical software has always been on innovation rather than continuity. Exper-

imental code is usually good enough for interactive data analysis where it suffices to manually make a script

or package work for the dataset at hand. Authors of statistical software tend to assume that the user will

spend some effort to manage dependencies and debug the code. However, integrated components require a

greater degree of reliability and continuity which introduces a source of technical and cultural friction for

embedded scientific computing. This makes the ability to manage unstable software, facilitate rapid change,

sandbox modules, and manage failure important concerns of embedded scientific computing.

2.7 Interactivity and error handling

In general purpose languages, run-time errors are typically caused by a bug or some sort of system failure.

Exceptions are only raised when the software can not recover and usually result in termination of the process.

Error messages contain information such as calling stacks to help the programmer discover where in the code

a problem occurred. Software engineers go through great trouble to prevent potential problems ahead of
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time using smart compilers, unit tests, automatic code analysis, and continuous integration. Errors that do

arise during production are usually not displayed to the user, but rather the administrator is notified that

the system urgently needs attention. The user gets to see an apology at best.

In scientific computing, errors play a very different role. As a consequence of some of the characteristics

discussed earlier, interactive debugging is a natural part of the user experience. Errors in statistics do not

necessarily indicate a bug in the software, but rather a problem with the data or some interaction of the

code and data. The statistician goes back and forth between cleaning, manipulating, modeling, visualizing

and interpreting to study patterns and relations in the data. This simultaneous debugging of data and code

comes down to a lot of trial and error. Problems with outliers, degrees of freedom or numeric properties do

not reveal themselves until we try to fit a model or create a plot. Exceptions raised by statistical methods are

often a sign that data needs additional work. This makes error messages an important source of information

for the statistician to get to know a dataset and its intricacies. And while debugging the data we learn

limitations of the analysis methods. In practice we sometimes find out that a particular dataset requires us

to research or implement additional techniques because the standard tools do not suffice or are inappropriate.

Interactive error handling is one of the reasons that there is no clear distinction between development and

production in scientific computing. When interfacing with analysis modules it is important that the role of

errors is recognized. An API must be able to handle exceptions and report error messages to the user, and

certainly not crash the system. The role of errors and interactive debugging in data analysis can be confusing

to developers outside of our community. Some popular commercial products seem to have propagated the

belief that data analysis comes down to applying a magical formula to a dataset, and no intelligent action

is required on the side of the user. Systems that only support such canned analyses don’t do justice to the

wide range of methods that statistics has to offer. In practice, interactive data debugging is an important

concern of data analysis and embedded scientific computing.

2.8 Security and resource control

Somewhat related to the above are special needs in terms of security. Most statistical software currently

available is primarily designed for interactive use on the local machine. Therefore access control is not

considered an issue and the execution environment is entirely unrestricted. Embedded modules or public

services require implementation of security policies to prevent malicious or excessive use of resources. This

in itself is not a unique problem. Most scripting languages such as php or python do not enforce any access

control and assume security will be implemented on the application level. But in the case of scientific

computing, two domain specific aspects further complicate the problem.

The first issue is that statistical software can be demanding and greedy with hardware resources. Numerical

methods are expensive both in terms of memory and cpu. Fair-use policies are not really feasible because

excessive use of resources often happens unintentionally. For example, an overly complex model specification

or algorithm getting stuck could end up consuming all available memory and cpu until manually terminated.

When this happens on the local machine, the user can easily interrupt the process prematurely by sending

a SIGINT (pressing CTRL+C or ESC), but in a shared environment this needs to be regulated by the sys-

tem. Embedded scientific computing requires technology and policies that can manage and limit memory
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allocation, cycles, disk space, concurrent processes, network traffic, etc. The degree of flexibility offered by

implementation of resource management is an important factor in the scalability of a system. Fine grained

control over system resources consumed by individual tasks allows for serving many users without sacrificing

reliability.

The second domain specific security issue is caused by the need for arbitrary code execution. A traditional

application security model is based on user role privileges. In a standard web application, only a developer

or administrator can implement and deploy actual code. The application merely exposes predefined func-

tionality; users are not allowed to execute arbitrary code on the server. Any possibility of code injection

is considered a security vulnerability and when found the server is potentially compromised. However as

already mentioned, lack of segregation between users and developers in statistics gives limited use to applica-

tions that restrict users to predefined scripts and canned services. To support actual data analysis, the user

needs access to the full language lexicon to freely explore and manipulate the data. The need for arbitrary

code execution disqualifies user role based privileges and demands a more sophisticated security model.

2.9 Reproducible research

Replication of findings is one of the main principles of the scientific method. In quantitative research, a nec-

essary condition for replication is reproducibility of results. The goal of reproducible research is to tie specific

instructions to data analysis and experimental data so that scholarship can be recreated, better understood,

and verified (Kuhn, 2014). Even though the ideas of replication are as old as science itself, reproducibility in

scientific computing is still in its infancy. Tools are available that assist users in documenting their actions,

but to most researchers these are not a natural part of the daily workflow. Fortunately, the importance of

replication in data analysis is increasingly acknowledged and support for reproducibility is becoming more

influential in the design of statistical software.

Reproducibility changes what constitutes the main product of data analysis. Rather than solely output and

conclusions, we are interested recording and publishing the entire analysis process. This includes all data,

code and results but also external software that was used arrive at the results. Reproducibility puts high

requirements on software versioning. More than in other fields it is crucial that we diligently archive and

administer the precise versions or branches of all scripts, packages, libraries, plugins that were somehow

involved in the process. If an analysis involves randomness, it is also important that we keep track of which

seeds and random number generators were used. In the current design of statistical software, reproducibility

was mostly an afterthought and has to be taken care of manually. In practice it is tedious and error-prone.

There is a lot of room for improvement through software that incorporates reproducible practices as a natural

part of the data analysis process.

Whereas reproducibility in statistics is acknowledged from a transparency and accountability point of view, it

has enormous potential to become much more than that. There are interesting parallels between reproducible

research and revision control in source code management systems. Technology for automatic reproducible

data analysis could revolutionize scientific collaboration, similar to what git has done for software develop-

ment. A system that keeps track of each step in the analysis process like a commit in software versioning

would make peer review or follow-up analysis more practical and enjoyable. When colleagues or reviewers
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can easily reproduce results, test alternative hypotheses or recycle data, we achieve greater trustworthiness

but also multiply return on investment of our work. Finally an open kitchen can help facilitate more natural

ways of learning and teaching statistics. Rather than relying on general purpose textbooks with artificial

examples, scholars directly study the practices of prominent researchers to understand how methods are

applied in the context of data and problems as they appear specifically in their area of interest.

3 The state problem

Management of state is a fundamental principle around which digital communications are designed. We

distinguish stateful and stateless communication. In a stateless communication protocol, interaction in-

volves independent request-response messages in which each request is unrelated by any previous request

(Hennessy and Patterson, 2011). Because the messages are independent, there is no particular ordering to

them and requests can be performed concurrently. Examples of stateless protocols include the internet pro-

tocol (IP) and the hypertext transfer protocol (HTTP). A stateful protocol on the other hand consists of an

interaction via an ordered sequence of interrelated messages. The specification typically prescribes a specific

mechanism for initiating and terminating a persistent connection for information exchange. Examples of

stateful protocols include the transmission control protocol (TCP) or file transfer protocol (FTP).

In most data analysis software, the user controls an interactive session through a console or GUI, with the

possibility of executing a sequence of operations in the form of a script. Scripts are useful for publishing code,

but the most powerful way of using the software is interactively. In this respect, statistical software is not

unlike to a shell interface to the operating system. Interactivity in scientific computing makes management

of state the most central challenge in the interface design. When moving from a UI to API perspective,

support for statefulness becomes substantially more complicated. This section discusses how the existing

bridges to R have approached this problem, and their limitations. We then continue by explaining how the

OpenCPU API exploits the functional paradigm to implement a hybrid solution that abstracts the notion of

state and allows for a high degree of performance optimization.

3.1 Stateless solutions: predefined scripts

The easiest solution is to not incorporate state on the level of the interface, and limit the system to pre-

defined scripts. This is the standard approach in traditional web development. The web server exposes a

parameterized service which generates dynamic content by calling out to a script on the system via CGI. Any

support for state has to be implemented manually in the application layer, e.g. by writing code that stores

values in a database. For R we can use rApache (Horner, 2013) to develop this kind of scripted applications

very similar to web scripting languages such as php. This suffices for relatively simple services that expose

limited, predefined functionality. Scripted solutions give the developer flexibility to freely define input and

output that are needed for a particular application. For example, we can write a script that generates a

plot based on a couple of input parameters and returns a fixed size png image. Because scripts are stateless,

multiple requests can be performed concurrently. A lot of the early work in this research has been based on
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this approach, which is a nice starting point but becomes increasingly problematic for more sophisticated

applications.

The main limitation of scripts is that to support basic interactivity, retention of state needs to be implemented

manually in the application layer. A minimal application in statistics consists of the user uploading a data

file, performing some manipulations and then creating a model, plot or report. When using scripts, the

application developer needs to implement a framework to manage requests from various user sessions, and

store intermediate results in a database or disk. Due to the complexity of objects and data in R, this is much

more involved than it is in e.g. php, and requires programming skills. Furthermore it leads to code that

intermingles scientific computing with application logic, and rapidly increases complexity as the application

gets extended with additional scripts. Because these problems will recur for almost any statistical application,

we could benefit greatly from a system that supports retaining state by design.

Moreover predefined scripts are problematic because they divide developers and users in a way that is not

very natural for scientific computing. Scripts in traditional web development give the client very little power

to prevents malicious use of services. However, in scientific computing, a script often merely serves as a

starting point for analysis. The user wants to be able to modify the script to look at the data in another

way by trying additional methods or different procedures. A system that only allows for performing scripted

actions severely handicaps the client and creates a lot of work for developers: because all functionality has

to be prescripted, they are in charge of designing and implementing each possible action the user might

want to perform. This is impractical for statistics because of the infinite amount of operations that can be

performed on a dataset. For these reasons, the stateless scripting approach does not scale well to many users

or complex applications.

3.2 Stateful solution: client side process management

Most existing bridges to R have taken a stateful approach. Tools such as Rserve (Urbanek, 2013b) and

shiny (RStudio Inc., 2014b) expose a low-level interface to a private R process over a (web)socket. This

gives clients freedom to run arbitrary R code, which is great for implementing something like a web-based

console or IDE. The main problem with existing stateful solutions is lack of interoperability. Because these

tools are in essence a remote R console, they do not specify any standardized interface for calling methods,

data I/O, etc. A low-level interface requires extensive knowledge of logic and internals of R to communicate,

which again leads to high coupling. The client needs to be aware of R syntax to call R methods, interpret R

data structures, capture graphics, etc. These bridges are typically intended to be used in combination with a

special client. In the case of shiny, the server comes with a set of widget templates that can be customized

from within R. This allows R users to create a basic web GUI without writing any HTML or JavaScript, which

can be very useful. However, the shiny software is not designed for integration with non-shiny clients and

serves a somewhat different purpose and audience than tools for embedded scientific computing.

Besides high coupling and lack of interoperability, stateful bridges also introduce some technical difficulties.

Systems that allocate a private R process for each client cannot support concurrent requests within a session.

Each incoming request has to wait until the previous requests are finished for the process to become available.

In addition to suboptimal performance, this can also be a source of instability. When the R process gets
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stuck or raises an unexpected error, the server might become unresponsive causing the application to crash.

Another drawback is that stateful servers are extremely expensive and inefficient in terms of memory alloca-

tion. The server has to keep each R process alive for the full duration of a session, even when idle most of the

time. Memory that is in use by any single client does not free up until the user closes the application. This

is particularly unfortunate because memory is usually the main bottleneck in data intensive applications of

scientific computing. Moreover, connectivity problems or ill-behaved clients require mechanisms to timeout

and terminate inactive processes, or save and restore an entire session.

3.3 A hybrid solution: functional state

We can take the best of both worlds by abstracting the notion of state to a higher level. Interactivity and

state in OpenCPU is provided through persistence of objects rather than a persistent process. As it turns out,

this is a natural and powerful definition of state within the functional paradigm. Functional programming

emphasizes that output from methods depends only on their inputs and not on the program state. Therefore,

functional languages can support state without keeping an entire process alive: merely retaining the state of

objects should be sufficient. As was discussed before, this has obvious parallels with mathematics, but also

maps beautifully to stateless protocols such as HTTP. The notion of state as the set of objects is already quite

natural to the R user, as is apparent from the save.image function. This function serializes all objects in the

global environment to a file on disk which described in the documentation as “saving the current workspace”.

Exploiting this same notion of state in our interface allows us to get the benefits of both traditional stateless

and stateful approaches without introducing additional complexity. This simple observation provides the

basis for a very flexible, stateful RPC system.

To facilitate this, the OpenCPU API defines a mapping between HTTP requests and R function calls. After

executing a function call, the server stores all outputs (return value, graphics, files) and a temporary key is

given to the client. This key can be used to control these newly created resources in future requests. The

client can retrieve objects and graphics in various formats, publish resources, or use them as arguments in

subsequent function calls. An interactive application consists of a series of RPC requests with keys referencing

the objects to be reused as arguments in consecutive function calls, making the individual requests technically

stateless. Besides reduced complexity, this system makes parallel computing and asynchronous requests a

natural part of the interaction. To compute f(g(x), h(y)), the client can perform RPC requests for g(x) and

h(y) simultaneously and pass the resulting keys to f() in a second step. In an asynchronous client language

such as JavaScript this happens so naturally that it requires almost no effort from the user or application

developer.

One important detail is that OpenCPU deliberately does not prescribe how the server should implement storing

and loading of objects in between requests. The API only specifies a system for performing R function calls

over HTTP and referencing objects from keys. Different server implementations can use different strategies

for retaining such objects. A naive implementation could simply serialize objects to disk after each request

and immediately terminate the process. This is safe and easy, but writing to disk can be slow. A more

sophisticated implementation could keep objects in memory for a while longer, either by keeping the R

process alive or through some sort of in-memory database or memcached system. Thereby the resources do
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not need to be loaded from disk if they are reused in a subsequent request shortly after being created. This

illustrates the kind of optimization that can be achieved by carefully decoupling server and client components.

4 The OpenCPU HTTP API

This section introduces the most important concepts and operations of the API. At this point the concerns

discussed in earlier chapters become more concrete as we illustrate how the pieces come together in the

context of R and HTTP. It is not the intention to provide a detailed specification of every feature of the

system. We focus on the main parts of the interface that exemplify the separation of concerns central to this

work. The online documentation and reference implementations are the best source of information on the

specifics of implementing clients and applications.

4.1 About HTTP

One of the major strengths of OpenCPU is that it builds on the hypertext transfer protocol (Fielding et al.,

1999). HTTP is the most used application protocol on the internet, and the foundation of data communication

in browsers and the world wide web. The HTTP specification is very mature and widely implemented. It

provides all functionality required to build modern applications and has recently gained popularity for web

API’s as well. The benefit of using a standardized application protocol is that a lot of functionality gets

built-in by design. HTTP has excellent mechanisms for authentication, encryption, caching, distribution,

concurrency, error handling, etc. This allows us to defer most application logic of our system to the protocol

and limit the API specification to logic of scientific computing.

The OpenCPU API defines a mapping between HTTP requests and high-level operations such as calling functions,

running scripts, access to data, manual pages and management of files and objects. The API deliberately

does not prescribe any language implementation details. Syntax and low-level concerns such as process

management or code evaluation are abstracted and at the discretion of the server implementation. The

API also does not describe any logic which can be taken care of on the protocol or application layer. For

example, to add support for authentication, any of the standard mechanisms can be used such as basic

auth (Franks et al., 1999) or OAuth 2.0 (Hardt, 2012). The implementation of such authentication methods

might vary from a simple server configuration to defining additional endpoints. But because authentication

will not affect the meaning of the API itself, it can be considered independent of this research. The same

holds for other features of the HTTP protocol which can be used in conjunction with the OpenCPU API (or any

other HTTP interface for that matter). What remains after cutting out implementation and application logic

is a simple and interoperable interface that is easy to understand and can be implemented with standard

HTTP software libraries. This is an enormous advantage over many other bridges to R and critical to make

the system scalable and extensible.
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4.2 Resource types

As was described earlier, individual requests within the OpenCPU API are stateless and there is no notion

of a process. State of the system changes through creation and manipulation of resources. This makes the

various resource types the conceptual building blocks of the API. Each resource type has unique properties

and supports different operations.

4.2.1 Objects

Objects are the main entities of the system and carry the same meaning as within a functional language.

They include data structures, functions, or other types supported by the back-end language, in this case R.

Each object has an individual endpoint within the API and unique name or key within its namespace. The

client needs no knowledge of the implementation of these objects. Analogous to a UI, the primary purpose

of the API is managing objects (creating, retrieving, publishing) and performing procedure calls. Objects

created from executing a script or returned by a function call are automatically stored and gain the same

status as other existing objects. The API does not distinguish between static objects that appear in e.g.

packages, or dynamic objects created by users, nor does it distinguish between objects in memory or on disk.

The API merely provides a system for referencing objects in a way that allows clients to control and reuse

them. The implementation of persistence, caching and expiration of objects is at the discretion of the server.

4.2.2 Namespaces

A namespace is a collection of uniquely named objects with a given path in the API. In R, static namespaces

are implemented using packages and dynamic namespaces exist in environments such as the user workspace.

OpenCPU abstracts the concept of a namespace as a set of uniquely named objects and does not distinguish

between static, dynamic, persistent or temporary namespaces. Clients can request a list of the contents of

any namespace, yet the server might refuse such a request for private namespaces or hidden objects.

4.2.3 Formats

OpenCPU explicitly differentiates a resource from a representation of that resource in a particular format.

The API lets the client rather than the server decide on the format used to serve content. This is a difference

with common scientific practices of exchanging data, documents and figures in fixed format files. Resources

in OpenCPU can be retrieved using various output formats and formatting parameters. For example, a basic

dataset can be retrieved in csv, json, Protocol Buffers or tab delimited format. Similarly, a graphic

can be retrieved in svg, png or pdf and manual pages can be retrieved in text, html or pdf format. In

addition to the format, the client can specify formatting parameters in the request. The system supports

many additional formats, but not every format is appropriate for every resource type. When a client requests

a resource in a format using an invalid format, the server responds with an error.
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4.2.4 Data

The API defines a separate entity for data objects. Even though data can technically be treated as general

objects, they often serve a different purpose. Data are usually not language specific and cannot be called

or executed. Therefore it can be useful to conceptually distinguish this subclass. For example, R uses lazy

loading of data objects to save memory when for packages containing large datasets.

4.2.5 Graphics

Any function call can produce zero or more graphics. After completing a remote function call, the server

reports how many graphics were created and provides the key for referencing these graphics. Clients can

retrieve each individual graphic in subsequent requests using one of various output formats such as png, pdf,

and svg. Where appropriate the client can specify additional formatting parameters during the retrieval of

the graphic such as width, height or font size.

4.2.6 Files

Files can be uploaded and downloaded using standard HTTP mechanics. The client can post a file as an

argument in a remote function call, or download files that were saved to the working directory by the

function call. Support for files also allows for hosting web pages (e.g. html, css, js) that interact with local

API endpoints to serve a web application. Furthermore files that are recognized as scripts can be executed

using RPC.

4.2.7 Manuals

In most scientific computing languages, each function or dataset that is available to the user is accompanied

by an identically named manual page. This manual page includes information such as description and usage

of functions and their arguments, or comments about the columns of a particular dataset. Manual pages

can be retrieved through the API in various formats including text, html and pdf.

4.2.8 Sources

The OpenCPU specification makes reproducibility an integrated part of the API interaction. In addition to

results, the server stores the call and arguments for each RPC request. The same key that is used to retrieve

objects or graphics can be used to retrieve sources or automatically replicate the computation. Hence for each

output resource on the system, clients can lookup the code, data, warnings and packages that were involved

in its creation. Thereby results can easily be recalculated, which forms a powerful basis for reproducible

practices. This feature can be used for other purposes as well. For example, if a function fetches dynamic

data from an external resource to generate a model or plot, reproduction is used to update the model or plot

with new data.
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4.2.9 Containers

We refer to a path on the server containing one or more collections of resources as a container. The current

version of OpenCPU implements two types of containers. A package is a static container which may include a

namespace with R objects, manual pages, data and files. A session is a dynamic container which holds outputs

created from executing a script or function call, including a namespace with R objects, graphics and files.

The distinction between packages and sessions is an implementation detail. The API does not differentiate

between the various container types: interacting with an object or file works the same, regardless of whether

it is part of a package or session. Future versions or other servers might implement different container types

for grouping collections of resources.

4.2.10 Libraries

We refer to a collection of containers as a library. In R terminology, a library is a directory on disk with

installed packages. Within the context of the API, the concept is not limited to packages but refers more

generally to any set of containers. The /ocpu/tmp/ library for example is the collection of temporary

sessions. Also the API notion of a library does not require containers to be preinstalled. A remote collection

of packages, which in R terminology is called a repository, can also be implemented as a library. The current

implementation of OpenCPU exposes the /ocpu/cran/ library which refers to the current packages on the

CRAN repository. The API does not differentiate between a library of sessions, local packages or remote

packages. Interacting with an object from a CRAN package works the same as interacting with an object from

a local package or temporary session. The API leaves it up to the server which types of libraries it wishes

to expose and how to implement this. The current version of OpenCPU uses a combination of cron-jobs and

on-the-fly package installations to synchronize packages on the server with the CRAN repositories.

4.3 Methods

The current API uses two HTTP methods: GET and POST. As per HTTP standards, GET is a safe method which

means it is intended only for information reading and should not change the state of the server. OpenCPU uses

the GET method to retrieve objects, manuals, graphics or files. The parameters of the request are mapped

to the formatting function. A GET requests targeting a container, namespace or directory is used to list the

contents. The POST method on the other is used for RPC which does change server state. A POST request

targeting a function results in a remote function call where the HTTP parameters are mapped to function

arguments. A POST request targeting a script results in an execution of the script where HTTP parameters are

mapped to the script interpreter. Table 1 gives an overview using the MASS package (Venables and Ripley,

2002) as an example.
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Method Target Action Parameters Example

GET object retrieve formatting GET /ocpu/library/MASS/data/cats/json

manual read formatting GET /ocpu/library/MASS/man/rlm/html

graphic render formatting GET /ocpu/tmp/{key}/graphics/1/png

file download - GET /ocpu/library/MASS/NEWS

path list contents - GET /ocpu/library/MASS/scripts/

POST object call function function arguments POST /ocpu/library/stats/R/rnorm

file run script control interpreter POST /ocpu/library/MASS/scripts/ch01.R

Table 1: Currently implemented HTTP methods

4.4 Status codes

Each HTTP response includes a status code. Table 2 lists some common HTTP status codes used by OpenCPU

that the client should be able to interpret. The meaning of these status codes is conform HTTP standards.

The web server may use additional status codes for more general purposes that are not specific to OpenCPU.

Status Code Happens when Response content

200 OK On successful GET request Requested data

201 Created On successful POST request Output key and location

302 Found Redirect Redirect location

400 Bad Request On computational error in R Error message from R in text/plain

502 Bad Gateway Back-end server offline – (See error logs)

503 Bad Request Back-end server failure – (See error logs)

Table 2: Commonly used HTTP status codes

4.5 Content-types

Clients can retrieve objects in various formats by adding a format identifier suffix to the URL in a GET request.

Which formats are supported and how object types map to a particular format is at the discretion of the

server implementation. Not every format can support any object type. For example, csv can only be used to

retrieve tabular data structures and png is only appropriate for graphics. Table 3 lists the formats OpenCPU

supports, the respective internet media type, and the R function that OpenCPU uses to export an object into

a particular format. Arguments of the GET requests are mapped to this export function. The png format

has parameters such as width and height as documented in ?png, whereas the tab format has parameters

sep, eol, dec which specify the delimiting, end-of-line and decimal character respectively as documented in

?write.table.
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Format Content-type Export function Example

print text/plain base::print /ocpu/cran/MASS/R/rlm/print

rda application/octet-stream base::save /ocpu/cran/MASS/data/cats/rda

rds application/octet-stream base::saveRDS /ocpu/cran/MASS/data/cats/rds

json application/json jsonlite::toJSON /ocpu/cran/MASS/data/cats/json

pb application/x-protobuf RProtoBuf::serialize pb /ocpu/cran/MASS/data/cats/pb

tab text/plain utils::write.table /ocpu/cran/MASS/data/cats/tab

csv text/csv utils::write.csv /ocpu/cran/MASS/data/cats/csv

png image/png grDevices::png /ocpu/tmp/{key}/graphics/1/png

pdf application/pdf grDevices::pdf /ocpu/tmp/{key}/graphics/1/pdf

svg image/svg+xml grDevices::svg /ocpu/tmp/{key}/graphics/1/svg

Table 3: Currently supported export formats and corresponding Content-type

4.6 URLs

The root of the API is dynamic, but defaults to /ocpu/ in the current implementation. Clients should make

the OpenCPU server address and root path configurable. In the examples we assume the defaults. As discussed

before, OpenCPU currently implements two container types to hold resources. Table 4 lists the URLs of the

package container type, which includes objects, data, manual pages and files.

Path Description Examples

. Package information /ocpu/cran/MASS/

./R Exported namespace objects /ocpu/cran/MASS/R/

/ocpu/cran/MASS/R/rlm/print

./data Data objects in the package (HTTP GET only) /ocpu/cran/MASS/data/

/ocpu/cran/MASS/data/cats/json

./man Manual pages in the package (HTTP GET only) /ocpu/cran/MASS/man/

/ocpu/cran/MASS/man/rlm/html

./* Files in installation directory, relative to package the root /ocpu/cran/MASS/NEWS

/ocpu/cran/MASS/scripts/

Table 4: The package container includes objects, data, manual pages and files.

Table 5 lists URLs of the session container type. This container holds outputs generated from a RPC request

and includes objects, graphics, source code, stdout and files. As noted earlier, the distinction between

packages and sessions is considered an implementation detail. The API does not differentiate between objects

and files that appear in packages or in sessions.
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Path Description Examples

. Session content list /ocpu/tmp/{key}/

./R Objects created by the RPC request /ocpu/tmp/{key}/R/

/ocpu/tmp/{key}/R/mydata/json

./graphics Graphics created by the RPC request /ocpu/tmp/{key}/graphics/

/ocpu/tmp/{key}/graphics/1/png

./source Source code of RPC request /ocpu/tmp/{key}/source

./stdout STDOUT from by the RPC request /ocpu/tmp/{key}/stdout

./console Mixed source and STDOUT emulating console output /ocpu/tmp/{key}/console

./files/* Files saved to working dir by the RPC request /ocpu/tmp/{key}/files/myfile.xyz

Table 5: The session container includes objects, graphics, source, stdout and files.

4.7 RPC requests

A POST request in OpenCPU always invokes a remote procedure call (RPC). Requests targeting a function

object result in a function call where the HTTP parameters from the post body are mapped to function

arguments. A POST targeting a script results in execution of the script where HTTP parameters are passed to

the script interpreter. The term RPC refers to both remote function calls and remote script executions. The

current OpenCPU implementation recognizes scripts by their file extension, and supports R, latex, markdown,

Sweave and knitr scripts. Table 6 lists each script type with the respective file extension and interpreter.

File extension Type Interpreter

file.r R evaluate::evaluate

file.tex LATEX tools::texi2pdf

file.rnw knitr/sweave knitr::knit + tools::texi2pdf

file.md markdown knitr::pandoc

file.rmd knitr markdown knitr::knit + knitr::pandoc

file.brew brew brew::brew

Table 6: Files recognized as scripts and their characterizing file extension

An important conceptual difference with a terminal interface is that in the OpenCPU API, the server determines

the namespace that output of a function call is assigned to. The server includes a temporary key in the RPC

response that serves the same role as a variable name. The key and is used to reference the newly created

resources in future requests. Besides the return value, the server also stores graphics, files, warnings, messages

and stdout that were created by the RPC. These can be listed and retrieved using the same key. In R, the

function call itself is also an object which is added to the collection for reproducibility purposes.

Objects on the system are non-mutable and therefore the client cannot change or overwrite existing keys.
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For functions that modify the state of an object, the server creates a copy of the modified resource with a

new key and leaves the original unaffected.

4.8 Arguments

Arguments to a remote function call can be posted using one of several methods. A data interchange

format such as JSON or Protocol Buffers can be used to directly post data structures such as lists, vectors,

matrices or data frames. Alternatively the client can reference the name or key of an existing object. The

server automatically resolves keys and converts interchange formats into objects to be used as arguments in

the function call. Files contained in a multipart/form-data payload of an RPC request are copied to the

working directory and the argument of the function call is set to the filename. Thereby, remote function

calls with a file arguments can be performed using standard HTML form submission.

Content-type Primitives Data structures Raw code Files Temp key

multipart/form-data OK OK (inline json) OK OK OK

application/x-www-form-urlencoded OK OK (inline json) OK - OK

application/json OK OK - - -

application/x-protobuf OK OK - - -

Table 7: Accepted request Content-types and supported argument formats

The current implementation supports several standard Content-type formats for passing arguments to a re-

mote function call within a POST request, including application/x-www-form-urlencoded, multipart/form-data,

application/json and application/x-protobuf. Each parameter or top level field within a POST pay-

load contains a single argument value. Table 7 shows a matrix supported argument formats for each

Content-types.

4.9 Privacy

Because the data and sources of a statistical analysis include potentially sensitive information, the temporary

keys from RPC requests are private. Clients should default to keeping these keys secret, given that leaking

a key will compromise confidentiality of their data. The system does not allow clients to search for keys or

retrieve resources without providing the appropriate key. In this sense, a temporary key has a similar status

as an access token. Because temporary keys are private, multiple users can share a single OpenCPU server

without any form of authentication. Each request is anonymous and confidential, and only the client that

performed the RPC has the key to access resources from a particular request.

However, temporary keys do not have to be kept private per se: clients can choose to exchange keys with other

clients. Unlike typical access tokens, the keys in OpenCPU are unique for each request. Hence by publishing

a particular key, the client reveals only the resources from a specific RPC request, and no other confidential

information. Resources in OpenCPU are not tied to any particular user, in fact, there are no users in OpenCPU
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system itself. Clients can share objects, graphics or files with each other, simply by communicating keys to

these resources. Because each key holds both the output as well as the sources for an RPC request, shared

objects are reusable and reproducible by design. In some sense, all clients share a single universal namespace

with keys containing hidden objects from all RPC requests. By knowing a key to a particular resource it can

be used as any other object on the system. This shapes the contours of a social analysis platform in which

users collaborate by sharing reproducible, reusable resources identified by unique keys.
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