Change in v0.5.1
- Add 
normalize to textmodel_doc2vec() and
pass it to as.matrix(). 
- Add 
weights to textmodel_doc2vec() to
adjust the salience of words in the document vectors. 
- Add 
include_data to textmodel_word2vec()
to save the original tokens object. 
Changes in v0.5.0
- Add the 
model argument to
textmodel_word2vec() to update existing models. 
- The 
normalize argument is moved from
textmodel_word2vec() to as.matrix(). The
original argument is deprecated and set to FALSE by
default. 
- Remove 
weights(). 
- Improve the structure of C++ code.
 
Changes in v0.4.0
- Add the 
tolower argument and set to TRUE
to lower-case tokens. 
- Allow 
x to be quanteda’s tokens_xptr object to enhance
efficiency. 
Changes in v0.3.0
- Save docvars in the 
textmodel_doc2vec objects. 
- Set zero for empty documents in the 
textmodel_doc2vec
objects. 
- Add 
probability() to compute probability of words. 
Changes in v0.2.0
- Rename 
word2vec(), doc2vec() and
lsa() to textmodel_word2vec(),
textmodel_doc2vec() and textmodel_lsa()
respectively. 
- Simplify the C++ code to make maintenance easier.
 
- Add 
normalize to word2vec to disable or
enable word vector normalization. 
- Add 
weights() to extract back-propagation weights. 
- Make 
analogy() to convert a formula to named character
vector. 
- Improve the stability of 
word2vec() when
verbose = TRUE. 
Changes in v0.1.0
- Fork https://github.com/bnosac/word2vec and change the package name
to wordvector.
 
- Replace a list of character with quanteda’s tokens
object as an input object.
 
- Recreate 
word2vec() with new argument names and object
structures. 
- Create 
lda() to train word vectors using Latent
Semantic Analysis. 
- Add 
similarity() and analogy() functions
using proxyC. 
- Add 
data_corpus_news2014 that contain 20,000 news
summaries as package data.