sharp: Stability-enHanced Approaches using Resampling Procedures
In stability selection (N Meinshausen, P Bühlmann (2010) <doi:10.1111/j.1467-9868.2010.00740.x>) and consensus clustering (S Monti et al (2003) <doi:10.1023/A:1023949509487>), resampling techniques are used to enhance the reliability of the results. In this package (B Bodinier et al (2025) <doi:10.18637/jss.v112.i05>), hyper-parameters are calibrated by maximising model stability, which is measured under the null hypothesis that all selection (or co-membership) probabilities are identical (B Bodinier et al (2023a) <doi:10.1093/jrsssc/qlad058> and B Bodinier et al (2023b) <doi:10.1093/bioinformatics/btad635>). Functions are readily implemented for the use of LASSO regression, sparse PCA, sparse (group) PLS or graphical LASSO in stability selection, and hierarchical clustering, partitioning around medoids, K means or Gaussian mixture models in consensus clustering. 
| Version: | 1.4.8 | 
| Depends: | fake (≥ 1.4.0), R (≥ 3.5) | 
| Imports: | abind, beepr, future, future.apply, glassoFast (≥ 1.0.0), glmnet, grDevices, igraph, mclust, nloptr, plotrix, Rdpack, withr (≥ 2.4.0) | 
| Suggests: | cluster, corpcor, dbscan, elasticnet, gglasso, mixOmics, nnet, OpenMx, RCy3, randomcoloR, rCOSA, rmarkdown, rpart, sgPLS, sparcl, survival (≥ 3.2.13), testthat (≥ 3.0.0), visNetwork | 
| Published: | 2025-07-23 | 
| DOI: | 10.32614/CRAN.package.sharp | 
| Author: | Barbara Bodinier [aut, cre] | 
| Maintainer: | Barbara Bodinier  <barbara.bodinier at gmail.com> | 
| BugReports: | https://github.com/barbarabodinier/sharp/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/barbarabodinier/sharp | 
| NeedsCompilation: | no | 
| Additional_repositories: | https://barbarabodinier.github.io/drat | 
| Language: | en-GB | 
| Citation: | sharp citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | sharp results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sharp
to link to this page.