| Title: | Smoothed M-Estimators for 1-Dimensional Location | 
| Version: | 0.1-3 | 
| Date: | 2022-04-27 | 
| Author: | Christian Hennig <christian.hennig@unibo.it> | 
| Depends: | R (≥ 2.0), MASS | 
| Description: | Some M-estimators for 1-dimensional location (Bisquare, ML for the Cauchy distribution, and the estimators from application of the smoothing principle introduced in Hampel, Hennig and Ronchetti (2011) to the above, the Huber M-estimator, and the median, main function is smoothm), and Pitman estimator. | 
| Maintainer: | Christian Hennig <christian.hennig@unibo.it> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL] | 
| URL: | https://www.unibo.it/sitoweb/christian.hennig/en | 
| NeedsCompilation: | no | 
| Packaged: | 2022-04-27 14:38:35 UTC; chrish | 
| Repository: | CRAN | 
| Date/Publication: | 2022-04-27 22:10:05 UTC | 
The double exponential (Laplace) distribution
Description
Density for and random values from double exponential (Laplace)
distribution with density exp(-abs(x-mu)/lambda)/(2*lambda),
for which the median is the ML estimator.
Usage
  ddoublex(x, mu=0, lambda=1)
  rdoublex(n,mu=0,lambda=1)
Arguments
x | 
 numeric vector.  | 
mu | 
 numeric. Distribution median.  | 
lambda | 
 numeric. Scale parameter.  | 
n | 
 integer. Number of random values to be generated.  | 
Details
- ddoublex:
 density.
- rdoublex:
 random number generation.
Value
ddoublex gives out a vector of density values.
rdoublex gives out a vector of random numbers generated by
the double exponential distribution.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Examples
  set.seed(123456)
  ddoublex(1:5,lambda=5)
  rdoublex(5,mu=10,lambda=5)
Huber's least favourable distribution
Description
Density for and random values from Huber's least favourable distribution, see Huber and Ronchetti (2009).
Usage
  dhuber(x, k=0.862, mu=0, sigma=1)
  edhuber(x, k=0.862, mu=0, sigma=1)
  rhuber(n,k=0.862, mu=0, sigma=1)
Arguments
x | 
 numeric vector.  | 
k | 
 numeric. Borderline value of central Gaussian part of the distribution. The default values refers to a 20% contamination neighborhood of the Gaussian distribution.  | 
mu | 
 numeric. distribution mean.  | 
sigma | 
 numeric. Distribution scale (  | 
n | 
 integer. Number of random values to be generated.  | 
Details
- dhuber:
 density.
- edhuber:
 density, and computes the contamination proportion corresponding to
k.- rhuber:
 random number generation.
Value
dhuber gives out a vector of density values.
edhuber gives out a list with components val (density
values) and eps (contamination proportion).
rhuber gives out a vector of random numbers generated by
Huber's least favourable distribution.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Examples
  set.seed(123456)
  edhuber(1:5,k=1.5)
  rhuber(5)
Auxiliary functions for pitman
Description
Auxiliary functions for pitman.
Usage
  pdens(z, x, dfunction, ...)
  sdens(z, x, dfunction, ...)
  dens(x, dfunction, ...)
Arguments
z | 
 numeric vector.  | 
x | 
 numeric vector.  | 
dfunction | 
 a density function defining the distribution for which the Pitman estimator is computed.  | 
... | 
 further arguments to be passed on to the density function
  | 
Details
- dens
 product of density values at
x.- pdens
 vector of
z*dens(x-z).- sdens
 vector of
dens(x-z).
Value
Numeric value (dens) or vector.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
See Also
Examples
  dens(1:5,dcauchy)
  pdens(1:5,0,dcauchy)
  sdens(1:5,0:2,dcauchy)
Pitman location estimator
Description
Pitman estimator of one-dimensional location, optimal with scale
assumed to be known.
Calculated by brute force (using integrate).
Usage
  pitman(y, d=ddoublex, lower=-Inf, upper=Inf, s=mad(y), ...)
Arguments
y | 
 numeric vector. Data set.  | 
d | 
 a density function defining the distribution for which the Pitman estimator is computed.  | 
lower | 
 numeric. Lower bound for the involved integrals (should
be   | 
upper | 
 numeric. Lower bound for the involved integrals (should
be   | 
s | 
 numeric. Estimated or assumed scale/standard deviation.  | 
... | 
 further arguments to be passed on to the density function
  | 
Value
The estimated value.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
See Also
Examples
  set.seed(10001)
  y <- rdoublex(7)
  pitman(y,ddoublex)
  pitman(y,dcauchy)
  pitman(y,dnorm)
Smoothed and unsmoothed 1-d location M-estimators
Description
smoothm is an interface for all the smoothed
M-estimators introduced in Hampel, Hennig and Ronchetti (2011) for
one-dimensional location, the Huber- and Bisquare-M-estimator and the
ML-estimator of the Cauchy distribution, calling all the other
functions documented on this page.    
Usage
   smoothm(y, method="smhuber",
     k=0.862, sn=sqrt(2.046/length(y)),
     tol=1e-06,  s=mad(y), init="median")
   sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median")
   smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y),
     smmed=FALSE, init="median")
   mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median")
   smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)),
     s=mad(y), init="median")
   mlcauchy(y, tol = 1e-06, s=mad(y))
   smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
Arguments
y | 
 numeric vector. Data set.  | 
method | 
 one of   | 
k | 
 numeric. Tuning constant. This is used for   | 
sn | 
 numeric. This is used for   | 
tol | 
 numeric. Stopping criterion for algorithms (absolute difference between two successive values).  | 
s | 
 numeric. Estimated or assumed scale/standard deviation.  | 
init | 
 
  | 
smmed | 
 logical. If   | 
Details
The following estimators can be computed (some computational details are given in Hampel et al. 2011):
- Huber estimator.
 method="huber"and functionsehubercompute the standard Huber estimator (Huber and Ronchetti 2009). The only differences from huber are thatsandinitcan be specified and that the defaultkis different.- Smoothed Huber estimator.
 method="smhuber"and functionsmhubercompute the smoothed Huber estimator (Hampel et al. 2011).- Bisquare estimator.
 method="bisquare"and functionbisquarecompute the bisquare M-estimator (Maronna et al. 2006). This usespsi.bisquare.- Smoothed bisquare estimator.
 method="smbisquare"and functionsmbisquarecompute the smoothed bisquare M-estimator (Hampel et al. 2011). This usespsi.bisquare- ML estimator for Cauchy distribution.
 method="cauchy"and functionmlcauchycompute the ML-estimator for the Cauchy distribution.- Smoothed ML estimator for Cauchy distribution.
 method="smcauchy"and functionsmcauchycompute the smoothed ML-estimator for the Cauchy distribution (Hampel et al. 2011).- Smoothed median.
 method="smmed"and functionsmhuberwithmedian=TRUEcompute the smoothed median (Hampel et al. 2011).
Value
A list with components
mu | 
 the location estimator.  | 
method | 
 see above.  | 
k | 
 see above.  | 
sn | 
 see above.  | 
tol | 
 see above.  | 
s | 
 see above.  | 
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
Examples
  library(MASS)
  set.seed(10001)
  y <- rdoublex(7)
  median(y)
  huber(y)$mu
  smoothm(y)$mu
  smoothm(y,method="huber")$mu
  smoothm(y,method="bisquare",k=4.685)$mu
  smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu
  smoothm(y,method="cauchy")$mu
  smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu
  smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu
  smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu
Auxiliary functions for smoothm
Description
Psi-functions, derivatives and further auxiliary functions used for
computing the estimators in smoothm.
Usage
  psicauchy(x) 
  psidcauchy(x)
  likcauchy(x,mu)
  flikcauchy(y,x,mu,sn)
  smtfcauchy(x,mu,sn)
  smcipsi(y, x, sn=sqrt(2/length(x)))
  smcipsid(y, x, sn=sqrt(2/length(x)))
  smcpsi(x, sn=sqrt(2/length(x)))
  smcpsid(x, sn=sqrt(2/length(x)))
  smbpsi(y, x, k=4.685, sn=sqrt(2/length(x)))
  smbpsid(y, x, k=4.685, sn=sqrt(2/length(x)))
  smbpsii(x, k=4.685, sn=sqrt(2/length(x)))
  smbpsidi(x, k=4.685, sn=sqrt(2/length(x)))
  smpsi(x,k=0.862,sn=sqrt(2/length(x)))
  smpmed(x,sn=sqrt(1/5))
Arguments
x | 
 numeric vector.  | 
mu | 
 numeric.  | 
y | 
 numeric vector.  | 
sn | 
 numeric. Smoothing constant. See   | 
k | 
 numeric. Tuning constant. See   | 
Details
- psicauchy
 psi-function for Cauchy ML-estimator at
x.- psidcauchy
 derivative of
psicauchyatx.- likcauchy
 Cauchy likelihood of data
xfor mode parametermu.- flikcauchy
 vector of Gaussian density at
ywith mean 0 and st. dev.sntimes Cauchy log-likelihood ofxwith mode parametermu+y.- smtfcauchy
 integral of
flikcauchywithyrunning from-InftoInf.- smcipsi
 psicauchy(x-y)*dnorm(y,sd=sn).- smcipsid
 derivative of
smcipsiw.r.t.x.- smcpsi
 psi-function for smoothed Cauchy ML-estimator. Integral of
smpcipsiwithyrunning from-InftoInf.- smcpsid
 integral of
smpcipsidwithyrunning from-InftoInf.- smbpsi
 (x-y)*psi.bisquare(x-y,c=k)*dnorm(y,sd=sn).- smbpsid
 psi.bisquare(x-y,c=k,deriv=1)*dnorm(y,sd=sn).- smbpsii
 psi-function for smoothed bisquare M-estimator. Integral of
smbpsiwithyrunning from-InftoInf.- smbpsidi
 integral of
smbpsidwithyrunning from-InftoInf.- smpsi
 psi-function for smoothed Huber-estimator at
x.- smpmed
 psi-function for smoothed median at
x.
Value
A numeric vector.
Author(s)
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
References
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
See Also
smoothm, psi.huber,
psi.bisquare
Examples
psicauchy(1:5)
psidcauchy(1:5)
likcauchy(1:5,0)
flikcauchy(3,1:5,0,1)
smtfcauchy(1:5,0,1)
smcipsi(1,1:3)
smcipsid(1,1:3)
smcpsi(1:5)
smcpsid(1:5)
smbpsi(1,1:5)
smbpsid(0:4,1:5)
smbpsii(1:5)
smbpsidi(1:5)
smpsi(1:5)
smpmed(1:5)